1
|
Sharma BD, Hon S, Thusoo E, Stevenson DM, Amador-Noguez D, Guss AM, Lynd LR, Olson DG. Pyrophosphate-free glycolysis in Clostridium thermocellum increases both thermodynamic driving force and ethanol titers. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:146. [PMID: 39696391 DOI: 10.1186/s13068-024-02591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Clostridium thermocellum is a promising candidate for production of cellulosic biofuels, however, its final product titer is too low for commercial application, and this may be due to thermodynamic limitations in glycolysis. Previous studies in this organism have revealed a metabolic bottleneck at the phosphofructokinase (PFK) reaction in glycolysis. In the wild-type organism, this reaction uses pyrophosphate (PPi) as an energy cofactor, which is thermodynamically less favorable compared to reactions that use ATP as a cofactor. Previously we showed that replacing the PPi-linked PFK reaction with an ATP-linked reaction increased the thermodynamic driving force of glycolysis, but only had a local effect on intracellular metabolite concentrations, and did not affect final ethanol titer. RESULTS In this study, we substituted PPi-pfk with ATP-pfk, deleted the other PPi-requiring glycolytic gene pyruvate:phosphate dikinase (ppdk), and expressed a soluble pyrophosphatase (PPase) and pyruvate kinase (pyk) genes to engineer PPi-free glycolysis in C. thermocellum. We demonstrated a decrease in the reversibility of the PFK reaction, higher levels of lower glycolysis metabolites, and an increase in ethanol titer by an average of 38% (from 15.1 to 21.0 g/L) by using PPi-free glycolysis. CONCLUSIONS By engineering PPi-free glycolysis in C. thermocellum, we achieved an increase in ethanol production. These results demonstrate that optimizing the thermodynamic landscape through metabolic engineering can enhance product titers. While further increases in ethanol titers are necessary for commercial application, this work represents a significant step toward engineering glycolysis in C. thermocellum to increase ethanol titers.
Collapse
Affiliation(s)
- Bishal Dev Sharma
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Terragia Biofuels Inc., Hanover, NH, USA
| | - Eashant Thusoo
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam M Guss
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Terragia Biofuels Inc., Hanover, NH, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Chiarelli DP, Sharma BD, Hon S, Bergamo LW, Lynd LR, Olson DG. Expression and characterization of monofunctional alcohol dehydrogenase enzymes in Clostridium thermocellum. Metab Eng Commun 2024; 19:e00243. [PMID: 39040142 PMCID: PMC11260334 DOI: 10.1016/j.mec.2024.e00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Clostridium thermocellum is a thermophilic anaerobic bacterium that could be used for cellulosic biofuel production due to its strong native ability to consume cellulose, however its ethanol production ability needs to be improved to enable commercial application. In our previous strain engineering work, we observed a spontaneous mutation in the native adhE gene that reduced ethanol production. Here we attempted to complement this mutation by heterologous expression of 18 different alcohol dehydrogenase (adh) genes. We were able to express all of them successfully in C. thermocellum. Surprisingly, however, none of them increased ethanol production, and several actually decreased it. Our findings contribute to understanding the correlation between C. thermocellum ethanol production and Adh enzyme cofactor preferences. The identification of a set of adh genes that can be successfully expressed in this organism provides a foundation for future investigations into how the properties of Adh enzymes affect ethanol production.
Collapse
Affiliation(s)
- Daniela Prates Chiarelli
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Pós-Graduação Em Genética e Biologia Molecular, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bishal Dev Sharma
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shuen Hon
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luana Walravens Bergamo
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Programa de Pós-Graduação Em Genética e Biologia Molecular, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lee R. Lynd
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel G. Olson
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
3
|
Tang Y, Khan E, Tsang DCW. Waste Nitrogen Upcycling to Amino Acids during Anaerobic Fermentation on Biochar: An Active Strategy for Regulating Metabolic Reducing Power. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20060-20072. [PMID: 39485020 DOI: 10.1021/acs.est.4c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This study proposes a novel strategy that utilizes biochar (BC) during anaerobic fermentation (AF) to generate amino acids (AAs) toward nitrogen upcycling. The BC, pyrolyzed at 800 °C (BC800) to enhance graphite structures and electron-accepting sites, effectively addresses issues related to biosynthetic reducing power nicotinamide adenine dinucleotide phosphate insufficiency by altering cellular conditions and alleviates feedback inhibition through the immobilization of end products. This process establishes unique microbial signaling and energy networks, with Escherichia coli becoming dominant in the biofilm. The conversion rate of ammonia-N to AAs-N within the biofilm reached 67.4% in BC800-AF, which was significantly higher compared to the levels in other AF reactors with BC pyrolyzed at 600 and 400 °C (45.9 and 22.5%, respectively), as well as a control AF reactor (<5%). Furthermore, in BC800-AF, the aromatic AAs (Aro-AAs) were as high as 70.8% of the AAs within the biofilm. The activities of key enzymes for Aro-AAs biosynthesis uniquely positively correlated with the electron-accepting capacity on BC800 (R2 ≥ 0.95). These findings hold promise for transforming existing AF reactors into factories that produce BC-based AAs, providing a more sustainable fertilizing agent than chemical fertilizers.
Collapse
Affiliation(s)
- Yanfei Tang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong, China
| |
Collapse
|
4
|
Daley SR, Kirby S, Sparling R. Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles. Can J Microbiol 2024; 70:370-383. [PMID: 38832648 DOI: 10.1139/cjm-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Consolidated bioprocessing candidate, Clostridium thermocellum, is a cellulose hydrolysis specialist, with the ability to ferment the released sugars to produce bioethanol. C. thermocellum is generally studied with model substrates Avicel and cellobiose to understand the metabolic pathway leading to ethanol. In the present study, adaptive laboratory evolution, allowing C. thermocellum DSM 1237 to adapt to growth on glucose, fructose, and sorbitol, with the prospect that some strains will adapt their metabolism to yield more ethanol. Adaptive growth on glucose and sorbitol resulted in an approximately 1 mM and 2 mM increase in ethanol yield per millimolar glucose equivalent, respectively, accompanied by a shift in the production of the other expected fermentation end products. The increase in ethanol yield observed for sorbitol adapted cells was due to the carbon source being more reduced compared to cellobiose. Glucose and cellobiose have similar oxidation states thus the increase in ethanol yield is due to the rerouting of electrons from other reduced metabolic products excluding H2 which did not decrease in yield. There was no increase in ethanol yield observed for fructose adapted cells, but there was an unanticipated elimination of formate production, also observed in sorbitol adapted cells suggesting that fructose has regulatory implications on formate production either at the transcription or protein level.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Samantha Kirby
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
6
|
Zambello IU, Holwerda EK, Lynd LR. Characterization of sugarcane bagasse solubilization and utilization by thermophilic cellulolytic and saccharolytic bacteria at increasing solid loadings. BIORESOURCE TECHNOLOGY 2024; 406:130973. [PMID: 38879051 DOI: 10.1016/j.biortech.2024.130973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges. This study aims to document and characterize carbohydrate solubilization and utilization by defined cocultures of Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum at increasing loadings of sugarcane bagasse. Results show that fractional carbohydrate solubilization decreases as solids loading increases from 10 g/L to 80 g/L. Cocultures enhance solubilization and carbohydrate utilization compared to monocultures, irrespective of initial solids loading. Rinsing bagasse before fermentation slightly decreases solubilization. Experiments studying inhibitory effects using spent media and dilution of broth show that negative effects are temporary or reversible. These findings highlight the potential of converting sugarcane bagasse via CBP, pointing out performance limitations that must be addressed.
