1
|
Phan ANT, Prigolovkin L, Blank LM. Unlocking the potentials of Ustilago trichophora for up-cycling polyurethane-derived monomer 1,4-butanediol. Microb Biotechnol 2024; 17:e14384. [PMID: 38454531 PMCID: PMC10920939 DOI: 10.1111/1751-7915.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 03/09/2024] Open
Abstract
Plastic usage by microbes as a carbon source is a promising strategy to increase the recycling quota. 1,4-butanediol (BDO) is a common monomer derived from polyesters and polyurethanes. In this study, Ustilago trichophora was found to be an efficient cell-factory to valorize BDO. To investigate product formation by U. trichophora, we refined the traditional ion exclusion liquid chromatography method by examining eluent, eluent concentrations, oven temperatures, and organic modifiers to make the chromatography compatible with mass spectrometry. An LC-UV/RI-MS2 method is presented here to identify and quantify extracellular metabolites in the cell cultures. With this method, we successfully identified that U. trichophora secreted malic acid, succinic acid, erythritol, and mannitol into the culture medium. Adaptive laboratory evolution followed by medium optimization significantly improved U. trichophora growth on BDO and especially malic acid production. Overall, the carbon yield on the BDO substrate was approximately 33% malic acid. This study marks the first report of a Ustilaginaceae fungus capable of converting BDO into versatile chemical building blocks. Since U. trichophora is not genetically engineered, it is a promising microbial host to produce malic acid from BDO, thereby contributing to the development of the envisaged sustainable bioeconomy.
Collapse
Affiliation(s)
- An N. T. Phan
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Lisa Prigolovkin
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt)RWTH Aachen UniversityAachenGermany
| |
Collapse
|
2
|
Sawicka MM, Sawicki K, Jadeszko M, Bielawska K, Supruniuk E, Reszeć J, Prokop-Bielenia I, Polityńska B, Jadeszko M, Rybaczek M, Latoch E, Gorbacz K, Łysoń T, Miltyk W. Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue. Cancers (Basel) 2024; 16:456. [PMID: 38275897 PMCID: PMC10814259 DOI: 10.3390/cancers16020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted.
Collapse
Affiliation(s)
- Magdalena M. Sawicka
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Karol Sawicki
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Marek Jadeszko
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Katarzyna Bielawska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Izabela Prokop-Bielenia
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Mateusz Jadeszko
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Magdalena Rybaczek
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Krzysztof Gorbacz
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Tomasz Łysoń
- Department of Neurosurgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland; (K.S.); (M.J.); (M.R.); (K.G.); (T.Ł.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (K.B.); (W.M.)
| |
Collapse
|
3
|
Zheng Y, Lee EH, Lee SY, Lee Y, Shin KO, Park K, Kang IJ. Morus alba L. root decreases melanin synthesis via sphingosine-1-phosphate signaling in B16F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115848. [PMID: 36272492 DOI: 10.1016/j.jep.2022.115848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. has long been used for beauty in many Asian countries and regions, including anti-aging and hyperpigmentation. AIM OF THE STUDY This study aimed at the inhibitory effect of Morus alba L. root on melanogenesis in B16F10 melanoma cells and the mechanism involved. MATERIALS AND METHODS This study evaluated the anti-melanogenic effect of Morus alba L. root extract (MAR) on B16F10 melanoma cells by assessing cell viability, melanin accumulation, cellular tyrosinase activity, intra/inter-cellular S1P levels, cellular S1P-related metabolic enzyme activity, and western blot analysis. In addition, the potential S1P lyase (S1PL) inhibitory constituents in MAR were identified by LC-MS/MS. RESULTS Without affecting the viability of B16F10 melanoma cells, MAR inhibited intracellular tyrosinase activity in a dose-dependent manner, thereby reducing the accumulation of melanin. MAR also downregulated the expression level of MITF via activating the ERK signaling pathway. Furthermore, MAR increased the intra/inter-cellular S1P by inhibiting S1PL. Several compounds with inhibitory S1PL activity have been identified in MAR, such as mulberroside A and oxyresveratrol. CONCLUSIONS The anti-melanogenic effects of MAR mainly involve promoting MITF degradation mediated via S1P-S1PR3-ERK signaling through increasing cellular S1P levels by inhibiting S1PL activity.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Eun-Hye Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - So-Yeon Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yeji Lee
