1
|
Bai X, Li K, Xu L, Zhang G, Zhang M, Huang Y. Direct evidence for selective microbial enrichment with plastic degradation potential in the plastisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176576. [PMID: 39343400 DOI: 10.1016/j.scitotenv.2024.176576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Plastisphere, characterized by microbial colonization on plastic debris, has attracted concern with its adverse environmental effects. The microbial features have been increasingly investigated; however, there lacks direct evidence for microplastics serving as carbon sources and enriching plastic-degrading microorganisms. Here, we obtained microbial communities from soil microplastics, analyzed the dissimilarity compared with soil, and characterized the plastic-degrading potential of isolates from plastisphere. Results showed the plastisphere communities significantly differed from soil communities and exhibited a higher relative abundance of Nocardia and Rhodococcus. To verify the selective enrichment of plastic-degrading microorganisms in the plastisphere, culture-based strategies were employed to evaluate the polyethylene (PE) degradation potential of two isolates Nocardia asteroides No.11 and Rhodococcus hoagii No.17. They could grow solely on PE and led to significant weight loss. FTIR and SEM analysis revealed the formation of new functional groups and the destruction of structural integrity on PE surfaces. Genes related to PE biodegradation were identified by genome-wide sequencing thus recognizing relevant enzymes and elucidating potential pathways. Overall, this report combined culture-free and culture-based approaches to confirm the plastic degradation potential of selectively enriched microorganisms in soil plastisphere, providing a positive perspective toward promoting microplastic biodegradation in farmland soil by enhancing natural microbial processes.
Collapse
Affiliation(s)
- Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
2
|
Li Y, Wang H, Zhang Y, Xiang Q, Chen Q, Yu X, Zhang L, Peng W, Penttinen P, Gu Y. Hydrated lime promoted the polysaccharide content and affected the transcriptomes of Lentinula edodes during brown film formation. Front Microbiol 2023; 14:1290180. [PMID: 38111638 PMCID: PMC10726012 DOI: 10.3389/fmicb.2023.1290180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Brown film formation, a unique developmental stage in the life cycle of Lentinula edodes, is essential for the subsequent development of fruiting bodies in L. edodes cultivation. The pH of mushroom growth substrates are usually adjusted with hydrated lime, yet the effects of hydrated lime on cultivating L. edodes and the molecular mechanisms associated with the effects have not been studied systemically. We cultivated L. edodes on substrates supplemented with 0% (CK), 1% (T1), 3% (T2), and 5% (T3) hydrated lime (Ca (OH)2), and applied transcriptomics and qRT-PCR to study gene expression on the brown film formation stage. Hydrated lime increased polysaccharide contents in L. edodes, especially in T2, where the 5.3% polysaccharide content was approximately 1.5 times higher than in the CK. The addition of hydrated lime in the substrate promoted laccase, lignin peroxidase and manganese peroxidase activities, implying that hydrated lime improved the ability of L. edodes to decompose lignin and provide nutrition for its growth and development. Among the annotated 9,913 genes, compared to the control, 47 genes were up-regulated and 52 genes down-regulated in T1; 73 genes were up-regulated and 44 were down-regulated in T2; and 125 genes were up-regulated and 65 genes were down-regulated in T3. Differentially expressed genes (DEGs) were enriched in the amino acid metabolism, lipid metabolism and carbohydrate metabolism related pathways. The carbohydrate-active enzyme genes up-regulated in the hydrated lime treatments were mostly glycosyl hydrolase genes. The results will facilitate future optimization of L. edodes cultivation techniques and possibly shortening the production cycle.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hongcheng Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ying Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weihong Peng