Collapse
Affiliation(s)
- Isabela U Zambello
- Advanced Second Generation Biofuel (A2G) Laboratory, School of Chemical Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
7
|
Daley SR, Gallanosa PM, Sparling R. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:112. [PMID: 37438781 DOI: 10.1186/s13068-023-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The efficient production of sustainable biofuels is important for the reduction of greenhouse gas emissions. Clostridium thermocellum ATCC 27405 is a candidate for ethanol production from lignocellulosic biomass using consolidated bioprocessing. Fermentation of cellulosic biomass goes through an atypical glycolytic pathway in this thermophilic bacterium, with various glycolytic enzymes capable of utilizing different phosphate donors, including GTP and inorganic pyrophosphate (PPi), in addition to or in place of the usual ATP. C. thermocellum contains three annotated phosphofructokinases (PFK) genes, the expression of which have all been detected through proteomics and transcriptomics. Pfp (Cthe_0347) was previously characterized as pyrophosphate dependent with fructose-6-phosphate (F6P) as its substrate. RESULTS We now demonstrate that this enzyme can also phosphorylate sedoheptulose-7-phosphate (an intermediate in the pentose phosphate pathway), with the Vmax and Km of F6P being approximately 15 folds higher and 43 folds lower, respectively, in comparison to sedoheptulose-7-phosphate. Purified PfkA shows preference for GTP as the phosphate donor as opposed to ATP with a 12.5-fold difference in Km values while phosphorylating F6P. Allosteric regulation is a factor at play in PfkA activity, with F6P exhibiting positive cooperativity, and an apparent requirement for ammonium ions to attain maximal activity. Phosphoenolpyruvate and PPi were the only inhibitors for PfkA determined from the study, which corroborates what is known about enzymes from this subfamily. The activation or inhibition by these ligands lends support to the argument that glycolysis is regulated by metabolites such as PPi and NH4+ in the organism. PfkB, showed no activity with F6P, but had significant activity with fructose, while utilizing either ATP or GTP, making it a fructokinase. Rounding out the upper glycolysis pathway, the identity of the fructose-1,6-bisphosphate aldolase in the genome was verified and reported to have substantial activity with fructose-1,6-bisphosphate, in the presence of the divalent ion, Zn2+. CONCLUSION These findings along with previous proteomic data suggest that Pfp, plays a role in both glycolysis and the pentose phosphate pathway, while PfkA and PfkB may phosphorylate sugars in glycolysis but is responsible for sugar metabolism elsewhere under conditions outside of growth on sufficient cellobiose.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Mae Gallanosa
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Sharma BD, Olson DG, Giannone RJ, Hettich RL, Lynd LR. Characterization and Amelioration of Filtration Difficulties Encountered in Metabolomic Studies of Clostridium thermocellum at Elevated Sugar Concentrations. Appl Environ Microbiol 2023; 89:e0040623. [PMID: 37039651 PMCID: PMC10132107 DOI: 10.1128/aem.00406-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
Clostridium thermocellum, a promising candidate for consolidated bioprocessing, has been subjected to numerous engineering strategies for enhanced bioethanol production. Measurements of intracellular metabolites at substrate concentrations high enough (>50 g/L) to allow the production of industrially relevant titers of ethanol would inform efforts toward this end but have been difficult due to the production of a viscous substance that interferes with the filtration and quenching steps during metabolite extraction. To determine whether this problem is unique to C. thermocellum, we performed filtration experiments with other organisms that have been engineered for high-titer ethanol production, including Escherichia coli and Thermoanaerobacterium saccharolyticum. We addressed the problem through a series of improvements, including active pH control (to reduce problems with viscosity), investigation of different filter materials and pore sizes (to increase the filtration capacity), and correction for extracellular metabolite concentrations, and we developed a technique for more accurate intracellular metabolite measurements at elevated substrate concentrations. IMPORTANCE The accurate measurement of intracellular metabolites (metabolomics) is an integral part of metabolic engineering for the enhanced production of industrially important compounds and a useful technique to understand microbial physiology. Previous work tended to focus on model organisms under laboratory conditions. As we try to perform metabolomic studies with a wider range of organisms under conditions that more closely represent those found in nature or industry, we have found limitations in existing techniques. For example, fast filtration is an important step in quenching metabolism in preparation for metabolite extraction; however, it does not work for cultures of C. thermocellum at high substrate concentrations. In this work, we characterize the extent of the problem and develop techniques to overcome it.
Collapse
Affiliation(s)
- Bishal D. Sharma
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Daniel G. Olson
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Richard J. Giannone
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lee R. Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Enchi Corporation, Holliston, Massachusetts, USA
| |
Collapse
|
9
|
Schroeder WL, Kuil T, van Maris AJA, Olson DG, Lynd LR, Maranas CD. A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis. Metab Eng 2023; 77:306-322. [PMID: 37085141 DOI: 10.1016/j.ymben.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PPi) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PPi sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PPi synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PPi-generating cycles. In all cases, the metabolic cost of PPi synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PPi could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PPi sources likely account for most PPi production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PPi levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel G Olson
- Center for Bioenergy Innovation, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Lee R Lynd
- Center for Bioenergy Innovation, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
10
|
The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Appl Environ Microbiol 2023; 89:e0175322. [PMID: 36625594 PMCID: PMC9888227 DOI: 10.1128/aem.01753-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clostridium thermocellum is a cellulolytic thermophile that is considered for the consolidated bioprocessing of lignocellulose to ethanol. Improvements in ethanol yield are required for industrial implementation, but the incompletely understood causes of amino acid secretion impede progress. In this study, amino acid secretion was investigated via gene deletions in ammonium-regulated, nicotinamide adenine dinucleotide phosphate (NADPH)-supplying and NADPH-consuming pathways as well as via physiological characterization in cellobiose-limited or ammonium-limited chemostats. First, the contribution of the NADPH-supplying malate shunt was studied with strains using either the NADPH-yielding malate shunt (Δppdk) or a redox-independent conversion of PEP to pyruvate (Δppdk ΔmalE::Peno-pyk). In the latter, branched-chain amino acids, especially valine, were significantly reduced, whereas the ethanol yield increased from 46 to 60%, suggesting that the secretion of these amino acids balances the NADPH surplus from the malate shunt. The unchanged amino acid secretion in Δppdk falsified a previous hypothesis on an ammonium-regulated PEP-to-pyruvate flux redistribution. The possible involvement of another NADPH-supplier, namely, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (nfnAB), was also excluded. Finally, the deletion of glutamate synthase (gogat) in ammonium assimilation resulted in the upregulation of NADPH-linked glutamate dehydrogenase activity and decreased amino acid yields. Since gogat in C. thermocellum is putatively annotated as ferredoxin-linked, a claim which is supported by the product redistribution observed in this study, this deletion likely replaced ferredoxin with NADPH in ammonium assimilation. Overall, these findings indicate that a need to reoxidize NADPH is driving the observed amino acid secretion, likely at the expense of the NADH needed for ethanol formation. This suggests that metabolic engineering strategies that simplify the redox metabolism and ammonium assimilation can contribute to increased ethanol yields. IMPORTANCE Improving the ethanol yield of C. thermocellum is important for the industrial implementation of this microorganism in consolidated bioprocessing. A central role of NADPH in driving amino acid byproduct formation was demonstrated by eliminating the NADPH-supplying malate shunt and separately by changing the cofactor specificity in ammonium assimilation. With amino acid secretion diverting carbon and electrons away from ethanol, these insights are important for further metabolic engineering to reach industrial requirements on ethanol yield. This study also provides chemostat data that are relevant for training genome-scale metabolic models and for improving the validity of their predictions, especially considering the reduced degree-of-freedom in the redox metabolism of the strains generated here. In addition, this study advances the fundamental understanding on the mechanisms underlying amino acid secretion in cellulolytic Clostridia as well as on the regulation and cofactor specificity in ammonium assimilation. Together, these efforts aid in the development of C. thermocellum for the sustainable consolidated bioprocessing of lignocellulose to ethanol with minimal pretreatment.
Collapse
|
11
|
Kuil T, Yayo J, Pechan J, Küchler J, van Maris AJA. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity. Microb Cell Fact 2022; 21:273. [PMID: 36567317 PMCID: PMC9790125 DOI: 10.1186/s12934-022-01999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/17/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clostridium thermocellum is a promising candidate for consolidated bioprocessing of lignocellulosic biomass to ethanol. The low ethanol tolerance of this microorganism is one of the remaining obstacles to industrial implementation. Ethanol inhibition can be caused by end-product inhibition and/or chaotropic-induced stress resulting in increased membrane fluidization and disruption of macromolecules. The highly reversible glycolysis of C. thermocellum might be especially sensitive to end-product inhibition. The chaotropic effect of ethanol is known to increase with temperature. This study explores the relative contributions of these two aspects to investigate and possibly mitigate ethanol-induced stress in growing and non-growing C. thermocellum cultures. RESULTS To separate chaotropic from thermodynamic effects of ethanol toxicity, a non-ethanol producing strain AVM062 (Pclo1313_2638::ldh* ∆adhE) was constructed by deleting the bifunctional acetaldehyde/alcohol dehydrogenase gene, adhE, in a lactate-overproducing strain. Exogenously added ethanol lowered the growth rate of both wild-type and the non-ethanol producing mutant. The mutant strain grew quicker than the wild-type at 50 and 55 °C for ethanol concentrations ≥ 10 g L-1 and was able to reach higher maximum OD600 at all ethanol concentrations and temperatures. For the wild-type, the maximum OD600 and relative growth rates were higher at 45 and 50 °C, compared to 55 °C, for ethanol concentrations ≥ 15 g L-1. For the mutant strain, no positive effect on growth was observed at lower temperatures. Growth-arrested cells of the wild-type demonstrated improved fermentative capacity over time in the presence of ethanol concentrations up to 40 g L-1 at 45 and 50 °C compared to 55 °C. CONCLUSION Positive effects of temperature on ethanol tolerance were limited to wild-type C. thermocellum and are likely related to mechanisms involved in the ethanol-formation pathway and redox cofactor balancing. Lowering the cultivation temperature provides an attractive strategy to improve growth and fermentative capacity at high ethanol titres in high-cellulose loading batch cultivations. Finally, non-ethanol producing strains are useful platform strains to study the effects of chaotropicity and thermodynamics related to ethanol toxicity and allow for deeper understanding of growth and/or fermentation cessation under industrially relevant conditions.
Collapse
Affiliation(s)
- Teun Kuil
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Yayo
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johanna Pechan
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jan Küchler
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden ,grid.5807.a0000 0001 1018 4307Present Address: Max Plank Institute for Dynamics of Complex Technical Systems, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Antonius J. A. van Maris
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
12
|
Increasing the Thermodynamic Driving Force of the Phosphofructokinase Reaction in
Clostridium thermocellum. Appl Environ Microbiol 2022; 88:e0125822. [PMID: 36286488 PMCID: PMC9680637 DOI: 10.1128/aem.01258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in
C. thermocellum
is believed to enable higher product titers.
Collapse
|
13
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
14
|
Bewg WP, Harding SA, Engle NL, Vaidya BN, Zhou R, Reeves J, Horn TW, Joshee N, Jenkins JW, Shu S, Barry KW, Yoshinaga Y, Grimwood J, Schmitz RJ, Schmutz J, Tschaplinski TJ, Tsai CJ. Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. PLANT PHYSIOLOGY 2022; 189:516-526. [PMID: 35298644 PMCID: PMC9157173 DOI: 10.1093/plphys/kiac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 05/13/2023]
Abstract
As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.
