1
|
Morgan EM, Fayez YM, Boltia SA, Obaydo RH, Abdelkawy M, Lotfy HM. ChlorTox scale assessment, greenness, and whiteness evaluation of selective spectrophotometric analysis of dimenhydrinate and cinnarizine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124740. [PMID: 38963943 DOI: 10.1016/j.saa.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Nausea and vomiting are considered common series side effects induced by chemotherapy treatment in cancer patients. This annoying side effect can impair the patient's compliance to cancer treatment and affect their quality of life. Dimenhydrinate and cinnarizine in combined pharmaceutical dosage form is used to control chemotherapy induced nausea and vomiting in cancer patients. For safety, selective spectrophotometric methods based on novel dual resolution strategies were introduced to estimate dimenhydrinate and cinnarizine in presence of their harmful impurities namely benzophenone and 1- (diphenylmethyl)piperazine, respectively. These methods namely, dual ratio difference (DRD), dual ratio extraction (DRE) and dual absorbance extraction coupled with dual ratio extraction (DAE-DRE) were successfully performed to simultaneously analyze the drug of interests dimenhydrinate and cinnarizine in their pure form, synthetic mixtures and in market dosage form. Linearity ranges were 6.0-60.0 μg/mL and 3.0-30.0 μg/mL for dimenhydrinate and cinnarizine, respectively with good recovery% of Mean ± SD for all the proposed methods 99.82 ± 0.48, 99.79 ± 0.40, 100.14 ± 0.82, 100.03 ± 0.69, respectively. ICH guidelines were adhered in accordance with confirming validation of the proposed methods where fulfilling results were accomplished. Various unified greenness and whiteness assessment tools, such as the chlorTox scale, greenness index via spider chart, AGREE (The Analytical Greenness Metric), green certificate, and the RGB12 algorithm were employed in this research to assess the greenness and sustainability of the introduced UV-spectrophotometric methods in comparison to the reported HPLC method. As a result, these methods hold significant potential for utilization in the quality control department of pharmaceutical companies, contributing to enhanced pharmaceutical product analysis and overall sustainability practices.
Collapse
Affiliation(s)
- Eman M Morgan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, 11853 Cairo, Egypt
| | - Yasmin M Fayez
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt
| | - Shereen A Boltia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt.
| | - Reem H Obaydo
- Analytical and Food Chemistry Department, Faculty of Pharmacy, Ebla Private University, 22743 Idlib, Syria.
| | - M Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt
| | - Hayam M Lotfy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, 11853 Cairo, Egypt
| |
Collapse
|
2
|
Ibrahim EA, Saad SS, Hegazy MA, Abdel Fattah LE, Marzouk HM. A novel stability-indicating chromatographic quantification of the antiparkinsonian drug safinamide in its pharmaceutical formulation employing HPTLC densitometry and ion-pair HPLC-DAD. BMC Chem 2024; 18:212. [PMID: 39487557 PMCID: PMC11529230 DOI: 10.1186/s13065-024-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease (PD) emerges as a notable health concern among the elderly population. Safinamide mesylate (SAF) is a novel and emerging add-on therapy in PD treatment. The stability of innovative drug formulations and the development of appropriate stability-indicating methods are of great importance to modern pharmaceutical analysis. The current work has established novel comprehensive stability-indicating chromatographic approaches, HPTLC coupled with densitometric quantification and HPLC-DAD, for the selective assay of SAF in pharmaceutical formulation along with its synthetic precursor impurity; 4-hydroxy benzaldehyde (4-HBD) in presence of its stress induced degradation products. The stability of SAF was investigated under different stress conditions. It was found that SAF is likely to undergo acid, base hydrolysis, and oxidative degradation. Using mass spectrometry and infrared spectroscopy, the structures of the forced degradation products were confirmed and elucidated. The dissolution behavior of Parkimedine® Tablets was also monitored in the FDA suitable medium. Multiple assessment tools were used to evaluate the environmental sustainability of the proposed methods and the reported one. The greenness tools included Complex-GAPI and AGREE metrics. In addition, the innovative concepts of "blueness" and "whiteness" evaluation were incorporated through the newly introduced BAGI and RGB12 algorithms, respectively.