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Xia J, Jiang S, Liu J, Yang W, Qiu Z, Liu X, He A, Li D, Xu J. Efficient reduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan by Bacillus subtilis HA70 whole cells. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Zhang S, Wu C, Ma C, Li L, He YC. Transformation of bread waste into 2,5-furandimethanol via an efficient chemoenzymatic approach in a benign reaction system. BIORESOURCE TECHNOLOGY 2023; 371:128579. [PMID: 36610484 DOI: 10.1016/j.biortech.2023.128579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Via combination catalysis with deep eutectic solvent lactic acid:betaine (chemocatalyst) and HMFOMUT cell (biocatalyst: E. coli HMFOMUT whole-cell), one-pot manufacture of 2,5-furandimethanol from waste bioresource was constructed in a chemoenzymatic approach. With bread waste (50 g/L) as substrate, the 5-hydroxymethylfuran yield reached 44.2 Cmol% (based on bread waste) by lactic acid:betaine (15 wt%) at 180 °C for 15 min. With glucose as co-substrate, HMFOMUT could transform 5-hydroxymethylfurfural (150 mM) to 2,5-furandimethanol (84.5 % yield) after 1 day at 37 °C and pH 7.0. In lactic acid:betaine-H2O, HMFOMUT effectively converted bread-derived 5-hydroxymethylfurfural into 2,5-furandimethanol in a productivity of 700 kg 2,5-furandimethanol per kg 5-hydroxymethylfurfural (230 kg 2,5-furandimethanol per kg bread). In an eco-friendly lactic acid:betaine system, an effective one-pot chemoenzymatic strategy was firstly developed to convert bread waste into 2,5-furandimethanol, which would reduce the operation cost and has potential application value for valorizing waste food bioresource into value-added furan.
Collapse
Affiliation(s)
- Shunli Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Changqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cuiluan Ma
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Raj T, Chandrasekhar K, Morya R, Kumar Pandey A, Jung JH, Kumar D, Singhania RR, Kim SH. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 360:127512. [PMID: 35760245 DOI: 10.1016/j.biortech.2022.127512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Organic waste has increased as the global population and economy have grown exponentially. Food waste (FW) is posing a severe environmental issue because of mismanaged disposal techniques, which frequently result in the squandering of carbohydrate-rich feedstocks. In an advanced valorization strategy, organic material in FW can be used as a viable carbon source for microbial digestion and hence for the generation of value-added compounds. In comparison to traditional feedstocks, a modest pretreatment of the FW stream utilizing chemical, biochemical, or thermochemical techniques can extract bulk of sugars for microbial digestion. Pretreatment produces a large number of toxins and inhibitors that affect bacterial fuel and chemical conversion processes. Thus, the current review scrutinizes the FW structure, pretreatment methods (e.g., physical, chemical, physicochemical, and biological), and various strategies for detoxification before microbial fermentation into renewable chemical production. Technological and commercial challenges and future perspectives for FW integrated biorefineries have also been outlined.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India
| | - Raj Morya
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ju-Hyeong Jung
- Eco Lab Center, SK ecoplant Co. Ltd., Seoul 03143, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Rendered-Protein Hydrolysates as a Low-Cost Nitrogen Source for the Fungal Biotransformation of 5-Hydroxymethylfurfural. Catalysts 2022. [DOI: 10.3390/catal12080839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5-hydroxymethylfurfural (HMF) is a platform chemical that can be converted into a wide range of high-value derivatives. Industrially, HMF-based derivatives are synthesized via chemical catalysis. However, biocatalytic transformation has emerged as an attractive alternative. Significant advances have been made in the last years using isolated enzymes and whole-cell biocatalysts in HMF biotransformation. Nonetheless, one of the major bottlenecks is the cost of the process, mainly due to the microorganism growth substrate. In this work, biotransformation studies to transform HMF into 2,5-di(hydroxymethyl)furan (DHMF) were carried out with the fungus Fusarium striatum using low-cost protein hydrolysates. The protein hydrolysates were obtained from fines, an unexploited material produced during the rendering process of meat industry waste residues. Given the high content in the protein of fines, of around 46%, protein hydrolysis was optimized using two commercially available proteases, Alcalase 2.4 L and Neutrase 0.8 L. The maximum degree of hydrolysis (DH) achieved with Alcalase 2.4 L was 21.4% under optimal conditions of 5% E/S ratio, pH 8, 55 °C, and 24 h. On the other hand, Neutrase 0.8 L exhibited lower efficiency, and therefore, lower protein recovery. After optimization of the Neutrase 0.8 L process using the response surface methodology (RSM), the maximum DH achieved was 7.2% with the variables set at 15% E/S ratio, initial pH 8, 40 °C, and 10.5 h. Using these hydrolysates as a nitrogen source allowed higher sporulation of the fungus and, therefore, the use of a lower volume of inoculum (three-fold), obtaining a DHMF yield > 90%, 50% higher than the yield obtained when using commercial peptones. The presented process allows the transformation of animal co- and by-products into low-cost nitrogen sources, which greatly impacts the industrial feasibility of HMF biotransformation.