Collapse
Affiliation(s)
- William P Bewg
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nancy L Engle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Brajesh N Vaidya
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob Reeves
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Thomas W Horn
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Nirmal Joshee
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | | | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
15
|
Bing RG, Straub CT, Sulis DB, Wang JP, Adams MWW, Kelly RM. Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis. BIORESOURCE TECHNOLOGY 2022; 348:126780. [PMID: 35093526 PMCID: PMC10560548 DOI: 10.1016/j.biortech.2022.126780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
A variety of chemical and biological processes have been proposed for conversion of sustainable low-cost feedstocks into industrial products. Here, a biorefinery concept is formulated, modeled, and analyzed in which a naturally (hemi)cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii, is metabolically engineered to convert the carbohydrate content of lignocellulosic biomasses (i.e., soybean hulls, transgenic poplar) into green hydrogen and acetone. Experimental validation of C. bescii fermentative performance demonstrated 82% carbohydrate solubilization of soybean hulls and 55% for transgenic poplar. A detailed technical design, including equipment specifications, provides the basis for an economic analysis that establishes metabolic engineering targets. This robust industrial process leveraging metabolically engineered C. bescii yields 206 kg acetone and 25 kg H2 per metric ton of soybean hull, or 174 kg acetone and 21 kg H2 per metric ton transgenic poplar. Beyond this specific case, the model demonstrates industrial feasibility and economic advantages of thermophilic fermentation.
Collapse
Affiliation(s)
- Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Daniel B Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Jack P Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
16
|
Biswal AK, Hengge NN, Black IM, Atmodjo MA, Mohanty SS, Ryno D, Himmel ME, Azadi P, Bomble YJ, Mohnen D. Composition and yield of non-cellulosic and cellulosic sugars in soluble and particulate fractions during consolidated bioprocessing of poplar biomass by Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:23. [PMID: 35227303 PMCID: PMC8887089 DOI: 10.1186/s13068-022-02119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Terrestrial plant biomass is the primary renewable carbon feedstock for enabling transition to a sustainable bioeconomy. Consolidated bioprocessing (CBP) by the cellulolytic thermophile Clostridium thermocellum offers a single step microbial platform for production of biofuels and biochemicals via simultaneous solubilization of carbohydrates from lignocellulosic biomass and conversion to products. Here, solubilization of cell wall cellulosic, hemicellulosic, and pectic polysaccharides in the liquor and solid residues generated during CBP of poplar biomass by C. thermocellum was analyzed. RESULTS The total amount of biomass solubilized in the C. thermocellum DSM1313 fermentation platform was 5.8, 10.3, and 13.7% of milled non-pretreated poplar after 24, 48, and 120 h, respectively. These results demonstrate solubilization of 24% cellulose and 17% non-cellulosic sugars after 120 h, consistent with prior reports. The net solubilization of non-cellulosic sugars by C. thermocellum (after correcting for the uninoculated control fermentations) was 13 to 36% of arabinose (Ara), xylose (Xyl), galactose (Gal), mannose (Man), and glucose (Glc); and 15% and 3% of fucose and glucuronic acid, respectively. No rhamnose was solubilized and 71% of the galacturonic acid (GalA) was solubilized. These results indicate that C. thermocellum may be selective for the types and/or rate of solubilization of the non-cellulosic wall polymers. Xyl, Man, and Glc were found to accumulate in the fermentation liquor at levels greater than in uninoculated control fermentations, whereas Ara and Gal did not accumulate, suggesting that C. thermocellum solubilizes both hemicelluloses and pectins but utilizes them differently. After five days of fermentation, the relative amount of Rha in the solid residues increased 21% indicating that the Rha-containing polymer rhamnogalacturonan I (RG-I) was not effectively solubilized by C. thermocellum CBP, a result confirmed by immunoassays. Comparison of the sugars in the liquor versus solid residue showed that C. thermocellum solubilized hemicellulosic xylan and mannan, but did not fully utilize them, solubilized and appeared to utilize pectic homogalacturonan, and did not solubilize RG-I. CONCLUSIONS The significant relative increase in RG-I in poplar solid residues following CBP indicates that C. thermocellum did not solubilize RG-I. These results support the hypothesis that this pectic glycan may be one barrier for efficient solubilization of poplar by C. thermocellum.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Neal N. Hengge
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Ian M. Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Sushree S. Mohanty
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - David Ryno
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| |
Collapse
|
17
|
Kubis MR, Holwerda EK, Lynd LR. Declining carbohydrate solubilization with increasing solids loading during fermentation of cellulosic feedstocks by Clostridium thermocellum: documentation and diagnostic tests. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:12. [PMID: 35418299 PMCID: PMC8817502 DOI: 10.1186/s13068-022-02110-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
Background For economically viable 2nd generation biofuels, processing of high solid lignocellulosic substrate concentrations is a necessity. The cellulolytic thermophilic anaerobe Clostridium thermocellum is one of the most effective biocatalysts for solubilization of carbohydrate harbored in lignocellulose. This study aims to document the solubilization performance of Clostridium thermocellum at increasing solids concentrations for two lignocellulosic feedstocks, corn stover and switchgrass, and explore potential effectors of solubilization performance. Results Monocultures of Clostridium thermocellum demonstrated high levels of carbohydrate solubilization for both unpretreated corn stover and switchgrass. However, fractional carbohydrate solubilization decreases with increasing solid loadings. Fermentation of model insoluble substrate (cellulose) in the presence of high solids lignocellulosic spent broth is temporarily affected but not model soluble substrate (cellobiose) fermentations. Mid-fermentation addition of cells (C. thermocellum) or model substrates did not significantly enhance overall corn stover solubilization loaded at 80 g/L, however cultures utilized the model substrates in the presence of high concentrations of corn stover. An increase in corn stover solubilization was observed when water was added, effectively diluting the solids concentration mid-fermentation. Introduction of a hemicellulose-utilizing coculture partner, Thermoanaerobacterium thermosaccharolyticum, increased the fractional carbohydrate solubilization at both high and low solid loadings. Residual solubilized carbohydrates diminished significantly in the presence of T. thermosaccharolyticum compared to monocultures of C. thermocellum, yet a small fraction of solubilized oligosaccharides of both C5 and C6 sugars remained unutilized. Conclusion Diminishing fractional carbohydrate solubilization with increasing substrate loading was observed for C. thermocellum-mediated solubilization and fermentation of unpretreated lignocellulose feedstocks. Results of experiments involving spent broth addition do not support a major role for inhibitors present in the liquid phase. Mid-fermentation addition experiments confirm that C. thermocellum and its enzymes remain capable of converting model substrates during the middle of high solids lignocellulose fermentation. An increase in fractional carbohydrate solubilization was made possible by (1) mid-fermentation solid loading dilutions and (2) coculturing C. thermocellum with T. thermosaccharolyticum, which ferments solubilized hemicellulose. Incomplete utilization of solubilized carbohydrates suggests that a small fraction of the carbohydrates is unaffected by the extracellular carbohydrate-active enzymes present in the culture. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02110-4.
Collapse
Affiliation(s)
- Matthew R Kubis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA. .,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
18
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
19
|
Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Metab Eng 2022; 69:286-301. [PMID: 34982997 DOI: 10.1016/j.ymben.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow. By (i) elucidating internal metabolic fluxes in wild-type C. thermocellum grown on cellobiose via 13C-metabolic flux analysis (13C-MFA), (ii) parameterizing a core kinetic model, and (iii) subsequently deploying an ensemble-docking workflow for discovering substrate-level regulations, this paper aims to reveal some of these factors and expand our knowledgebase governing C. thermocellum metabolism. Generated 13C labeling data were used with 13C-MFA to generate a wild-type flux distribution for the metabolic network. Notably, flux elucidation through MFA alluded to serine generation via the mercaptopyruvate pathway. Using the elucidated flux distributions in conjunction with batch fermentation process yield data for various mutant strains, we constructed a kinetic model of C. thermocellum core metabolism (i.e. k-ctherm138). Subsequently, we used the parameterized kinetic model to explore the effect of removing substrate-level regulations on ethanol yield and titer. Upon exploring all possible simultaneous (up to four) regulation removals we identified combinations that lead to many-fold model predicted improvement in ethanol titer. In addition, by coupling a systematic method for identifying putative competitive inhibitory mechanisms using K-FIT kinetic parameterization with the ensemble-docking workflow, we flagged 67 putative substrate-level inhibition mechanisms across central carbon metabolism supported by both kinetic formalism and docking analysis.