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyungho Park
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition & the Korean Institute of Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
4
|
Peng KW, Klotz A, Guven A, Gray K, Friss T, Ravipaty S, Sarangarajan R, Tolstikov V, Kellogg MD, Narain NR, Kiebish MA. Multiplexed LC-MS/MS analysis of methylsuccinic acid, ethylmalonic acid, and glutaric acid in plasma and urine. Anal Biochem 2022; 645:114604. [PMID: 35217005 DOI: 10.1016/j.ab.2022.114604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/01/2022]
Abstract
Low molecular-mass aliphatic carboxylic acids are critically important for intermediate metabolism and may serve as important biomarkers for metabolic homeostasis. Here in, we focused on multiplexed method development of aliphatic carboxylic analytes, including methylsuccinic acid (MSA), ethylmalonic acid (EMA), and glutaric acid (GA). Also assessed was their utility in a population's health as well as metabolic disease screening in both plasma and urine matrices. MSA, EMA, and GA are constitutional isomers of dicarboxylic acid with high polarity and poor ionization efficiency, resulting in such challenges as poor signal intensity and retention, particularly in reversed-phase liquid chromatography with electrospray mass spectrometry (RP-LC-ESI-MS/MS). Derivatization using n-butanol was performed in the sample preparation to enhance the signal intensity accompanied with a positive charge from ionization in complicated biomatrices as well as to improve the separation of these isomers with optimal retention. Fit-for-purpose method validation results demonstrated quantitative ranges for MSA/EMA/GA from 5/10/20 ng/mL to 400 ng/mL in plasma analysis, and 100/200/100 ng/mL to 5000/10000/5000 ng/mL in urine analysis. This validated method demonstrates future utility when exploring population health analysis and biomarker development in metabolic diseases.
Collapse
Affiliation(s)
- Kuan-Wei Peng
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Allison Klotz
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Arcan Guven
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Kayleigh Gray
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | - Tracey Friss
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | | | | | | - Mark D Kellogg
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA; Department of Laboratory Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Niven R Narain
- BERG, 500 Old Connecticut Path, Framingham, MA, 01701, USA
| | | |
Collapse
|
5
|
De-Simone SG, Bourguignon SC, Gonçalves PS, Lechuga GC, Provance DW. Metabolic Alteration of Trypanosoma cruzi during Differentiation of Epimastigote to Trypomastigote Forms. Pathogens 2022; 11:pathogens11020268. [PMID: 35215210 PMCID: PMC8879499 DOI: 10.3390/pathogens11020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Intracellular parasites such as Trypanosoma cruzi need to acquire valuable carbon sources from the host cell to replicate. Here, we investigated the energetic metabolism of T. cruzi during metacyclogenesis through the determination of enzymatic activities and quantification by HPLC of glycolytic and Krebs cycle short-chain carboxylic acids. Altered concentrations in pyruvate, acetate, succinate, and glycerate were measured during the growth of epimastigote in the complex medium BHI and their differentiation to trypomastigotes in the chemically defined medium, TAU3AAG. These alterations should represent significant differential metabolic modifications utilized by either form to generate energy. This paper is the first work dealing with the intracellular organic acid concentration measurement in T. cruzi parasites. Although it confirms the previous assumption of the importance of carbohydrate metabolism, it yields an essential improvement in T. cruzi metabolism knowledge.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
- Correspondence:
| | - Saulo C. Bourguignon
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
| | - Priscila S. Gonçalves
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil;
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), FIOCRUZ, National Institute of Science and Technology for Innovation in Neglected Populations Diseases (INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil; (P.S.G.); (G.C.L.); (D.W.P.J.)