Collapse
|
8
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
9
|
Becerra ML, Lizarazo LM, Rojas HA, Prieto GA, Martinez JJ. Biotransformation of 5-hydroxymethylfurfural and furfural with bacteria of bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Troiano D, Orsat V, Dumont MJ. Use of filamentous fungi as biocatalysts in the oxidation of 5-(hydroxymethyl)furfural (HMF). BIORESOURCE TECHNOLOGY 2022; 344:126169. [PMID: 34695584 DOI: 10.1016/j.biortech.2021.126169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to explore the use of filamentous fungi as oxidative biocatalysts. To that end, filamentous fungal whole-cells, comprising five different species were employed in the oxidation of 5-(hydroxymethyl)furfural (HMF). Two species (A. niger and T. reesei), which demonstrated superior HMF conversion and product accumulation, were further evaluated for growth on alternative substrates (e.g. pentoses) as well as for use in a chemo-biocatalytic reaction system. Concerning the latter, the two whole-cell biocatalysts were coupled with laccase/TEMPO in a one-pot reaction designed to enable catalysis of the three oxidative steps necessary to convert HMF into 2,5-furandicarboxylic acid (FDCA), a compound with immense potential in the production of sustainable and eco-friendly polymers. Ultimately, the optimal one-pot chemo-biocatalytic cascade system, comprising 1 g/L T. reesei whole cells coupled with 2.5 mM laccase and 20 mol% TEMPO, achieved a molar yield of 88% after 80 h.
Collapse
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
11
|
Zhang S, Ma C, Li Q, Li Q, He YC. Efficient chemoenzymatic valorization of biobased D-fructose into 2,5-bis(hydroxymethyl)furan with deep eutectic solvent Lactic acid:Betaine and Pseudomonas putida S12 whole cells. BIORESOURCE TECHNOLOGY 2022; 344:126299. [PMID: 34748976 DOI: 10.1016/j.biortech.2021.126299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
2,5-Bis(hydroxymethyl)furan (BHMF) is one kind of important upgraded derivatives of biobased 5-hydroxymethylfuran (5-HMF). This study verified the feasibility of one-pot chemoenzymatic conversion of biobased D-fructose to BHMF by cascade catalysis with deep eutectic solvent Lactic acid:Betaine (LA:B) and reductase biocatalyst in LA:B - H2O. Using D-fructose (36.0 g/L) as feedstock, the yield of 5-HMF reached 91.6% in DES LA:B - H2O (15:85, v:v) at 150 °C for 1.5 h. Using D-fructose (2 mol D-fructose/mol 5-HMF) as cosubstrate, commercial 5-HMF (125 mM) was converted into BHMF at 90.7% yield by whole-cells of Pseudomonas putida S12 within 24 h at 30 °C and pH 8.0. In addition, Pseudomonas Putida S12 could efficiently transform D-fructose-valorized 5-HMF into BHMF [98.4% yield, based on 5-HMF; 90.1% yield, based on substrate D-fructose] in DES LA:B - H2O. An efficient chemoenzymatic valorization of D-fructose to BHMF was developed in a benign reaction system.