Collapse
Affiliation(s)
- Engy A Ibrahim
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Samah S Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Laila E Abdel Fattah
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Hoda M Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Ali SN, Saad SS, Fayed AS, Marzouk HM. Intelligent spectrophotometric resolution platforms for the challenging spectra of ipratropium and fenoterol in their combination inhaler with ecological friendliness assessment. Sci Rep 2024; 14:22406. [PMID: 39333660 PMCID: PMC11436838 DOI: 10.1038/s41598-024-72431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are the most common diagnoses for adults and children with respiratory tract inflammation. Recently, a novel fixed dose combination consisting of Ipratropium and Fenoterol has been released for the management and control of the symptoms of such disorders. The current research has newly developed and optimized three smart, accurate, simple, cost-effective, and eco-friendly spectrophotometric methods that enabled the simultaneous determination of the drugs under study in their combined inhaler dosage form, without the need for any previous separation steps, using water as a green solvent. The strategy employed was based on calculating one or two factors as a numerical spectrum or constant, which provided the complete removal of any component in the mixture that might overlap and the mathematical filtration of the targeted analyte. The methods developed could be classified into two types of spectrophotometric windows. Window I; involved absorption spectrum in their original zero-order forms (°D), which included recently designed methods named induced concentration subtraction (ICS) and induced dual wavelength (IDW). While window III focused on the ratio spectrum as the induced amplitude modulation (IAM) method. The extremely low absorptivity and lack of distinct absorption maximum in the zero-order absorption spectrum of Ipratropium were two intrinsic challenges that were better overcome by the proposed spectrophotometric methods than by the conventionally used ones. According to ICH guidelines, the proposed methods were validated using unified regression over range 2.0-40.0 µg/mL in the ICS method, while the linearity ranges for the IDW and IAM methods were 5.0-40.0 µg/mL of Ipratropium and 2.0-40.0 µg/mL of Fenoterol. Moreover, the three proposed methods were effectively used to assay the co-formulated marketed inhaler and further expanded to confirm the delivered dose uniformity in compliance with the USP guidelines. Finally, the established methods were evaluated for their greenness and blueness, in comparison to the official and reported analysis methods, using advanced cutting edge software metrics. Furthermore, the suggested techniques adhered well to the white analytical chemistry postulates that were recently published.
Collapse
Affiliation(s)
- Salma N Ali
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Samah S Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Ahmed S Fayed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt
| | - Hoda M Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Jankech T, Gerhardtova I, Stefanik O, Chalova P, Jampilek J, Majerova P, Kovac A, Piestansky J. Current green capillary electrophoresis and liquid chromatography methods for analysis of pharmaceutical and biomedical samples (2019-2023) - A review. Anal Chim Acta 2024; 1323:342889. [PMID: 39182966 DOI: 10.1016/j.aca.2024.342889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024]
Abstract
Separation analytical methods, including liquid chromatography (LC) and capillary electrophoresis (CE), in combination with an appropriate detection technique, are dominant and powerful approaches preferred in the analysis of pharmaceutical and biomedical samples. Recent trends in analytical methods are focused on activities that push them to the field of greenness and sustainability. New approaches based on the implementation of greener solvents, non-hazardous chemicals, and reagents have grown exponentially. Similarly, recent trends are pushed in to the strategies based on miniaturization, reduction of wastes, avoiding derivatization procedures, or reduction of energy consumption. However, the real greenness of the analytical method can be evaluated only according to an objective and sufficient metric offering complex results taking into account all twelve rules of green analytical chemistry (SIGNIFICANCE mnemonic system). This review provides an extensive overview of papers published in the area of development of green LC and CE methods in the field of pharmaceutical and biomedical analysis over the last 5 years (2019-2023). The main focus is situated on the metrics used for greenness evaluation of the methods applied for the determination of bioactive agents. It critically evaluates and compares the demands of the real applicability of the methods in quality control and clinical environment with the requirements of the green analytical chemistry (GAC). Greenness and practicality of the summarized methods are re-evaluated or newly evaluated with the use of the dominant metrics tools, i.e., Analytical GREEnness (AGREE), Green Analytical Procedure Index (GAPI), Blue Applicability Grade Index (BAGI), and Sample Preparation Metric of Sustainability (SPMS). Moreover, general conclusions and future perspectives of the greening procedures and greenness evaluation metrics systems are presented. This paper should provide comprehensive information to analytical chemists, biochemists, and it can also represent a valuable source of information for clinicians, biomedical or quality control laboratories interested in development of analytical methods based on greenness, practicality, and sustainability.