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
6
|
Fisol AFBC, Saidi NB, Al-Obaidi JR, Lamasudin DU, Atan S, Razali N, Sajari R, Rahmad N, Hussin SNIS, Mr NH. Differential Analysis of Mycelial Proteins and Metabolites From Rigidoporus Microporus During In Vitro Interaction With Hevea Brasiliensis. MICROBIAL ECOLOGY 2022; 83:363-379. [PMID: 33890145 DOI: 10.1007/s00248-021-01757-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Rigidoporus microporus is the fungus accountable for the white root rot disease that is detrimental to the rubber tree, Hevea brasiliensis. The pathogenicity mechanism of R. microporus and the identity of the fungal proteins and metabolites involved during the infection process remain unclear. In this study, the protein and metabolite profiles of two R. microporus isolates, Segamat (SEG) and Ayer Molek (AM), were investigated during an in vitro interaction with H. brasiliensis. The isolates were used to inoculate H. brasiliensis clone RRIM 2025, and mycelia adhering to the roots of the plant were collected for analysis. Transmission electron microscope (TEM) images acquired confirms the hyphae attachment and colonization of the mycelia on the root of the H. brasiliensis clones after 4 days of inoculation. The protein samples were subjected to 2-DE analysis and analyzed using MALDI-ToF MS/MS, while the metabolites were extracted using methanol and analyzed using LC/MS-QTOF. Based on the differential analyses, upregulation of proteins that are essential for fungal evolution such as malate dehydrogenase, fructose 1,6-biphosphate aldolase, and glyceraldehyde-3-phosphate dehydrogenase hints an indirect role in fungal pathogenicity, while metabolomic analysis suggests an increase in acidic compounds which may lead to increased cell wall degrading enzyme activity. Bioinformatics analyses revealed that the carbohydrate and amino acid metabolisms were prominently affected in response to the fungal pathogenicity. In addition to that, other pathways that were significantly affected include "Protein Ubiquitination Pathway," Unfolded Protein Response," "HIFα Signaling," and "Sirtuin Signaling Pathway." The identification of responsive proteins and metabolites from this study promotes a better understanding of mechanisms underlying R. microporus pathogenesis and provides a list of potential biological markers for early recognition of the white root rot disease.
Collapse
Affiliation(s)
- Ahmad Faiz Bin Che Fisol
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Safiah Atan
- Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurhanani Razali
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-kun, Okinawa, 904-0495, Japan
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Roslinda Sajari
- Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Siti Nahdatul Isnaini Said Hussin
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Nurul Hafiza Mr
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts 2021. [DOI: 10.3390/catal11091082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the acid-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heating methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot butanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demonstrating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop.
Collapse
|
8
|
Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Res Int 2021; 147:110549. [PMID: 34399526 DOI: 10.1016/j.foodres.2021.110549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.
Collapse
|
9
|
Nardini GS, Dolzan MD, Micke GA, Vitali L. A new high-throughput method based on hydrophilic interaction liquid chromatography-tandem mass spectrometry to determine 18 short-chain carboxylic acids in foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Willacey CC, Karu N, Harms AC, Hankemeier T. Metabolic profiling of material-limited cell samples by dimethylaminophenacyl bromide derivatization with UPLC-MS/MS analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Corry TA, Jackson BA, Ray AD. Impurity analysis of 2-butynoic acid by ion chromatography-mass spectrometry. J Chromatogr A 2019; 1604:460470. [PMID: 31492467 DOI: 10.1016/j.chroma.2019.460470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
Small organic acids are widely used within the pharmaceutical industry but can be difficult to analyse. Ion chromatography is a suitable technique for the analysis of these acids but method development can be hindered as mass spectrometry is not often used as a detector; this means that peak tracking and peak purity cannot be performed. The authors report method development for the analysis of 2-butynoic acid, where by using electrospray ionisation mass spectrometry, peak purity was investigated and the presence of co-eluting impurities determined. Optimisation of the additives in the make-up flow to the mass spectrometer was shown to have an impact on the response observed. A standard series of organic acids were analysed spiked in to 2-butynoic acid at levels representative of impurities, the presence of the 2-butynoic acid did not impact the linearity or limit of detection observed for the acids; R2 values greater than 0.98 were obtained for all acids with and without the presence of 2-butynoic acid with a limit of detection at 1 ppb for all but one of the acids.