Collapse
Affiliation(s)
- Shunli Zhang
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Cuiluan Ma
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Qi Li
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Qing Li
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China
| | - Yu-Cai He
- Laboratory of Biomass & Bioenergy, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, Hubei Province, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
12
|
Mechanistic kinetic modelling of enzyme-catalysed oxidation reactions of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
da Silva Oliveira EC, da Luz JMR, de Castro MG, Filgueiras PR, Guarçoni RC, de Castro EVR, da Silva MDCS, Pereira LL. Chemical and sensory discrimination of coffee: impacts of the planting altitude and fermentation. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03912-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Chanda K, Mozumder AB, Chorei R, Gogoi RK, Prasad HK. A Lignocellulolytic Colletotrichum sp. OH with Broad-Spectrum Tolerance to Lignocellulosic Pretreatment Compounds and Derivatives and the Efficiency to Produce Hydrogen Peroxide and 5-Hydroxymethylfurfural Tolerant Cellulases. J Fungi (Basel) 2021; 7:785. [PMID: 34682207 PMCID: PMC8540663 DOI: 10.3390/jof7100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
Fungal endophytes are an emerging source of novel traits and biomolecules suitable for lignocellulosic biomass treatment. This work documents the toxicity tolerance of Colletotrichum sp. OH toward various lignocellulosic pretreatment-derived inhibitors. The effects of aldehydes (vanillin, p-hydroxybenzaldehyde, furfural, 5-hydroxymethylfurfural; HMF), acids (gallic, formic, levulinic, and p-hydroxybenzoic acid), phenolics (hydroquinone, p-coumaric acid), and two pretreatment chemicals (hydrogen peroxide and ionic liquid), on the mycelium growth, biomass accumulation, and lignocellulolytic enzyme activities, were tested. The reported Colletotrichum sp. OH was naturally tolerant to high concentrations of single inhibitors like HMF (IC50; 17.5 mM), levulinic acid (IC50; 29.7 mM), hydroquinone (IC50; 10.76 mM), and H2O2 (IC50; 50 mM). The lignocellulolytic enzymes displayed a wide range of single and mixed inhibitor tolerance profiles. The enzymes β-glucosidase and endoglucanase showed H2O2- and HMF-dependent activity enhancements. The enzyme β-glucosidase activity was 34% higher in 75 mM and retained 20% activity in 125 mM H2O2. Further, β-glucosidase activity increased to 24 and 32% in the presence of 17.76 and 8.8 mM HMF. This research suggests that the Colletotrichum sp. OH, or its enzymes, can be used to pretreat plant biomass, hydrolyze it, and remove inhibitory by-products.
Collapse
Affiliation(s)
| | | | | | | | - Himanshu Kishore Prasad
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (K.C.); (A.B.M.); (R.C.); (R.K.G.)
| |
Collapse
|
15
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain. Catalysts 2021. [DOI: 10.3390/catal11020216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evaluated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The process was successfully scaled-up at bioreactor scale (1.3 L working volume) with excellent DHMF production yields (95%) and selectivity (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.
Collapse
|
17
|
Rajesh RO, Godan TK, Sindhu R, Pandey A, Binod P. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered 2020; 11:19-38. [PMID: 31880190 PMCID: PMC6961589 DOI: 10.1080/21655979.2019.1700093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The major drawback of chemical transformations for the production of 2, 5-furan dicarboxylic acid (FDCA) implies the usage of hazardous chemicals, high temperature and high pressure from nonrenewable resources. Alternate to chemical methods, biological methods are promising. Microbial FDCA production is improved through engineering approaches of media conditions, homologous and heterologous expression of genes, genetic and metabolic engineering, etc. The highest FDCA production of 41.29 g/L is observed by an engineered Raultella ornitholytica BF 60 from 35 g/L HMF in sodium phosphate buffer with a 95.14% yield in 72 h. Also, an enzyme cascade system of recombinant and wild enzymes like periplasmic aldehyde oxidase ABC, galactose oxidase M3-5, HRP and catalase have transformed 6.3 g/L HMF to 7.81 g/L FDCA in phosphate buffer with 100% yield in 6 h. Still, these processes are emerging for fulfilling the industrial needs due to the challenges in 'green FDCA production'.