Collapse
|
20
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
21
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
22
|
Yayo J, Kuil T, Olson DG, Lynd LR, Holwerda EK, van Maris AJA. Laboratory Evolution and Reverse Engineering of Clostridium thermocellum for Growth on Glucose and Fructose. Appl Environ Microbiol 2021; 87:e03017-20. [PMID: 33608285 PMCID: PMC8091016 DOI: 10.1128/aem.03017-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023] Open
Abstract
The native ability of Clostridium thermocellum to efficiently solubilize cellulose makes it an interesting platform for sustainable biofuel production through consolidated bioprocessing. Together with other improvements, industrial implementation of C. thermocellum, as well as fundamental studies into its metabolism, would benefit from improved and reproducible consumption of hexose sugars. To investigate growth of C. thermocellum on glucose or fructose, as well as the underlying molecular mechanisms, laboratory evolution was performed in carbon-limited chemostats with increasing concentrations of glucose or fructose and decreasing cellobiose concentrations. Growth on both glucose and fructose was achieved with biomass yields of 0.09 ± 0.00 and 0.18 ± 0.00 gbiomass gsubstrate-1, respectively, compared to 0.15 ± 0.01 gbiomass gsubstrate-1 for wild type on cellobiose. Single-colony isolates had no or short lag times on the monosaccharides, while wild type showed 42 ± 4 h on glucose and >80 h on fructose. With good growth on glucose, fructose, and cellobiose, the fructose isolates were chosen for genome sequence-based reverse metabolic engineering. Deletion of a putative transcriptional regulator (Clo1313_1831), which upregulated fructokinase activity, reduced lag time on fructose to 12 h with a growth rate of 0.11 ± 0.01 h-1 and resulted in immediate growth on glucose at 0.24 ± 0.01 h-1 Additional introduction of a G-to-V mutation at position 148 in cbpA resulted in immediate growth on fructose at 0.32 ± 0.03 h-1 These insights can guide engineering of strains for fundamental studies into transport and the upper glycolysis, as well as maximizing product yields in industrial settings.IMPORTANCEC. thermocellum is an important candidate for sustainable and cost-effective production of bioethanol through consolidated bioprocessing. In addition to unsurpassed cellulose deconstruction, industrial application and fundamental studies would benefit from improvement of glucose and fructose consumption. This study demonstrated that C. thermocellum can be evolved for reproducible constitutive growth on glucose or fructose. Subsequent genome sequencing, gene editing, and physiological characterization identified two underlying mutations with a role in (regulation of) transport or metabolism of the hexose sugars. In light of these findings, such mutations have likely (and unknowingly) also occurred in previous studies with C. thermocellum using hexose-based media with possible broad regulatory consequences. By targeted modification of these genes, industrial and research strains of C. thermocellum can be engineered to (i) reduce glucose accumulation, (ii) study cellodextrin transport systems in vivo, (iii) allow experiments at >120 g liter-1 soluble substrate concentration, or (iv) reduce costs for labeling studies.
Collapse
Affiliation(s)
- Johannes Yayo
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
23
|
Ichikawa S, Tsuge Y, Karita S. Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation. Microorganisms 2021; 9:microorganisms9030593. [PMID: 33805707 PMCID: PMC8002186 DOI: 10.3390/microorganisms9030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulosic biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, ahpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulosic biomass utilization.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +89-59-231-9254; Fax: +89-59-231-9352
| | - Yoichiro Tsuge
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| |
Collapse
|
24
|
Ahamed F, Song HS, Ho YK. Modeling coordinated enzymatic control of saccharification and fermentation by Clostridium thermocellum during consolidated bioprocessing of cellulose. Biotechnol Bioeng 2021; 118:1898-1912. [PMID: 33547803 DOI: 10.1002/bit.27705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Consolidated bioprocessing (CBP) of cellulose is a cost-effective route to produce valuable biochemicals by integrating saccharification, fermentation and cellulase synthesis in a single step. However, the lack of understanding of governing factors of interdependent saccharification and fermentation in CBP eludes reliable process optimization. Here, we propose a new framework that synergistically couples population balances (to simulate cellulose depolymerization) and cybernetic models (to model enzymatic regulation of fermentation) to enable improved understanding of CBP. The resulting framework, named the unified cybernetic-population balance model (UC-PBM), enables simulation of CBP driven by coordinated control of enzyme synthesis through closed-loop interactions. UC-PBM considers two key aspects in controlling CBP: (1) heterogeneity in cellulose properties and (2) cellular regulation of competing cell growth and cellulase secretion. In a case study on Clostridium thermocellum, UC-PBM not only provides a decent fit with various exometabolomic data, but also reveals that: (i) growth-decoupled cellulase-secreting pathways are only activated during famine conditions to promote the production of growth substrates, and (ii) starting cellulose concentration has a strong influence on the overall flux distribution. Equipped with mechanisms of cellulose degradation and fermentative regulations, UC-PBM is practical to explore phenotypic functions for primary evaluation of microorganisms' potential for metabolic engineering and optimal design of bioprocess.
Collapse
Affiliation(s)
- Firnaaz Ahamed
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yong Kuen Ho
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.,Monash-Industry Palm Oil Education and Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
25
|
Beri D, Herring CD, Blahova S, Poudel S, Giannone RJ, Hettich RL, Lynd LR. Coculture with hemicellulose-fermenting microbes reverses inhibition of corn fiber solubilization by Clostridium thermocellum at elevated solids loadings. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:24. [PMID: 33461608 PMCID: PMC7814735 DOI: 10.1186/s13068-020-01867-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/24/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The cellulolytic thermophile Clostridium thermocellum is an important biocatalyst due to its ability to solubilize lignocellulosic feedstocks without the need for pretreatment or exogenous enzyme addition. At low concentrations of substrate, C. thermocellum can solubilize corn fiber > 95% in 5 days, but solubilization declines markedly at substrate concentrations higher than 20 g/L. This differs for model cellulose like Avicel, on which the maximum solubilization rate increases in proportion to substrate concentration. The goal of this study was to examine fermentation at increasing corn fiber concentrations and investigate possible reasons for declining performance. RESULTS The rate of growth of C. thermocellum on corn fiber, inferred from CipA scaffoldin levels measured by LC-MS/MS, showed very little increase with increasing solids loading. To test for inhibition, we evaluated the effects of spent broth on growth and cellulase activity. The liquids remaining after corn fiber fermentation were found to be strongly inhibitory to growth on cellobiose, a substrate that does not require cellulose hydrolysis. Additionally, the hydrolytic activity of C. thermocellum cellulase was also reduced to less-than half by adding spent broth. Noting that > 15 g/L hemicellulose oligosaccharides accumulated in the spent broth of a 40 g/L corn fiber fermentation, we tested the effect of various model carbohydrates on growth on cellobiose and Avicel. Some compounds like xylooligosaccharides caused a decline in cellulolytic activity and a reduction in the maximum solubilization rate on Avicel. However, there were no relevant model compounds that could replicate the strong inhibition by spent broth on C. thermocellum growth on cellobiose. Cocultures of C. thermocellum with hemicellulose-consuming partners-Herbinix spp. strain LL1355 and Thermoanaerobacterium thermosaccharolyticum-exhibited lower levels of unfermented hemicellulose hydrolysis products, a doubling of the maximum solubilization rate, and final solubilization increased from 67 to 93%. CONCLUSIONS This study documents inhibition of C. thermocellum with increasing corn fiber concentration and demonstrates inhibition of cellulase activity by xylooligosaccharides, but further work is needed to understand why growth on cellobiose was inhibited by corn fiber fermentation broth. Our results support the importance of hemicellulose-utilizing coculture partners to augment C. thermocellum in the fermentation of lignocellulosic feedstocks at high solids loading.
Collapse
Affiliation(s)
- Dhananjay Beri
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Centre for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Christopher D Herring
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
- Centre for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
- Enchi Corporation, Lebanon, NH, 03766, USA.
| | - Sofie Blahova
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Suresh Poudel
- Centre for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Richard J Giannone
- Centre for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Centre for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Centre for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Enchi Corporation, Lebanon, NH, 03766, USA
| |
Collapse
|
26
|
Froese AG, Sparling R. Cross-feeding and wheat straw extractives enhance growth of Clostridium thermocellum-containing co-cultures for consolidated bioprocessing. Bioprocess Biosyst Eng 2021; 44:819-830. [PMID: 33392746 DOI: 10.1007/s00449-020-02490-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
Co-cultures consisting of three thermophilic and lignocellulolytic bacteria, namely Clostridium thermocellum, C. stercorarium, and Thermoanaerobacter thermohydrosulfuricus, degrade lignocellulosic material in a synergistic manner. When cultured in a defined minimal medium two of the members appeared to be auxotrophic and unable to grow, but the growth of all species was observed in all co-culture combinations, indicating cross-feeding of unidentified growth factors between the members. Growth factors also appeared to be present in water-soluble extractives obtained from wheat straw, allowing for the growth of the auxotrophic monocultures in the defined minimal medium. Cell enumeration during growth on wheat straw in this medium revealed different growth profiles of the members that varied between the co-cultures. End-product profiles also varied substantially between the cultures, with significantly higher ethanol production in all co-cultures compared to the mono-cultures. Understanding interactions between co-culture members, and the additional nutrients provided by lignocellulosic substrates, will aid us in consolidated bioprocessing design.
Collapse
Affiliation(s)
- Alan G Froese
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
27
|
Kluyveromyces marxianus: Current State of Omics Studies, Strain Improvement Strategy and Potential Industrial Implementation. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol is considered an excellent alternative to fossil fuels, since it importantly contributes to the reduced consumption of crude oil, and to the alleviation of environmental pollution. Up to now, the baker yeast Saccharomyces cerevisiae is the most common eukaryotic microorganism used in ethanol production. The inability of S. cerevisiae to grow on pentoses, however, hinders its effective growth on plant biomass hydrolysates, which contain large amounts of C5 and C12 sugars. The industrial-scale bioprocessing requires high temperature bioreactors, diverse carbon sources, and the high titer production of volatile compounds. These criteria indicate that the search for alternative microbes possessing useful traits that meet the required standards of bioethanol production is necessary. Compared to other yeasts, Kluyveromyces marxianus has several advantages over others, e.g., it could grow on a broad spectrum of substrates (C5, C6 and C12 sugars); tolerate high temperature, toxins, and a wide range of pH values; and produce volatile short-chain ester. K. marxianus also shows a high ethanol production rate at high temperature and is a Crabtree-negative species. These attributes make K. marxianus promising as an industrial host for the biosynthesis of biofuels and other valuable chemicals.