Collapse
Affiliation(s)
- Thomas A Corry
- Global Chemical Development, AstraZeneca, Charter Way, Macclesfield, Cheshire SK10 2NA, UK
| | - Bethany A Jackson
- Global Chemical Development, AstraZeneca, Charter Way, Macclesfield, Cheshire SK10 2NA, UK
| | - Andrew D Ray
- Global Product Development, AstraZeneca, Charter Way, Macclesfield, Cheshire SK10 2NA, UK.
| |
Collapse
|
12
|
Sargautiene V, Nakurte I, Nikolajeva V. Broad Prebiotic Potential of Non-starch Polysaccharides from Oats ( Avena sativa L.): an in vitro Study. Pol J Microbiol 2019; 67:307-313. [PMID: 30451447 PMCID: PMC7256768 DOI: 10.21307/pjm-2018-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Prebiotics inducing the growth or activity of beneficial intestinal bacteria – probiotics producing short-chain fatty acids (SCFA) have lately received wide recognition for their beneficial influence on host intestinal microbiota and metabolic health. Some non-starch polysaccharides (NSP) are defined as prebiotics and oats being one of richest sources of NSP in grains are considered as potentially having prebiotic effect. However, information on fermentation of specific NSP of oats is limited. Moreover, bacterial cross-feeding interactions in which fermentation of prebiotics is involved is poorly characterized. Here, we report the exploration of new candidates for the syntrophic bacterial interactions and fermentability of oat non-starch polysaccharides (NSP). The results obtained by differentiating composition, viscosity and concentration of oats NSP in fermentation medium showed that Bacillus licheniformis pre-digests oat NSP, degrades high viscosity of oat β-glucan and makes hemicellulose easier to access for other bacteria. Because of fermentation, B. licheniformis produces lactic and succinic acids, which further can be used by other bacteria for cross-feeding and SCFA production.
Collapse
Affiliation(s)
| | - Ilva Nakurte
- Department of Physical Chemistry, University of Latvia, Riga, Latvia
| | - Vizma Nikolajeva
- Department of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
13
|
Janke CK, Wendling LA, Fujinuma R. Biological nitrification inhibition by root exudates of native species, Hibiscus splendens and Solanum echinatum. PeerJ 2018; 6:e4960. [PMID: 29942677 PMCID: PMC6014310 DOI: 10.7717/peerj.4960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022] Open
Abstract
Australian native species grow competitively in nutrient limited environments, particularly in nitrogen (N) limited soils; however, the mechanism that enables this is poorly understood. Biological nitrification inhibition (BNI), which is the release of root exudates into the plant rhizosphere to inhibit the nitrification process, is a hypothesized adaptive mechanism for maximizing N uptake. To date, few studies have investigated the temporal pattern and components of root exudates by Australian native plant species for BNI. This study examined root exudates from two Australian native species, Hibiscus splendens and Solanum echinatum, and contrasted with exudates of Sorghum bicolor, a plant widely demonstrated to exhibit BNI capacity. Root exudates were collected from plants at two, four, and six weeks after transplanting to solution culture. Root exudates contained three types of organic acids (OAs), oxalic, citric and succinic acids, regardless of the species. However, the two Australian natives species released larger amount of OAs in earlier development stages than S. bicolor. The total quantity of these OAs released per unit root dry mass was also seven-ten times greater for Australian native plant species compared to S. bicolor. The root exudates significantly inhibited nitrification activity over six weeks' growth in a potential nitrification assay, with S. echinatum (ca. 81% inhibition) > S. bicolor (ca. 80% inhibition) > H. splendens (ca. 78% inhibition). The narrow range of BNI capacity in the study plants limited the determination of a relationship between OAs and BNI; however, a lack of correlation between individual OAs and inhibition of nitrification suggests OAs may not directly contribute to BNI. These results indicate that Australian native species generate a strongly N conserving environment within the rhizosphere up to six weeks after germination, establishing a competitive advantage in severely N limited environments.