Collapse
Affiliation(s)
- Rajendran Omana Rajesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Tharangattumana Krishnan Godan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| |
Collapse
|
18
|
Liu E, Wilkins MR. Process optimization and scale-up production of fungal aryl alcohol oxidase from genetically modified Aspergillus nidulans in stirred-tank bioreactor. BIORESOURCE TECHNOLOGY 2020; 315:123792. [PMID: 32659422 DOI: 10.1016/j.biortech.2020.123792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Microbial production of aryl alcohol oxidase (AAO) has attracted increasing attention due to the central role of AAO in enzymatic lignin depolymerization. However, large-scale production of AAO has not been reached because of the low yield and inefficient fermentation process. This study aims to optimize the process parameters and scale-up production of AAO using Aspergillus nidulans in a stirred-tank bioreactor. Effects of pH and dissolved oxygen on AAO production at bioreactor scale were particularly investigated. Results revealed that pH control significantly affected protein production and increasing dissolved oxygen level stimulated AAO production. The greatest AAO activity (1906 U/L) and protein concentration (1.19 g/L) were achieved in 48 h at 60% dissolved oxygen with pH controlled at 6.0. The yield and productivity (in 48 h) were 31.2 U/g maltose and 39.7 U/L/h, respectively. In addition, crude AAO was concentrated and partially purified by ultrafiltration and verified by protein identification.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
19
|
Martins C, Hartmann DO, Varela A, Coelho JAS, Lamosa P, Afonso CAM, Silva Pereira C. Securing a furan-based biorefinery: disclosing the genetic basis of the degradation of hydroxymethylfurfural and its derivatives in the model fungus Aspergillus nidulans. Microb Biotechnol 2020; 13:1983-1996. [PMID: 32813320 PMCID: PMC7533331 DOI: 10.1111/1751-7915.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Hydroxymethylfurfural (HMF) is a promising lignocellulosic-derived source for the generation of diverse chemical building blocks constituting an alternative to fossil fuels. However, it remains unanswered if ubiquitous fungi can ensure their efficient decay, similar to that observed in highly specialised fungi. To disclose the genetic basis of HMF degradation in aspergilli, we performed a comprehensive analysis of Aspergillus nidulans ability to tolerate and to degrade HMF and its derivatives (including an HMF-dimer). We identified the degradation pathway using a suite of metabolomics methods and showed that HMF was modified throughout sequential reactions, ultimately yielding derivatives subsequently channelled to the TCA cycle. Based on the previously revealed hmfFGH gene cluster of Cupriavidus basilensis, we combined gene expression of homologous genes in Aspergillus nidulans and functional analyses in single-deletion mutants. Results were complemented with orthology analyses across the genomes of twenty-five fungal species. Our results support high functional redundancy for the initial steps of the HMF degradation pathway in the majority of the analysed fungal genomes and the assignment of a single-copy furan-2,5-dicarboxylic acid decarboxylase gene in A. nidulans. Collectively our data made apparent the superior capacity of aspergilli to mineralise HMF, furthering the environmental sustainability of a furan-based chemistry.
Collapse
Affiliation(s)
- Celso Martins
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Diego O. Hartmann
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Adélia Varela
- Instituto Nacional Investigação Agrária e VeterináriaAv. da RepúblicaOeiras2784‐505Portugal
| | - Jaime A. S. Coelho
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| |
Collapse
|
20
|
Tramontina R, Brenelli LB, Sodré V, Franco Cairo JP, Travália BM, Egawa VY, Goldbeck R, Squina FM. Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World J Microbiol Biotechnol 2020; 36:166. [PMID: 33000321 DOI: 10.1007/s11274-020-02942-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023]
Abstract
The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recommended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strategies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed as perspectives in the field.