Collapse
|
28
|
Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Appl Environ Microbiol 2020; 86:AEM.01795-20. [PMID: 32978139 PMCID: PMC7657619 DOI: 10.1128/aem.01795-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Clostridium thermocellum and Thermoanaerobacterium saccharolyticum were grown in cellobiose-limited chemostat cultures at a fixed dilution rate. C. thermocellum produced acetate, ethanol, formate, and lactate. Surprisingly, and in contrast to batch cultures, in cellobiose-limited chemostat cultures of T. saccharolyticum, ethanol was the main fermentation product. Enzyme assays confirmed that in C. thermocellum, glycolysis proceeds via pyrophosphate (PPi)-dependent phosphofructokinase (PFK), pyruvate-phosphate dikinase (PPDK), as well as a malate shunt for the conversion of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate kinase activity was not detectable. In T. saccharolyticum, ATP but not PPi served as cofactor for the PFK reaction. High activities of both pyruvate kinase and PPDK were present, whereas the activities of a malate shunt enzymes were low in T. saccharolyticum In C. thermocellum, glycolysis via PPi-PFK and PPDK obeys the equation glucose + 5 NDP + 3 PPi → 2 pyruvate + 5 NTP + Pi (where NDP is nucleoside diphosphate and NTP is nucleoside triphosphate). Metabolic flux analysis of chemostat data with the wild type and a deletion mutant of the proton-pumping pyrophosphatase showed that a PPi-generating mechanism must be present that operates according to ATP + Pi → ADP + PPi Both organisms also produced significant amounts of amino acids in cellobiose-limited cultures. It was anticipated that this phenomenon would be suppressed by growth under nitrogen limitation. Surprisingly, nitrogen-limited chemostat cultivation of wild-type C. thermocellum revealed a bottleneck in pyruvate oxidation, as large amounts of pyruvate and amino acids, mainly valine, were excreted; up to 50% of the nitrogen consumed was excreted again as amino acids.IMPORTANCE This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such organisms, the charging of tRNA with amino acids may become more reversible. This may contribute to the observed excretion of amino acids during sugar fermentation by Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Calculation of the energetic advantage of reversible pyrophosphate-dependent glycolysis, as occurs in Clostridium thermocellum, could not be properly evaluated, as currently available genome-scale models neglect the anabolic generation of pyrophosphate in, for example, polymerization of amino acids to protein. This anabolic pyrophosphate replaces ATP and thus saves energy. Its amount is, however, too small to cover the pyrophosphate requirement of sugar catabolism in glycolysis. Consequently, pyrophosphate for catabolism is generated according to ATP + Pi → ADP + PPi.
Collapse
|
29
|
Garcia S, Thompson RA, Giannone RJ, Dash S, Maranas CD, Trinh CT. Development of a Genome-Scale Metabolic Model of Clostridium thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design. Front Bioeng Biotechnol 2020; 8:772. [PMID: 32974289 PMCID: PMC7471609 DOI: 10.3389/fbioe.2020.00772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 01/29/2023] Open
Abstract
Solving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic thermophile Clostridium thermocellum is a promising bacterium for bioconversion due to its capability to efficiently degrade lignocellulosic biomass. However, the complex metabolism of C. thermocellum is not fully understood, hindering metabolic engineering to achieve high titers, rates, and yields of targeted molecules. In this study, we developed an updated genome-scale metabolic model of C. thermocellum that accounts for recent metabolic findings, has improved prediction accuracy, and is standard-conformant to ensure easy reproducibility. We illustrated two applications of the developed model. We first formulated a multi-omics integration protocol and used it to understand redox metabolism and potential bottlenecks in biofuel (e.g., ethanol) production in C. thermocellum. Second, we used the metabolic model to design modular cells for efficient production of alcohols and esters with broad applications as flavors, fragrances, solvents, and fuels. The proposed designs not only feature intuitive push-and-pull metabolic engineering strategies, but also present novel manipulations around important central metabolic branch-points. We anticipate the developed genome-scale metabolic model will provide a useful tool for system analysis of C. thermocellum metabolism to fundamentally understand its physiology and guide metabolic engineering strategies to rapidly generate modular production strains for effective biosynthesis of biofuels and biochemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sergio Garcia
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - R Adam Thompson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Satyakam Dash
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Costas D Maranas
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
30
|
Methods for Metabolic Engineering of Thermoanaerobacterium saccharolyticum. Methods Mol Biol 2020; 2096:21-43. [PMID: 32720144 DOI: 10.1007/978-1-0716-0195-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In this work, we describe genetic tools and techniques for engineering Thermoanaerobacterium saccharolyticum. In particular, the T. saccharolyticum transformation protocol and the methods for selecting for transformants are described. Methods for determining strain phenotypes are also presented.
Collapse
|
31
|
Seo H, Nicely PN, Trinh CT. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose. Biotechnol Bioeng 2020; 117:2223-2236. [PMID: 32333614 DOI: 10.1002/bit.27360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Medium-chain esters are versatile chemicals with broad applications as flavors, fragrances, solvents, and potential drop-in biofuels. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in an aqueous fermentation environment. Even though a cellulolytic thermophile Clostridium thermocellum harboring an AAT-dependent pathway has recently been engineered for direct conversion of lignocellulosic biomass into esters, the production is not efficient. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. The challenge is to identify and disrupt CEs that can alleviate ester degradation while not negatively affecting the efficient and robust capability of C. thermocellum for lignocellulosic biomass deconstruction. In this study, by using bioinformatics, comparative genomics, and enzymatic analysis to screen a library of CEs, we identified and disrupted the two most critical CEs, Clo1313_0613 and Clo1313_0693, that significantly contribute to isobutyl acetate degradation in C. thermocellum. We demonstrated that an engineered esterase-deficient C. thermocellum strain not only reduced ester hydrolysis but also improved isobutyl acetate production while maintaining effective cellulose assimilation.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee.,Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Preston N Nicely
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee.,Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
32
|
Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol Adv 2020; 40:107535. [DOI: 10.1016/j.biotechadv.2020.107535] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
|
33
|
Development of a thermophilic coculture for corn fiber conversion to ethanol. Nat Commun 2020; 11:1937. [PMID: 32321909 PMCID: PMC7176698 DOI: 10.1038/s41467-020-15704-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
The fiber in corn kernels, currently unutilized in the corn to ethanol process, represents an opportunity for introduction of cellulose conversion technology. We report here that Clostridium thermocellum can solubilize over 90% of the carbohydrate in autoclaved corn fiber, including its hemicellulose component glucuronoarabinoxylan (GAX). However, Thermoanaerobacterium thermosaccharolyticum or several other described hemicellulose-fermenting thermophilic bacteria can only partially utilize this GAX. We describe the isolation of a previously undescribed organism, Herbinix spp. strain LL1355, from a thermophilic microbiome that can consume 85% of the recalcitrant GAX. We sequence its genome, and based on structural analysis of the GAX, identify six enzymes that hydrolyze GAX linkages. Combinations of up to four enzymes are successfully expressed in T. thermosaccharolyticum. Supplementation with these enzymes allows T. thermosaccharolyticum to consume 78% of the GAX compared to 53% by the parent strain and increases ethanol yield from corn fiber by 24%. Corn fiber is a difficult feedstock to utilize due to its recalcitrant hemicellulose. Here, the authors characterize the recalcitrant structures, isolate a new bacterium to consume the hemicellulose, identify its enzymes, and show the benefit with increased conversion of corn fiber to ethanol.
Collapse
|
34
|
In Vivo Thermodynamic Analysis of Glycolysis in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Using 13C and 2H Tracers. mSystems 2020; 5:5/2/e00736-19. [PMID: 32184362 PMCID: PMC7380578 DOI: 10.1128/msystems.00736-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Thermodynamics constitutes a key determinant of flux and enzyme efficiency in metabolic networks. Here, we provide new insights into the divergent thermodynamics of the glycolytic pathways of C. thermocellum and T. saccharolyticum, two industrially relevant thermophilic bacteria whose metabolism still is not well understood. We report that while the glycolytic pathway in T. saccharolyticum is as thermodynamically favorable as that found in model organisms, such as E. coli or Saccharomyces cerevisiae, the glycolytic pathway of C. thermocellum operates near equilibrium. The use of a near-equilibrium glycolytic pathway, with potentially increased ATP yield, by this cellulolytic microbe may represent an evolutionary adaptation to growth on cellulose, but it has the drawback of being highly susceptible to product feedback inhibition. The results of this study will facilitate future engineering of high-performance strains capable of transforming cellulosic biomass to biofuels at high yields and titers. Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic anaerobic bacteria with complementary metabolic capabilities that utilize distinct glycolytic pathways for the conversion of cellulosic sugars to biofuels. We integrated quantitative metabolomics with 2H and 13C metabolic flux analysis to investigate the in vivo reversibility and thermodynamics of the central metabolic networks of these two microbes. We found that the glycolytic pathway in C. thermocellum operates remarkably close to thermodynamic equilibrium, with an overall drop in Gibbs free energy 5-fold lower than that of T. saccharolyticum or anaerobically grown Escherichia coli. The limited thermodynamic driving force of glycolysis in C. thermocellum could be attributed in large part to the small free energy of the phosphofructokinase reaction producing fructose bisphosphate. The ethanol fermentation pathway was also substantially more reversible in C. thermocellum than in T. saccharolyticum. These observations help explain the comparatively low ethanol titers of C. thermocellum and suggest engineering interventions that can be used to increase its ethanol productivity and glycolytic rate. In addition to thermodynamic analysis, we used our isotope tracer data to reconstruct the T. saccharolyticum central metabolic network, revealing exclusive use of the Embden-Meyerhof-Parnas (EMP) pathway for glycolysis, a bifurcated tricarboxylic acid (TCA) cycle, and a sedoheptulose bisphosphate bypass active within the pentose phosphate pathway. IMPORTANCE Thermodynamics constitutes a key determinant of flux and enzyme efficiency in metabolic networks. Here, we provide new insights into the divergent thermodynamics of the glycolytic pathways of C. thermocellum and T. saccharolyticum, two industrially relevant thermophilic bacteria whose metabolism still is not well understood. We report that while the glycolytic pathway in T. saccharolyticum is as thermodynamically favorable as that found in model organisms, such as E. coli or Saccharomyces cerevisiae, the glycolytic pathway of C. thermocellum operates near equilibrium. The use of a near-equilibrium glycolytic pathway, with potentially increased ATP yield, by this cellulolytic microbe may represent an evolutionary adaptation to growth on cellulose, but it has the drawback of being highly susceptible to product feedback inhibition. The results of this study will facilitate future engineering of high-performance strains capable of transforming cellulosic biomass to biofuels at high yields and titers.