Collapse
Affiliation(s)
- Chelsea K. Janke
- School of Agriculture and Food Sciences, University of Queensland, Australia
| | - Laura A. Wendling
- School of Agriculture and Food Sciences, University of Queensland, Australia
- Current affiliation: VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Ryosuke Fujinuma
- School of Agriculture and Food Sciences, University of Queensland, Australia
- Current affiliation: Department of Natural Sciences, International Christian University, Tokyo, Japan
| |
Collapse
|
14
|
Rapid screening and quantification of major organic acids in citrus fruits and their bioactivity studies. Journal of Food Science and Technology 2018; 55:1339-1349. [PMID: 29606748 DOI: 10.1007/s13197-018-3045-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Organic acids (OAs) are small non-volatile molecules with widespread usage in processed foods, feeds and instant beverages. The prime aim of this study was to explore major OAs in local citrus fruits (Citrus limetta, Citrus aurantifolia, Citrus nobilis, Citrus karna, Citrus medica, Citrus ichangensis and Citrus aurantium) and assessment of their bioactivities. A RP-HPLC-DAD method was developed using buffer free solvent system for rapid detection and quantification of major OAs from citrus fruits and derived products. Method validation studies showed good linear calibration curve (0.985-0.998) for all OAs. The values of %RSD ranged between 0.0001-1.129 and 0.142-1.941 for interday and intraday variability respectively. The limit of detection and limit of quantification values for different OAs were ranged between 1.5-12 and 5-40 µg mL-1. The juice of above mentioned citrus fruit cultivars were assessed for OAs, total phenolics, free radical scavenging antioxidants and their antimicrobial potential against selected bacterial and fungal strains. The results showed variable contents of phenolics [0.28 ± 0.001-1.17 ± 0.014 mg (GAE) mL-1] and antioxidant compounds (1.26 ± 0.009-2.84 ± 0.006 mg of trolox equivalents mL-1) in all juice samples besides significant antifungal activity against C. albicans and A. niger strains. However, in case of antibacterial activity, only C. aurantifolia showed inhibitory effects against selected strains. It was found that citrus fruits have immense potential for their utilization as economic source of natural OAs and development of value added products, beverages and bio-preservatives.
Collapse
|
15
|
Barthen R, Karimzadeh L, Gründig M, Grenzer J, Lippold H, Franke K, Lippmann-Pipke J. Glutamic acid leaching of synthetic covellite - A model system combining experimental data and geochemical modeling. CHEMOSPHERE 2018; 196:368-376. [PMID: 29316462 DOI: 10.1016/j.chemosphere.2017.12.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
For Kupferschiefer mining established pyrometallurgical and acidic bioleaching methods face numerous problems. This is due to the finely grained and dispersed distribution of the copper minerals, the complex mineralogy, comparably low copper content, and the possibly high carbonate and organic content in this ore. Leaching at neutral pH seemed worth a try: At neutral pH the abundant carbonates do not need to be dissolved and therewith would not consume excessive amounts of provided acids. Certainly, copper solubility at neutral pH is reduced compared to an acidic environment; however, if copper complexing ligands would be supplied abundantly, copper contents in the mobile phase could easily reach the required economic level. We set up a model system to study the effect of parameters such as pH, microorganisms, microbial metabolites, and organic ligands on covellite leaching to get a better understanding of the processes in copper leaching at pH ≥ 6. With this model system we could show that glutamic acid and the microbial siderophore desferrioxamine B promote covellite dissolution. Both experimental and modeling data showed that pH is an important parameter in covellite dissolution. An increase of pH from 6 to 9 could elevate copper extraction in the presence of glutamic acid by a factor of five. These results have implications for both development of a biotechnological process regarding metal extraction from Kupferschiefer, and for the interaction of bacterial metabolites with the lithosphere and potential mobilization of heavy metals in alkaline environments.