Collapse
Affiliation(s)
- Robson Tramontina
- Programa de Pós-Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- School of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lívia Beatriz Brenelli
- Interdisciplinary Center of Energy Planning (NIPE), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Victoria Sodré
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
- Programa de Pós-Graduação em Biologia Funcional e Molecular (BFM), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Paulo Franco Cairo
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | | | - Viviane Yoshimi Egawa
- School of Agriculture, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rosana Goldbeck
- School of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
21
|
Kadowaki MAS, Higasi PMR, de Godoy MO, de Araújo EA, Godoy AS, Prade RA, Polikarpov I. Enzymatic versatility and thermostability of a new aryl-alcohol oxidase from Thermothelomyces thermophilus M77. Biochim Biophys Acta Gen Subj 2020; 1864:129681. [PMID: 32653619 DOI: 10.1016/j.bbagen.2020.129681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
Background Fungal aryl-alcohol oxidases (AAOx) are extracellular flavoenzymes that belong to glucose-methanol-choline oxidoreductase family and are responsible for the selective conversion of primary aromatic alcohols into aldehydes and aromatic aldehydes to their corresponding acids, with concomitant production of hydrogen peroxide (H2O2) as by-product. The H2O2 can be provided to lignin degradation pathway, a biotechnological property explored in biofuel production. In the thermophilic fungus Thermothelomyces thermophilus (formerly Myceliophthora thermophila), just one AAOx was identified in the exo-proteome. Methods The glycosylated and non-refolded crystal structure of an AAOx from T. thermophilus at 2.6 Å resolution was elucidated by X-ray crystallography combined with small-angle X-ray scattering (SAXS) studies. Moreover, biochemical analyses were carried out to shed light on enzyme substrate specificity and thermostability. Results This flavoenzyme harbors a flavin adenine dinucleotide as a cofactor and is able to oxidize aromatic substrates and 5-HMF. Our results also show that the enzyme has similar oxidation rates for bulky or simple aromatic substrates such as cinnamyl and veratryl alcohols. Moreover, the crystal structure of MtAAOx reveals an open active site, which might explain observed specificity of the enzyme. Conclusions MtAAOx shows previously undescribed structural differences such as a fully accessible catalytic tunnel, heavy glycosylation and Ca2+ binding site providing evidences for thermostability and activity of the enzymes from AA3_2 subfamily. General significance Structural and biochemical analyses of MtAAOx could be important for comprehension of aryl-alcohol oxidases structure-function relationships and provide additional molecular tools to be used in future biotechnological applications.
Collapse
Affiliation(s)
- Marco Antonio Seiki Kadowaki
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| | - Paula Miwa Rabelo Higasi
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Mariana Ortiz de Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Evandro Ares de Araújo
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Andre Schutzer Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Rolf Alexander Prade
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Oklahoma State University, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
22
|
Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020. [DOI: 10.3390/catal10070743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The constant depletion of fossil fuels along with the increasing need for novel materials, necessitate the development of alternative routes for polymer synthesis. Lignocellulosic biomass, the most abundant carbon source on the planet, can serve as a renewable starting material for the design of environmentally-friendly processes for the synthesis of polyesters, polyamides and other polymers with significant value. The present review provides an overview of the main processes that have been reported throughout the literature for the production of bio-based monomers from lignocellulose, focusing on physicochemical procedures and biocatalysis. An extensive description of all different stages for the production of furans is presented, starting from physicochemical pretreatment of biomass and biocatalytic decomposition to monomeric sugars, coupled with isomerization by enzymes prior to chemical dehydration by acid Lewis catalysts. A summary of all biotransformations of furans carried out by enzymes is also described, focusing on galactose, glyoxal and aryl-alcohol oxidases, monooxygenases and transaminases for the production of oxidized derivatives and amines. The increased interest in these products in polymer chemistry can lead to a redirection of biomass valorization from second generation biofuels to chemical synthesis, by creating novel pathways to produce bio-based polymers.