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Ali SN, Saad SS, Fayed AS, Marzouk HM. Chromatographic fingerprinting of ipratropium and fenoterol in their novel co-formulated inhaler treating major respiratory disorders; application to delivered dose uniformity testing along with greenness and whiteness assessment. BMC Chem 2024; 18:157. [PMID: 39192312 DOI: 10.1186/s13065-024-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Ipratropium bromide (IPR) and fenoterol hydrobromide (FEN) have recently been combined in a promising inhaler to treat two prevalent inflammatory illnesses of the airways: bronchial asthma and chronic obstructive pulmonary disease (COPD). The necessity for a single, sensitive, and trustworthy analytical approach to cover the diverse and necessary tests of in-vitro and in-vivo studies is greatly grown with the rising production of new fixed combinations. Two novel, selective and environmentally friendly LC techniques were developed in order to guarantee precise measurement of IPR and FEN in their challenging formulation. The initial technique involved high-performance thin-layer chromatography (HPTLC) in conjunction with densitometric quantification. Chromatographic separation was attained on HPTLC plates utilizing ethyl acetate - ethanol - acetic acid (5.0:5.0:0.1, by volume) as a developing system. Densitometric quantification of the separated bands was carried out at 220.0 nm over concentration ranges of 0.50-15.0 µg/band for IPR and 0.50-12.0 µg/band for FEN. High-performance liquid chromatography (HPLC) paired with diode array detection (DAD) was the core of the second technique. The optimized separation was achieved on a Zorbax SB C18 (150 × 4.6 mm, 5 μm) column with a combination of 10.0 mM potassium dihydrogen orthophosphate, pH 5.0 ± 0.1, adjusted with o-phosphoric acid and methanol (70:30, v/v) as the mobile phase and pumped at flow rate of 1.0 mL/min. The peaks were monitored at 220.0 nm using diode array detection, achieving linearity range of 5.0-200.0 µg/mL for both drugs. The ICH criteria have been verified and both methods have been confirmed to be valid, and successfully applied for assay the cited drugs in the Atrovent® comp HFA metered dose inhaler as well as delivered dose uniformity testing of the final product. Finally, whiteness appraisal and several state-of-the-art green evaluation metrics were applied to evaluate the sustainability of the proposed methods. The suggested approaches produced promising results and are the first simple and sustainable methodologies for the simultaneous quantification of both drugs in different real samples, all of which strongly suggest their application in quality control laboratories.
Collapse
Affiliation(s)
- Salma N Ali
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Samah S Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, 6th of October City, Giza, Egypt
| | - Ahmed S Fayed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt
| | - Hoda M Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
6
|
Ďuriš M, Hradski J, Szucs R, Masár M. Microchip isotachophoresis for green and sustainable pharmaceutical quality control: Method validation and application to complex pharmaceutical formulations. J Chromatogr A 2024; 1729:465055. [PMID: 38852265 DOI: 10.1016/j.chroma.2024.465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Universal microchip isotachophoresis (μITP) methods were developed for the determination of cationic and anionic macrocomponents (active pharmaceutical ingredients and counterions) in cardiovascular drugs marketed in salt form, amlodipine besylate and perindopril erbumine. The developed methods are characterized by low reagent and sample consumption, waste production and energy consumption, require only minimal sample preparation and provide fast analysis. The greenness of the proposed methods was assessed using AGREE. An internal standard addition was used to improve the quantitative parameters of μITP. The proposed methods were validated according to the ICH guideline. Linearity, precision, accuracy and specificity were evaluated for each of the studied analytes and all set validation criteria were met. Good linearity was observed in the presence of matrix and in the absence of matrix, with a correlation coefficient of at least 0.9993. The developed methods allowed precise and accurate determination of the studied analytes, the RSD of the quantitative and qualitative parameters were less than 1.5% and the recoveries ranged from 98 to 102%. The developed μITP methods were successfully applied to the determination of cationic and anionic macrocomponents in six commercially available pharmaceutical formulations.