Collapse
Affiliation(s)
- R Barthen
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - L Karimzadeh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig, Germany
| | - M Gründig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig, Germany
| | - J Grenzer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - H Lippold
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig, Germany.
| | - K Franke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig, Germany
| | | |
Collapse
|
16
|
Schatschneider S, Abdelrazig S, Safo L, Henstra AM, Millat T, Kim DH, Winzer K, Minton NP, Barrett DA. Quantitative Isotope-Dilution High-Resolution-Mass-Spectrometry Analysis of Multiple Intracellular Metabolites in Clostridium autoethanogenum with Uniformly 13C-Labeled Standards Derived from Spirulina. Anal Chem 2018. [PMID: 29533656 DOI: 10.1021/acs.analchem.7b04758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the applicability of commercially available lyophilized spirulina ( Arthrospira platensis), a microorganism uniformly labeled with 13C, as a readily accessible source of multiple 13C-labeled metabolites suitable as internal standards for the quantitative determination of intracellular bacterial metabolites. Metabolites of interest were analyzed by hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry. Multiple internal standards obtained from uniformly (U)-13C-labeled extracts from spirulina were used to enable isotope-dilution mass spectrometry (IDMS) in the identification and quantification of intracellular metabolites. Extraction of the intracellular metabolites of Clostridium autoethanogenum using 2:1:1 chloroform/methanol/water was found to be the optimal method in comparison with freeze-thaw, homogenization, and sonication methods. The limits of quantification were ≤1 μM with excellent linearity for all of the calibration curves ( R2 ≥ 0.99) for 74 metabolites. The precision and accuracy were found to be within relative standard deviations (RSDs) of 15% for 49 of the metabolites and within RSDs of 20% for all of the metabolites. The method was applied to study the effects of feeding different levels of carbon monoxide (as a carbon source) on the central metabolism and Wood-Ljungdahl pathway of C. autoethanogenum grown in continuous culture over 35 days. Using LC-IDMS with U-13C spirulina allowed the successful quantification of 52 metabolites in the samples, including amino acids, carboxylic acids, sugar phosphates, purines, and pyrimidines. The method provided absolute quantitative data on intracellular metabolites that was suitable for computational modeling to understand and optimize the C. autoethanogenum metabolic pathways active in gas fermentation.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Salah Abdelrazig
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Laudina Safo
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Anne M Henstra
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Thomas Millat
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Klaus Winzer
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Nigel P Minton
- Clostridia Research Group, SBRC-Nottingham, a BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
17
|
Dulebohn DP, Richards CL, Su H, Lawrence KA, Gherardini FC. Weak Organic Acids Decrease Borrelia burgdorferi Cytoplasmic pH, Eliciting an Acid Stress Response and Impacting RpoN- and RpoS-Dependent Gene Expression. Front Microbiol 2017; 8:1734. [PMID: 29033900 PMCID: PMC5626856 DOI: 10.3389/fmicb.2017.01734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
The spirochete Borrelia burgdorferi survives in its tick vector, Ixodes scapularis, or within various hosts. To transition between and survive in these distinct niches, B. burgdorferi changes its gene expression in response to environmental cues, both biochemical and physiological. Exposure of B. burgdorferi to weak monocarboxylic organic acids, including those detected in the blood meal of fed ticks, decreased the cytoplasmic pH of B. burgdorferi in vitro. A decrease in the cytoplasmic pH induced the expression of genes encoding enzymes that have been shown to restore pH homeostasis in other bacteria. These include putative coupled proton/cation exchangers, a putative Na+/H+ antiporter, a neutralizing buffer transporter, an amino acid deaminase and a proton exporting vacuolar-type VoV1 ATPase. Data presented in this report suggested that the acid stress response triggered the expression of RpoN- and RpoS-dependent genes including important virulence factors such as outer surface protein C (OspC), BBA66, and some BosR (Borreliaoxidative stress regulator)-dependent genes. Because the expression of virulence factors, like OspC, are so tightly connected by RpoS to general cellular stress responses and cell physiology, it is difficult to separate transmission-promoting conditions in what is clearly a multifactorial and complex regulatory web.