Collapse
|
23
|
Zerva A, Pentari C, Topakas E. Crosslinked Enzyme Aggregates (CLEAs) of Laccases from Pleurotus citrinopileatus Induced in Olive Oil Mill Wastewater (OOMW). Molecules 2020; 25:E2221. [PMID: 32397329 PMCID: PMC7248732 DOI: 10.3390/molecules25092221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
The enzymatic factory of ligninolytic fungi has proven to be a powerful tool in applications regarding the degradation of various types of pollutants. The degradative potential of fungi is mainly due to the production of different types of oxidases, of which laccases is one of the most prominent enzymatic activities. In the present work, crude laccases from the supernatant of Pleurotus citrinopileatus cultures grown in olive oil mill wastewater (OOMW) were immobilized in crosslinked enzyme aggregates (CLEAs), aiming at the development of biocatalysts suitable for the enzymatic treatment of OOMW. The preparation of laccase CLEAs was optimized, resulting in a maximum of 72% residual activity. The resulting CLEAs were shown to be more stable in the presence of solvents and at elevated temperatures compared to the soluble laccase preparation. The removal of the phenolic component of OOMW catalyzed by laccase-CLEAs exceeded 35%, while they were found to retain their activity for at least three cycles of repetitive use. The described CLEAs can be applied for the pretreatment of OOMW, prior to its use for valorization processes, and thus, facilitate its complete biodegradation towards a consolidated process in the context of circular economy.
Collapse
Affiliation(s)
- Anastasia Zerva
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
| | - Christina Pentari
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
| | - Evangelos Topakas
- InduBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (A.Z.); (C.P.)
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
24
|
Cajnko MM, Novak U, Grilc M, Likozar B. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5- diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:66. [PMID: 32308735 PMCID: PMC7149886 DOI: 10.1186/s13068-020-01705-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied. RESULTS Commercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a K m value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h. CONCLUSIONS Our study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.
Collapse
Affiliation(s)
- Miša Mojca Cajnko
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Catalytic synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfual by recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 2020; 134:109491. [DOI: 10.1016/j.enzmictec.2019.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022]
|
26
|
Yuan H, Liu H, Du J, Liu K, Wang T, Liu L. Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives. Appl Microbiol Biotechnol 2019; 104:527-543. [PMID: 31820067 DOI: 10.1007/s00253-019-10272-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
2,5-Furandicarboxylic acid (FDCA) is attracting increasing attention because of its potential applications as a sustainable substitute to petroleum-derived terephthalic acid for the production of bio-based polymers, such as poly(ethylene 2,5-furandicarboxylate) (PEF). Many catalytic methods have been developed for the synthesis of FDCA, including chemocatalysis, biocatalysis, photocatalysis, and electrocatalysis. Biocatalysis is a promising approach with advantages that include mild reaction condition, lower cost, higher selectivity, and environment amity. However, the biocatalytic production of FDCA has hardly been reviewed. To fully understand the current research developments, this review comprehensively considers the research progress on toxic effects and biodegradation of furan aldehydes, and then summarizes the latest achievements concerning the synthesis of FDCA from 5-hydroxymethylfurfural and other chemicals, such as 2-furoic acid and 5-methoxymethylfurfural. Our primary focus is on biocatalytic methods, including enzymatic catalysis (in vitro) and whole-cell catalysis (in vivo). Furthermore, future research directions and general developmental trends for more efficient biocatalytic production of FDCA are also proposed.