Collapse
Affiliation(s)
- Marta Ďuriš
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia.
| | - Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| |
Collapse
|
7
|
Hamad AA, Saleh SF, Mahdi WA, Alshehri S, Hamd MAE. Facile Integration of Hanztsch's Switch-Off/On Modeled Fluorogenic Probe for Feasible Tagging and Tracking of the Midodrine Drug in Different Matrices; First Evaluation of the Method's Greenness, Whiteness, Blueness, Quantum Yield, and Tablets' Content Homogeneity. J Fluoresc 2024:10.1007/s10895-024-03839-x. [PMID: 39102112 DOI: 10.1007/s10895-024-03839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
The proposed investigation follows a certain methodology to guarantee that the procedure employed is sustainable and green. It is noteworthy to mention that various tools have been implemented as potential indicators of environmental sustainability (greenness and whiteness). From a novelty viewpoint, a new tool, BAGI, for the method's blueness evaluation was applied to the planned method and showed a high applicability score. Fortunately, the WAC concept, which combines ecological and functional variables using the Green/Red/Blue design (RBG 12 tool), identifies the established analytical approach as white. In the planned study, a new, green, simple, nano-trace-sensitive, original fluorimetric methodology was established to analyze and assess midodrine hydrochloride content in different matrices. Midodrine's primary amine moiety reacts with Diacetylmethane/Oxymethylene reagent in an acetate buffer, which leads to generating a fluorescent dihydrolutidine derivative (Hantzsch-named reaction). Consequently, the signal strength of this compound was quantified at 487 nm, with an excitation wavelength of 426 nm. This analysis indicated that the technique exhibited linearity within the range of 0.05 to 1.1 µg mL-1 concentrations, accompanied by remarkably good sensitivity values (LOD and LOQ). The methodology employed in this examination was subjected to validation following the rules recognized by ICH. From the perspective of pharmacy and chemistry, the method presented in this study was successfully employed to analyze commercially available tablets, oral drops, and human fluids. The outcomes obtained demonstrated satisfactory recovery rates without any interference from excipients. Following the USP recommendations, the intended technique was finally implemented to explore the content homogeneity evaluation.
Collapse
Affiliation(s)
- Ahmed Abdulhafez Hamad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Safaa F Saleh
- Pharmaceutical Chemistry Department, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
8
|
Sakur AA, Karman M. Eco-friendly and smart spectrophotometric approaches for quality control analysis of one of β-blockers in their dosage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123961. [PMID: 38340444 DOI: 10.1016/j.saa.2024.123961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry's rapid progress has spurred the demand for diverse analysis approaches within quality control laboratories to investigate approved drug combinations. Antihypertensive drugs, especially beta-blockers (BB), represent a significant pharmaceutical group, with increasing consumption. The presented research resolves spectral overlay for important binary combination of Propranolol hydrochloride (PRO) and Hydrochlorothiazide (HCT) which its zero order spectrums exhibit interference with a lack of iso-absorptive points, throughout three proposed approaches: Induced Dual Wavelength (IDW), Absorptivity Factor (α-factor), and Amplitude Factor (P-factor). These approaches enable simultaneous spectrophotometric identification of binary mixture without prior separation, with good linearity ranges of (1.5-25) µg/mL (2.0-25) µg/mL for (PRO) and (HCT). The outputs of quality control laboratories involve multiple solvents and reagents, leading to the production of toxic waste that affects the environment and society. While BBs are safe for human and veterinary use, their impact on ecosystems cannot be ignored, thus this research highlights the importance of eco-friendly and smart spectrophotometric approaches for simultaneous identification of the most important β-blockers combination with minimal waste and energy consumption. Greenness and Whiteness aspects of proposed approaches are assessed via three Green Analytical Chemistry (GAC) metrics: Analytical Greenness Metric approach (AGREE), Green Analytical Procedure Index (GAPI Index) and Red-Green-Blue (RGB) model. Verification of each proposed approaches are proved via ICH confines and statistically compared with USP pharmacopeia approach revealing along with never main deviation.
Collapse
Affiliation(s)
- Amir Alhaj Sakur
- Analytical and Food Chemistry Dept., Faculty of Pharmacy - University of Aleppo, Syria.
| | - May Karman
- Analytical and Food Chemistry Dept., Faculty of Pharmacy - University of Aleppo, Syria.