Collapse
|
35
|
Lee JW, Trinh CT. Towards renewable flavors, fragrances, and beyond. Curr Opin Biotechnol 2020; 61:168-180. [PMID: 31986468 DOI: 10.1016/j.copbio.2019.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
Esters constitute a large space of unique molecules with broad range of applications as flavors, fragrances, pharmaceuticals, cosmetics, green solvents, and advanced biofuels. Global demand of natural esters in food, household cleaner, personal care, and perfume industries is increasing while the ester supply from natural sources has been limited. Development of novel microbial cell factories for ester production from renewable feedstocks can potentially provide an alternative and sustainable source of natural esters and hence help fulfill growing demand. Here, we highlight recent advances in microbial production of esters and provide perspectives for improving its economic feasibility. As the field matures, microbial ester production platforms will enable renewable and sustainable production of flavors and fragrances, and open new market opportunities beyond what nature can offer.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
36
|
Cui J, Maloney MI, Olson DG, Lynd LR. Conversion of phosphoenolpyruvate to pyruvate in Thermoanaerobacterium saccharolyticum. Metab Eng Commun 2020; 10:e00122. [PMID: 32025490 PMCID: PMC6997586 DOI: 10.1016/j.mec.2020.e00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
Thermoanaerobacterium saccharolyticum is an anaerobic thermophile that can ferment hemicellulose to produce biofuels, such as ethanol. It has been engineered to produce ethanol at high yield and titer. T. saccharolyticum uses the Embden-Meyerhof-Parnas (EMP) pathway for glycolysis. However, the genes and enzymes used in each step of the EMP pathway in T. saccharolyticum are not completely known. In T. saccharolyticum, both pyruvate kinase (PYK) and pyruvate phosphate dikinase (PPDK) are highly expressed based on transcriptomic and proteomic data. Both enzymes catalyze the formation of pyruvate from phosphoenolpyruvate (PEP). PYK is typically the last step of EMP glycolysis pathway while PPDK is reversible and is found mostly in C4 plants and some microorganisms. It is not clear what role PYK and PPDK play in T. saccharolyticum metabolism and fermentation pathways and whether both are necessary. In this study we deleted the ppdk gene in wild type and homoethanologen strains of T. saccharolyticum and showed that it is not essential for growth or ethanol production.
Collapse
Affiliation(s)
- Jingxuan Cui
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Marybeth I Maloney
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Daniel G Olson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Lee R Lynd
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
37
|
Mazzoli R, Olson D. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:111-161. [PMID: 32948265 DOI: 10.1016/bs.aambs.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second generation biorefining, namely fermentation processes based on lignocellulosic feedstocks, has attracted tremendous interest (owing to the large availability and low cost of this biomass) as a strategy to produce biofuels and commodity chemicals that is an alternative to oil refining. However, the innate recalcitrance of lignocellulose has slowed progress toward economically viable processes. Consolidated bioprocessing (CBP), i.e., single-step fermentation of lignocellulose may dramatically reduce the current costs of 2nd generation biorefining. Metabolic engineering has been used as a tool to develop improved microbial strains supporting CBP. Clostridium thermocellum is among the most efficient cellulose degraders isolated so far and one of the most promising host organisms for application of CBP. The development of efficient and reliable genetic tools has allowed significant progress in metabolic engineering of this strain aimed at expanding the panel of growth substrates and improving the production of a number of commodity chemicals of industrial interest such as ethanol, butanol, isobutanol, isobutyl acetate and lactic acid. The present review aims to summarize recent developments in metabolic engineering of this organism which currently represents a reference model for the development of biocatalysts for 2nd generation biorefining.
Collapse
|
38
|
Holwerda EK, Olson DG, Ruppertsberger NM, Stevenson DM, Murphy SJL, Maloney MI, Lanahan AA, Amador-Noguez D, Lynd LR. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:40. [PMID: 32175007 PMCID: PMC7063780 DOI: 10.1186/s13068-020-01680-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Engineering efforts targeted at increasing ethanol by modifying the central fermentative metabolism of Clostridium thermocellum have been variably successful. Here, we aim to understand this variation by a multifaceted approach including genomic and transcriptomic analysis combined with chemostat cultivation and high solids cellulose fermentation. Three strain lineages comprising 16 strains total were examined. Two strain lineages in which genes involved in pathways leading to organic acids and/or sporulation had been knocked out resulted in four end-strains after adaptive laboratory evolution (ALE). A third strain lineage recapitulated mutations involving adhE that occurred spontaneously in some of the engineered strains. RESULTS Contrary to lactate dehydrogenase, deleting phosphotransacetylase (pta, acetate) negatively affected steady-state biomass concentration and caused increased extracellular levels of free amino acids and pyruvate, while no increase in ethanol was detected. Adaptive laboratory evolution (ALE) improved growth and shifted elevated levels of amino acids and pyruvate towards ethanol, but not for all strain lineages. Three out of four end-strains produced ethanol at higher yield, and one did not. The occurrence of a mutation in the adhE gene, expanding its nicotinamide-cofactor compatibility, enabled two end-strains to produce more ethanol. A disruption in the hfsB hydrogenase is likely the reason why a third end-strain was able to make more ethanol. RNAseq analysis showed that the distribution of fermentation products was generally not regulated at the transcript level. At 120 g/L cellulose loadings, deletions of spo0A, ldh and pta and adaptive evolution did not negatively influence cellulose solubilization and utilization capabilities. Strains with a disruption in hfsB or a mutation in adhE produced more ethanol, isobutanol and 2,3-butanediol under these conditions and the highest isobutanol and ethanol titers reached were 5.1 and 29.9 g/L, respectively. CONCLUSIONS Modifications in the organic acid fermentative pathways in Clostridium thermocellum caused an increase in extracellular pyruvate and free amino acids. Adaptive laboratory evolution led to improved growth, and an increase in ethanol yield and production due a mutation in adhE or a disruption in hfsB. Strains with deletions in ldh and pta pathways and subjected to ALE demonstrated undiminished cellulolytic capabilities when cultured on high cellulose loadings.
Collapse
Affiliation(s)
- Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sean J. L. Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Anthony A. Lanahan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
39
|
Dash S, Olson DG, Joshua Chan SH, Amador-Noguez D, Lynd LR, Maranas CD. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab Eng 2019; 55:161-169. [PMID: 31220663 DOI: 10.1016/j.ymben.2019.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Clostridium thermocellum is a candidate for consolidated bioprocessing by carrying out both cellulose solubilization and fermentation. However, despite significant efforts the maximum ethanol titer achieved to date remains below industrially required targets. Several studies have analyzed the impact of increasing ethanol concentration on C. thermocellum's membrane properties, cofactor pool ratios, and altered enzyme regulation. In this study, we explore the extent to which thermodynamic equilibrium limits maximum ethanol titer. We used the max-min driving force (MDF) algorithm (Noor et al., 2014) to identify the range of allowable metabolite concentrations that maintain a negative free energy change for all reaction steps in the pathway from cellobiose to ethanol. To this end, we used a time-series metabolite concentration dataset to flag five reactions (phosphofructokinase (PFK), fructose bisphosphate aldolase (FBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH)) which become thermodynamic bottlenecks under high external ethanol concentrations. Thermodynamic analysis was also deployed in a prospective mode to evaluate genetic interventions which can improve pathway thermodynamics by generating minimal set of reactions or elementary flux modes (EFMs) which possess unique genetic variations while ensuring mass and redox balance with ethanol production. MDF evaluation of all generated (336) EFMs indicated that, i) pyruvate phosphate dikinase (PPDK) has a higher pathway MDF than the malate shunt alternative due to limiting CO2 concentrations under physiological conditions, and ii) NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) can alleviate thermodynamic bottlenecks at high ethanol concentrations due to cofactor modification and reduction in ATP generation. The combination of ATP linked phosphofructokinase (PFK-ATP) and NADPH linked alcohol dehydrogenase (ADH-NADPH) with NADPH linked aldehyde dehydrogenase (ALDH-NADPH) or ferredoxin: NADP + oxidoreductase (NADPH-FNOR) emerges as the best intervention strategy for ethanol production that balances MDF improvements with ATP generation, and appears to functionally reproduce the pathway employed by the ethanologen Thermoanaerobacterium saccharolyticum. Expanding the list of measured intracellular metabolites and improving the quantification accuracy of measurements was found to improve the fidelity of pathway thermodynamics analysis in C. thermocellum. This study demonstrates even before addressing an organism's enzyme kinetics and allosteric regulations, pathway thermodynamics can flag pathway bottlenecks and identify testable strategies for enhancing pathway thermodynamic feasibility and function.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
40
|
Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene. J Biosci Bioeng 2019; 127:340-344. [DOI: 10.1016/j.jbiosc.2018.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
|
41
|
A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol and ethanol. Sci Rep 2019; 9:1736. [PMID: 30741948 PMCID: PMC6370804 DOI: 10.1038/s41598-018-37979-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023] Open
Abstract
Clostridium thermocellum is a good candidate organism for producing cellulosic biofuels due to its native ability to ferment cellulose, however its maximum biofuel titer is limited by tolerance. Wild type C. thermocellum is inhibited by 5 g/L n-butanol. Using growth adaptation in a chemostat, we increased n-butanol tolerance to 15 g/L. We discovered that several tolerant strains had acquired a D494G mutation in the adhE gene. Re-introducing this mutation recapitulated the n-butanol tolerance phenotype. In addition, it increased tolerance to several other primary alcohols including isobutanol and ethanol. To confirm that adhE is the cause of inhibition by primary alcohols, we showed that deleting adhE also increases tolerance to several primary alcohols.