Collapse
Affiliation(s)
- Daniel P Dulebohn
- Laboratory of Zoonotic Pathogens, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Crystal L Richards
- Laboratory of Zoonotic Pathogens, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Hua Su
- Laboratory of Zoonotic Pathogens, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Kevin A Lawrence
- Laboratory of Zoonotic Pathogens, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Frank C Gherardini
- Laboratory of Zoonotic Pathogens, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
18
|
Maurer MJ, Sutardja L, Pinel D, Bauer S, Muehlbauer AL, Ames TD, Skerker JM, Arkin AP. Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait. ACS Synth Biol 2017; 6:566-581. [PMID: 27936603 DOI: 10.1021/acssynbio.6b00264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.
Collapse
Affiliation(s)
- Matthew J. Maurer
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lawrence Sutardja
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dominic Pinel
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan Bauer
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amanda L. Muehlbauer
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tyler D. Ames
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey M. Skerker
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam P. Arkin
- Energy Biosciences Institute and ‡Department of
Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, and ∥Environmental
Genomics and Systems
Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metab Eng 2017; 40:176-185. [DOI: 10.1016/j.ymben.2017.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
20
|
Ye M, Zhang L, Xu P, Zhang R, Xu J, Wu X, Chen J, Zhou C, Yan X. Simultaneous analysis of ten low-molecular-mass organic acids in the tricarboxylic acid cycle and photorespiration pathway inThalassiosira pseudonanaat different growth stages. J Sep Sci 2016; 40:635-645. [DOI: 10.1002/jssc.201600852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/30/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Mengwei Ye
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| | - Lijing Zhang
- Zhejiang Pharmaceutical College; Ningbo P.R. China
| | - Panpan Xu
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Runtao Zhang
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Jilin Xu
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Xiaokai Wu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Chengxu Zhou
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| | - Xiaojun Yan
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| |
Collapse
|
21
|
Vaughan MJ, Chanon A, Blakeslee JJ. Using Capillary Electrophoresis to Quantify Organic Acids from Plant Tissue: A Test Case Examining Coffea arabica Seeds. J Vis Exp 2016:54611. [PMID: 27911404 PMCID: PMC5226222 DOI: 10.3791/54611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Carboxylic acids are organic acids containing one or more terminal carboxyl (COOH) functional groups. Short chain carboxylic acids (SCCAs; carboxylic acids containing three to six carbons), such as malate and citrate, are critical to the proper functioning of many biological systems, where they function in cellular respiration and can serve as indicators of cell health. In foods, organic acid content can have significant impact on taste, with increased SCCA levels resulting in a sour or "acid" taste. Because of this, methods for the rapid analysis of organic acid levels are of particular interest to the food and beverage industries. Unfortunately, however, most methods used for SCCA quantification are dependent on time-consuming protocols requiring the derivatization of samples with hazardous reagents, followed by costly chromatographic and/or mass spectrometric analyses. This method details an alternate method for the detection and quantification of organic acids from plant material and food samples using free zonal capillary electrophoresis (CZE), sometimes simply referred to as capillary electrophoresis (CE). CZE provides a cost-effective method for measuring SCCAs with a low limit of detection (0.005 mg/ml). This article details the extraction and quantification of SCCAs from plant samples. While the method provided focuses on measurement of SCCAs from coffee beans, the method provided can be applied to multiple plant-based food materials.