| |
Collapse
|
9
|
Rostom Y, Rezk MR, Wadie M, Abdel-Moety EM, Marzouk HM. State-of-the-art mathematically induced filtration approaches for smart spectrophotometric assessment of silodosin and solifenacin mixture in their new challenging formulation: Multi-tool greenness and whiteness evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123650. [PMID: 37979536 DOI: 10.1016/j.saa.2023.123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Benign prostatic hyperplasia is one of the most predominant health disorders in men with increasing incidence by age and usually accompanied with other bothersome symptoms. A new fixed dose combination, containing Silodosin and Solifenacin, has been recently launched for relieving such disorder associated with overactive bladder syndrome. In the current work, three smart, innovative and white spectrophotometric methods have been newly developed and optimized for simultaneous determination of the studied drugs in their binary mixture using water as an eco-friendly solvent. The adopted strategy relied on calculation of one or two factors as numerical constant or spectrum allowing mathematical filtration of desired analyte and full removal of any overlapped components in the mixture. The developed methods are categorized over two spectrophotometric platform windows. Window I deals with absorption spectra in its native forms (zero-order) including a newly developed method termed induced concentration subtraction (ICS) as well as induced dual wavelength (IDW) methods. Whereas window III is concerned with ratio spectra as in induced amplitude modulation (IAM) method. Compared to classical spectrophotometric methods, the proposed ones are superior in overcoming the inherited challenges in zero-order absorption spectrum of Solifenacin, particularly its very low absorptivity and lack of unique absorption maximum. Validity of the methods were thoroughly assured as per ICH guidelines with unified regression over 3.0-50.0 µg/mL in ICS method while IDW and IAM ones possessed linearity ranges of 3.0-50.0 µg/mL of Silodosin and 5.0-60.0 µg/mL of Solifenacin. The work was also extended to verify content uniformity of dosage units in accordance with USP recommendations. Greenness profile of the proposed methods was clearly assessed, in comparison to the reported analysis ones, via state-of-the-art software metrics, namely, green solvent selection tool (GSST), complementary green analytical procedure index (ComplexGAPI) and analytical greenness (AGREE). Finally, the proposed methods were in good adherence to the recently published postulates of white analytical chemistry.
Collapse
Affiliation(s)
- Yasmin Rostom
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt.
| | - Mamdouh R Rezk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Mina Wadie
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Ezzat M Abdel-Moety
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Hoda M Marzouk
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy - Cairo University, Kasr El-Aini Street, ET-11562 Cairo, Egypt
| |
Collapse
|
10
|
Ashour ES, Hegazy MA, Al-Alamein AMA, El-Sayed GM, Ghoniem NS. Green chromatographic methods for determination of co-formulated lidocaine hydrochloride and miconazole nitrate along with an endocrine disruptor preservative and potential impurity. BMC Chem 2023; 17:151. [PMID: 37941018 PMCID: PMC10633899 DOI: 10.1186/s13065-023-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Recently, green analytical chemistry (GAC) is a key issue towards the idea of sustainability, the analytical community is focused on developing analytical methods that incorporate green chemistry principles to minimize adverse impacts on the environment and humans. Herein, we present 2 sustainable, selective, and validated chromatographic methods. Initially, lidocaine hydrochloride (LDC) and miconazole nitrate (MIC) with two preservatives; methyl paraben (MTP) and saccharin sodium (SAC) were chromatographed via TLC-densitometric method which employed ethyl acetate: methanol: formic acid (9:1:0.1, by volume) as the mobile phase with UV detection at 220.0 nm, good correlation was obtained in the range of 0.3-3.0 µg/band for MIC and LDC. Following that, RP-HPLC was successfully applied for separating quinary mixture of LDC, MIC, MTP, SAC along with LDC impurity; dimethyl aniline (DMA) using C18 column, and a gradient green mobile phase composed of methanol and phosphate buffer (pH 6.0) in different ratios with a flow rate 1.5 mL/min and UV detection at 210.0 nm, linearity ranges from 1.00 to 100.00 µg/mL for MIC, 2.00-100.00 µg/mL for LDC and 1.00--20.00 µg/mL for MTP and DMA. No records to date regarding the determination of the two drugs, besides MTP and DMA. The proposed methods were validated according to the ICH guidelines and applied successfully to the analysis of the compounds. The methods' results were statistically compared to those obtained by applying the reported one, indicating no significant difference regarding both accuracy and precision. The methods' greenness profiles have been assessed and compared with those of the reported method using different assessment tools.
Collapse
Affiliation(s)
- Esraa S Ashour
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt.
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| | - Amal M Abou Al-Alamein
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| | - Ghada M El-Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| | - Nermine S Ghoniem
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| |
Collapse
|