Collapse
|
42
|
Sander K, Chung D, Hyatt D, Westpheling J, Klingeman DM, Rodriguez M, Engle NL, Tschaplinski TJ, Davison BH, Brown SD. Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites. Microbiologyopen 2019; 8:e00639. [PMID: 29797457 PMCID: PMC6391272 DOI: 10.1002/mbo3.639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 11/23/2022] Open
Abstract
Rex is a global redox-sensing transcription factor that senses and responds to the intracellular [NADH]/[NAD+ ] ratio to regulate genes for central metabolism, and a variety of metabolic processes in Gram-positive bacteria. We decipher and validate four new members of the Rex regulon in Caldicellulosiruptor bescii; a gene encoding a class V aminotransferase, the HydG FeFe Hydrogenase maturation protein, an oxidoreductase, and a gene encoding a hypothetical protein. Structural genes for the NiFe and FeFe hydrogenases, pyruvate:ferredoxin oxidoreductase, as well as the rex gene itself are also members of this regulon, as has been predicted previously in different organisms. A C. bescii rex deletion strain constructed in an ethanol-producing strain made 54% more ethanol (0.16 mmol/L) than its genetic parent after 36 hr of fermentation, though only under nitrogen limited conditions. Metabolomic interrogation shows this rex-deficient ethanol-producing strain synthesizes other reduced overflow metabolism products likely in response to more reduced intracellular redox conditions and the accumulation of pyruvate. These results suggest ethanol production is strongly dependent on the native intracellular redox state in C. bescii, and highlight the combined promise of using this gene and manipulation of culture conditions to yield strains capable of producing ethanol at higher yields and final titer.
Collapse
Affiliation(s)
- Kyle Sander
- Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleTennessee
- Bredesen Center for Interdisciplinary Graduate Research and EducationUniversity of TennesseeKnoxvilleTennessee
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
| | - Daehwan Chung
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Department of GeneticsUniversity of GeorgiaAthensGeorgia
- Present address:
National Renewable Energy LaboratoryGoldenCO
| | - Doug Hyatt
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Janet Westpheling
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Department of GeneticsUniversity of GeorgiaAthensGeorgia
| | - Dawn M. Klingeman
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Miguel Rodriguez
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Nancy L. Engle
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Timothy J. Tschaplinski
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Brian H. Davison
- Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleTennessee
- Bredesen Center for Interdisciplinary Graduate Research and EducationUniversity of TennesseeKnoxvilleTennessee
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Steven D. Brown
- Bredesen Center for Interdisciplinary Graduate Research and EducationUniversity of TennesseeKnoxvilleTennessee
- BioEnergy Sciences CenterOak Ridge National LaboratoryOak RidgeTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Present address:
LanzaTechSkokieIL
| |
Collapse
|
43
|
Froese A, Schellenberg J, Sparling R. Enhanced depolymerization and utilization of raw lignocellulosic material by co-cultures of Ruminiclostridium thermocellum with hemicellulose-utilizing partners. Can J Microbiol 2019; 65:296-307. [PMID: 30608879 DOI: 10.1139/cjm-2018-0535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ruminiclostridium thermocellum is one of the most promising candidates for consolidated bioprocessing (CBP) of low-cost lignocellulosic materials to biofuels but it still shows poor performance in its ability to deconstruct untreated lignocellulosic substrates. One promising approach to increase R. thermocellum's rate of hydrolysis is to co-culture this cellulose-specialist with partners that possess synergistic hydrolysis enzymes and metabolic capabilities. We have created co-cultures of R. thermocellum with two hemicellulose utilizers, Ruminiclostridium stercorarium and Thermoanaerobacter thermohydrosulfuricus, both of which secrete xylanolytic enzymes and utilize the pentose oligo- and monosaccharides that inhibit R. thermocellum's hydrolysis and metabolism. When grown on milled wheat straw, the co-cultures were able to solubilize up to 58% more of the total polysaccharides than the R. thermocellum mono-culture control. Repeated passaging of the co-cultures on wheat straw yielded stable populations with reduced R. thermocellum cell numbers, indicating competition for cellodextrins released from cellulose hydrolysis, although these stabilized co-cultures were still able to outperform the mono-culture controls. Repeated passaging on Avicel cellulose also yielded stable populations. Overall, the observed synergism suggests that co-culturing R. thermocellum with other members is a viable option for increasing the rate and extent of untreated lignocellulose deconstruction by R. thermocellum for CBP purposes.
Collapse
Affiliation(s)
- Alan Froese
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - John Schellenberg
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
44
|
Seo H, Lee JW, Garcia S, Trinh CT. Single mutation at a highly conserved region of chloramphenicol acetyltransferase enables isobutyl acetate production directly from cellulose by Clostridium thermocellum at elevated temperatures. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:245. [PMID: 31636704 PMCID: PMC6792240 DOI: 10.1186/s13068-019-1583-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Esters are versatile chemicals and potential drop-in biofuels. To develop a sustainable production platform, microbial ester biosynthesis using alcohol acetyltransferases (AATs) has been studied for decades. Volatility of esters endows high-temperature fermentation with advantageous downstream product separation. However, due to the limited thermostability of AATs known, the ester biosynthesis has largely relied on use of mesophilic microbes. Therefore, developing thermostable AATs is important for ester production directly from lignocellulosic biomass by the thermophilic consolidated bioprocessing (CBP) microbes, e.g., Clostridium thermocellum. RESULTS In this study, we engineered a thermostable chloramphenicol acetyltransferase from Staphylococcus aureus (CATSa) for enhanced isobutyl acetate production at elevated temperatures. We first analyzed the broad alcohol substrate range of CATSa. Then, we targeted a highly conserved region in the binding pocket of CATSa for mutagenesis. The mutagenesis revealed that F97W significantly increased conversion of isobutanol to isobutyl acetate. Using CATSa F97W, we demonstrated direct conversion of cellulose into isobutyl acetate by an engineered C. thermocellum at elevated temperatures. CONCLUSIONS This study highlights that CAT is a potential thermostable AAT that can be harnessed to develop the thermophilic CBP microbial platform for biosynthesis of designer bioesters directly from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Sergio Garcia
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
45
|
Papanek B, O’Dell KB, Manga P, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains. ACTA ACUST UNITED AC 2018; 45:1007-1015. [DOI: 10.1007/s10295-018-2073-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/18/2018] [Indexed: 01/05/2023]
Abstract
Abstract
Clostridium thermocellum is a potentially useful organism for the production of lignocellulosic biofuels because of its ability to directly deconstruct cellulose and convert it into ethanol. Previously engineered C. thermocellum strains have achieved higher yields and titers of ethanol. These strains often initially grow more poorly than the wild type. Adaptive laboratory evolution and medium supplementation have been used to improve growth, but the mechanism(s) by which growth improves remain(s) unclear. Here, we studied (1) wild-type C. thermocellum, (2) the slow-growing and high-ethanol-yielding mutant AG553, and (3) the faster-growing evolved mutant AG601, each grown with and without added formate. We used a combination of transcriptomics and proteomics to understand the physiological impact of the metabolic engineering, evolution, and medium supplementation. Medium supplementation with formate improved growth in both AG553 and AG601. Expression of C1 metabolism genes varied with formate addition, supporting the hypothesis that the primary benefit of added formate is the supply of C1 units for biosynthesis. Expression of stress response genes such as those involved in the sporulation cascade was dramatically over-represented in AG553, even after the addition of formate, suggesting that the source of the stress may be other issues such as redox imbalances. The sporulation response is absent in evolved strain AG601, suggesting that sporulation limits the growth of engineered strain AG553. A better understanding of the stress response and mechanisms of improved growth hold promise for informing rational improvement of C. thermocellum for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Beth Papanek
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 Bredesen Center for Interdisciplinary Research and Graduate Education University of Tennessee-Knoxville Knoxville TN USA
- 0000 0004 1936 9991 grid.35403.31 Integrated Bioprocessing Research Laboratory University of Illinois-Urbana-Champaign Urbana IL USA
| | - Kaela B O’Dell
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Punita Manga
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 The Graduate School of Genome Science and Technology University of Tennessee-Knoxville Knoxville TN USA
| | - Richard J Giannone
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Dawn M Klingeman
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Robert L Hettich
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Steven D Brown
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 The Graduate School of Genome Science and Technology University of Tennessee-Knoxville Knoxville TN USA
- LanzaTech Inc 8045 Lamon Ave, Suite 400 60077 Skokie IL USA
| | - Adam M Guss
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 Bredesen Center for Interdisciplinary Research and Graduate Education University of Tennessee-Knoxville Knoxville TN USA
| |
Collapse
|
46
|
Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Metab Eng 2018; 51:32-42. [PMID: 30218716 DOI: 10.1016/j.ymben.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
The thermophilic anaerobes Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are good candidates for lignocellulosic ethanol production. T. saccharolyticum has been successfully engineered to produce ethanol at high titer (70 g/L). The maximum ethanol titer of engineered strains of C. thermocellum is only 25 g/L. We hypothesize that one or more of the enzymes in the ethanol production pathway in C. thermocellum is not adequate for ethanol production at high titer. In this study, we focused on the enzymes responsible for the part of the ethanol production pathway from pyruvate to ethanol. In T. saccharolyticum, we replaced all of the genes encoding proteins in this pathway with their homologs from C. thermocellum and examined what combination of gene replacements restricted ethanol titer. We found that a pathway consisting of Ct_nfnAB, Ct_fd, Ct_adhE and Ts_pforA was sufficient to support ethanol titer greater than 50 g/L, however replacement of Ts_pforA by Ct_pfor1 dramatically decreased the maximum ethanol titer to 14 g/L. We then demonstrated that the reason for reduced ethanol production is that the Ct_pfor1 is inhibited by accumulation of ethanol and NADH, while Ts_pforA is not.