Collapse
Affiliation(s)
- Michael Joe Vaughan
- Center for Applied Plant Sciences, The Ohio State University, OARDC; Department of Plant Pathology, The Ohio State University, OARDC
| | - Ann Chanon
- Department of Horticulture and Crop Science, The Ohio State University, OARDC
| | - Joshua J Blakeslee
- Center for Applied Plant Sciences, The Ohio State University, OARDC; Department of Horticulture and Crop Science, The Ohio State University, OARDC; OARDC Metabolite Analysis Cluster, The Ohio State University, OARDC;
| |
Collapse
|
22
|
McAnulty MJ, Poosarla VG, Li J, Soo VWC, Zhu F, Wood TK. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnol Bioeng 2016; 114:852-861. [PMID: 27800599 DOI: 10.1002/bit.26208] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023]
Abstract
We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J McAnulty
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 168 020-4400
| | - Venkata Giridhar Poosarla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 168 020-4400
| | - Jine Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 168 020-4400
| | - Valerie W C Soo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 168 020-4400
| | - Fayin Zhu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 168 020-4400
| | - Thomas K Wood
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 168 020-4400.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-4400
| |
Collapse
|
23
|
Shurubor YI, Cooper AJ, Isakova EP, Deryabina YI, Beal MF, Krasnikov BF. Simultaneous determination of tricarboxylic acid cycle metabolites by high-performance liquid chromatography with ultraviolet detection. Anal Biochem 2016; 503:8-10. [DOI: 10.1016/j.ab.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
24
|
Huang LL, Hu HC, Chen LH. Determination of total acid content in biomass hydrolysates by solvent-assisted and reaction based headspace gas chromatography. J Chromatogr A 2015; 1422:13-17. [PMID: 26499971 DOI: 10.1016/j.chroma.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/17/2022]
Abstract
This work reports on a novel method for the determination of total acid (TA) in biomass hydrolysates by a solvent-assisted and reaction-based headspace gas chromatography (HS-GC). The neutralization reaction between the acids in hydrolysates and bicarbonate in an ethanol (50%) aqueous solution was performed in a closed headspace sample vial, from which the carbon dioxide generated from the reaction was detected by HS-GC. It was found that the addition of ethanol can effectively eliminate the precipitation of some organic acids in the biomass hydrolysates. The results showed that the reaction and headspace equilibration can be achieved within 45min at 70°C; the method has a good precision (RSD<3.27%) and accuracy (recovery of 97.4-105%); the limit of quantification is 1.36μmol. The present method is quite suitable to batch analysis of TA content in hydrolysate for the biorefinery related research.
Collapse
Affiliation(s)
- Liu-Lian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Hui-Chao Hu
- College of Material Engineering, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China.
| | - Li-Hui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| |
Collapse
|
25
|
Bauer S, Ibáñez AB. Does size matter? Separations on guard columns for fast sample analysis applied to bioenergy research. BMC Biotechnol 2015; 15:38. [PMID: 26016474 PMCID: PMC4445503 DOI: 10.1186/s12896-015-0159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/01/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Increasing sample throughput is needed when large numbers of samples have to be processed. In chromatography, one strategy is to reduce column length for decreased analysis time. Therefore, the feasibility of analyzing samples simply on a guard column was explored using refractive index and ultraviolet detection. Results from the guard columns were compared to the analyses using the standard 300 mm Aminex HPX-87H column which is widely applied to the analysis of samples from many biotechnology- and bioenergy-related experiments such as biomass conversions or fermentations. RESULTS The 50 mm Rezex RFQ Fast Acid H(+) guard column was able to separate the most common fermentation products (ethanol, acetone, iso- and n-butanol) and promising precursors (furfural and 5-hydroxymethylfurfural) of biofuels and value-added chemicals. Compound profiles in fermentation samples were analyzed with similar accuracy compared to results using the 300 mm column. However, separation of glucose and xylose was not achieved. Nevertheless, it was possible to monitor the consumption of one of the two sugars during fermentation if the other one was absent or remained constant over the course of the experiment. If correct peak integration and interference subtraction was applied, concentration profiles from enzymatic digestibility experiments and even more complex samples (e.g. acetone-butanol-ethanol (ABE) fermentation) were reliably obtained. With the 50 mm guard column, samples were analyzed up to ten-times faster compared to the 300 mm column. A further decrease in analysis time was achieved by using the 30 mm Micro Guard Cation H guard column. This column is especially suitable for the rapid analysis of compounds with long elution times on the standard 300 mm column, such as biofuel-related alcohols (e.g., n-butanol, n-hexanol) and furan- and tetrahydrofuran-type molecules. CONCLUSION Applied to a suitable set of samples, separations on a guard column can give rapid and sufficiently accurate information on compound changes over the course of an experiment. Therefore, it is an inexpensive and ideal tool for processing a large amount of samples, such as in screening or discovery experiments, where detecting relative changes is often sufficient to identify promising candidates for further analysis.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| | - Ana B Ibáñez
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|