Collapse
|
47
|
Ghosh S, Holwerda EK, Worthen RS, Lynd LR, Epps BP. Rheological properties of corn stover slurries during fermentation by Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:246. [PMID: 30202441 PMCID: PMC6129011 DOI: 10.1186/s13068-018-1248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/31/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Milling during fermentation, termed cotreatment, has recently been proposed as an alternative to thermochemical pretreatment as a means to increase the accessibility of lignocellulosic biomass to biological attack. A central premise of this approach is that partial solubilization of biomass changes the slurry's physical properties such that milling becomes more impactful and more feasible. A key uncertainty is the energy required to mill partially fermented biomass. To inform both of these issues, we report rheological characterization of small-particle, corn stover slurries undergoing fermentation by Clostridium thermocellum. RESULTS Fermented and unfermented corn stover slurries were found to be shear-thinning and well described by a power law model with an exponent of 0.10. Plastic viscosity of a slurry, initially at 16 wt.% insoluble solids, decreased as a result of fermentation by a factor of 2000, with the first eightfold reduction occurring in the first 10% of carbohydrate conversion. Large amplitude oscillatory shear experiments revealed only minor changes to the slurry's rheological fingerprint as a result of fermentation, with the notable change being a reduction in the critical strain amplitude needed for the onset of nonlinearity. All slurries were found to be elastoviscoplastic, with the elastic/viscous crossover at roughly 100% strain amplitude. CONCLUSIONS Whereas prior biomass rheology studies have involved pretreated feedstocks and solubilization mediated by fungal cellulase, we report results for feedstocks with no pretreatment other than autoclaving and for solubilization mediated by C. thermocellum. As observed in prior studies, C. thermocellum fermentation results in a dramatic decrease in viscosity. The magnitude of this decrease, however, is much larger starting with unpretreated feedstock than previously reported for pretreated feedstocks. LAOS measurements provide a detailed picture of the rheological fingerprint of the material. Viscosity measurements confirm the hypothesis that the physical character of corn stover slurries changes dramatically during fermentation by C. thermocellum, and indicate that the energy expended on overcoming slurry viscosity will be far less for partially fermented corn stover than for unfermented corn stover.
Collapse
Affiliation(s)
- Sanchari Ghosh
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | | | | | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Brenden P. Epps
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| |
Collapse
|
48
|
Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG. Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:242. [PMID: 30202437 PMCID: PMC6125887 DOI: 10.1186/s13068-018-1245-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Clostridium thermocellum has been the subject of multiple metabolic engineering strategies to improve its ability to ferment cellulose to ethanol, with varying degrees of success. For ethanol production in C. thermocellum, the conversion of pyruvate to acetyl-CoA is catalyzed primarily by the pyruvate ferredoxin oxidoreductase (PFOR) pathway. Thermoanaerobacterium saccharolyticum, which was previously engineered to produce ethanol of high yield (> 80%) and titer (70 g/L), also uses a pyruvate ferredoxin oxidoreductase, pforA, for ethanol production. RESULTS Here, we introduced the T. saccharolyticum pforA and ferredoxin into C. thermocellum. The introduction of pforA resulted in significant improvements to ethanol yield and titer in C. thermocellum grown on 50 g/L of cellobiose, but only when four other T. saccharolyticum genes (adhA, nfnA, nfnB, and adhEG544D ) were also present. T. saccharolyticum ferredoxin did not have any observable impact on ethanol production. The improvement to ethanol production was sustained even when all annotated native C. thermocellum pfor genes were deleted. On high cellulose concentrations, the maximum ethanol titer achieved by this engineered C. thermocellum strain from 100 g/L Avicel was 25 g/L, compared to 22 g/L for the reference strain, LL1319 (adhA(Tsc)-nfnAB(Tsc)-adhEG544D (Tsc)) under similar conditions. In addition, we also observed that deletion of the C. thermocellum pfor4 results in a significant decrease in isobutanol production. CONCLUSIONS Here, we demonstrate that the pforA gene can improve ethanol production in C. thermocellum as part of the T. saccharolyticum pyruvate-to-ethanol pathway. In our previous strain, high-yield (~ 75% of theoretical) ethanol production could be achieved with at most 20 g/L substrate. In this strain, high-yield ethanol production can be achieved up to 50 g/L substrate. Furthermore, the introduction of pforA increased the maximum titer by 14%.
Collapse
Affiliation(s)
- Shuen Hon
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Robert S. Worthen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Jingxuan Cui
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Paul P. Lin
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| |
Collapse
|
49
|
A metabolic and genomic assessment of sugar fermentation profiles of the thermophilic Thermotogales, Fervidobacterium pennivorans. Extremophiles 2018; 22:965-974. [PMID: 30182148 DOI: 10.1007/s00792-018-1053-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
A metabolic, genomic and proteomic assessment of Fervidobacterium pennivorans strains was undertaken to clarify the metabolic and genetic capabilities of this Thermotogales species. The type strain Ven5 originally isolated from a hot mud spa in Italy, and a newly isolated strain (DYC) from a hot spring at Ngatamariki, New Zealand, were compared for metabolic and genomic differences. The fermentation profiles of both strains on cellobiose generated similar major end products (acetate, alanine, glutamate, H2, and CO2). The vast majority of end products produced were redox neutral, and carbon balances were in the range of 95-115%. Each strain showed distinct fermentation profiles on sugar substrates. The genome of strain DYC was sequenced and shown to have high sequence similarity and synteny with F. pennivorans Ven5 genome, suggesting they are the same species. The unique genome regions in Ven5, corresponded to genes involved in the Entner-Doudoroff pathway confirming our observation of DYC's inability to utilize gluconate. Genome analysis was able to elucidate pathways involved in production of the observed end-products with the exception of alanine and glutamate synthesis which were resolved with less clarity due to poor sequence identity and missing critical enzymes within the pathway, respectively.
Collapse
|
50
|
Xiong W, Lo J, Chou KJ, Wu C, Magnusson L, Dong T, Maness P. Isotope-Assisted Metabolite Analysis Sheds Light on Central Carbon Metabolism of a Model Cellulolytic Bacterium Clostridium thermocellum. Front Microbiol 2018; 9:1947. [PMID: 30190711 PMCID: PMC6115520 DOI: 10.3389/fmicb.2018.01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023] Open
Abstract
Cellulolytic bacteria have the potential to perform lignocellulose hydrolysis and fermentation simultaneously. The metabolic pathways of these bacteria, therefore, require more comprehensive and quantitative understanding. Using isotope tracer, gas chromatography-mass spectrometry, and metabolic flux modeling, we decipher the metabolic network of Clostridium thermocellum, a model cellulolytic bacterium which represents as an attractive platform for conversion of lignocellulose to dedicated products. We uncover that the Embden-Meyerhof-Parnas (EMP) pathway is the predominant glycolytic route whereas the Entner-Doudoroff (ED) pathway and oxidative pentose phosphate pathway are inactive. We also observe that C. thermocellum's TCA cycle is initiated by both Si- and Re-citrate synthase, and it is disconnected between 2-oxoglutarate and oxaloacetate in the oxidative direction; C. thermocellum uses a citramalate shunt to synthesize isoleucine; and both the one-carbon pathway and the malate shunt are highly active in this bacterium. To gain a quantitative understanding, we further formulate a fluxome map to quantify the metabolic fluxes through central metabolic pathways. This work represents the first global in vivo investigation of the principal carbon metabolism of C. thermocellum. Our results elucidate the unique structure of metabolic network in this cellulolytic bacterium and demonstrate the capability of isotope-assisted metabolite studies in understanding microbial metabolism of industrial interests.
Collapse
Affiliation(s)
- Wei Xiong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Jonathan Lo
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Chao Wu
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Tao Dong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - PinChing Maness
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|