Collapse
Affiliation(s)
- Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Jieke Du
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
27
|
Soto-Robles LV, Torres-Banda V, Rivera-Orduña FN, Curiel-Quesada E, Hidalgo-Lara ME, Zúñiga G. An Overview of Genes From Cyberlindnera americana, a Symbiont Yeast Isolated From the Gut of the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae), Involved in the Detoxification Process Using Genome and Transcriptome Data. Front Microbiol 2019; 10:2180. [PMID: 31611850 PMCID: PMC6777644 DOI: 10.3389/fmicb.2019.02180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Bark beetles from Dendroctonus genus promote ecological succession and nutrient cycling in coniferous forests. However, they can trigger outbreaks leading to important economic losses in the forest industry. Conifers have evolved resistance mechanisms that can be toxic to insects but at the same time, bark beetles are capable of overcoming tree barriers and colonize these habitats. In this sense, symbiont yeasts present in the gut of bark beetles have been suggested to play a role in the detoxification process of tree defensive chemicals. In the present study, genes related to this process were identified and their response to a terpene highly toxic to bark beetles and their symbionts was analyzed in the Cyberlindnera americana yeast. The genome and transcriptome of C. americana (ChDrAdgY46) isolated from the gut of Dendroctonus rhizophagus were presented. Genome analysis identified 5752 protein-coding genes and diverse gene families associated with the detoxification process. The most abundant belonged to the Aldo-Keto Reductase Superfamily, ATP-binding cassette Superfamily, and the Major Facilitator Superfamily transporters. The transcriptome analysis of non-α-pinene stimulated and α-pinene stimulated yeasts showed a significant expression of genes belonging to these families. The activities demonstrated by the genes identified as Aryl-alcohol dehydrogenase and ABC transporter under (+)-α-pinene suggest that they are responsible, that C. americana is a dominant symbiont that resists high amounts of monoterpenes inside the gut of bark beetles.
Collapse
Affiliation(s)
- L Viridiana Soto-Robles
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Verónica Torres-Banda
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Gerardo Zúñiga
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
28
|
Feldman D, Kowbel DJ, Cohen A, Glass NL, Hadar Y, Yarden O. Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:210. [PMID: 31508149 PMCID: PMC6724289 DOI: 10.1186/s13068-019-1550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biofuels derived from lignocellulosic biomass are a viable alternative to fossil fuels required for transportation. Following plant biomass pretreatment, the furan derivative furfural is present at concentrations which are inhibitory to yeasts. Detoxification of furfural is thus important for efficient fermentation. Here, we searched for new genetic attributes in the fungus Neurospora crassa that may be linked to furfural tolerance. The fact that furfural is involved in the natural process of sexual spore germination of N. crassa and that this fungus is highly amenable to genetic manipulations makes it a rational candidate for this study. RESULTS Both hypothesis-based and unbiased (random promotor mutagenesis) approaches were performed to identify N. crassa genes associated with the response to furfural. Changes in the transcriptional profile following exposure to furfural revealed that the affected processes were, overall, similar to those observed in Saccharomyces cerevisiae. N. crassa was more tolerant (by ~ 30%) to furfural when carboxymethyl cellulose was the main carbon source as opposed to sucrose, indicative of a link between carbohydrate metabolism and furfural tolerance. We also observed increased tolerance in a Δcre-1 mutant (CRE-1 is a key transcription factor that regulates the ability of fungi to utilize non-preferred carbon sources). In addition, analysis of aldehyde dehydrogenase mutants showed that ahd-2 (NCU00378) was involved in tolerance to furfural as well as the predicted membrane transporter NCU05580 (flr-1), a homolog of FLR1 in S. cerevisiae. Further to the rational screening, an unbiased approach revealed additional genes whose inactivation conferred increased tolerance to furfural: (i) NCU02488, which affected the abundance of the non-anchored cell wall protein NCW-1 (NCU05137), and (ii) the zinc finger protein NCU01407. CONCLUSIONS We identified attributes in N. crassa associated with tolerance or degradation of furfural, using complementary research approaches. The manipulation of the genes involved in furan sensitivity can provide a means for improving the production of biofuel producing strains. Similar research approaches can be utilized in N. crassa and other filamentous fungi to identify additional attributes relevant to other furans or toxic chemicals.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - David J. Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Adi Cohen
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| |
Collapse
|
29
|
Manipulating the Expression of Small Secreted Protein 1 (Ssp1) Alters Patterns of Development and Metabolism in the White-Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol 2019; 85:AEM.00761-19. [PMID: 31101610 DOI: 10.1128/aem.00761-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023] Open
Abstract
The function of small secreted proteins (SSPs) in saprotrophic fungi is, for the most part, unknown. The white-rot mushroom Pleurotus ostreatus produces considerable amounts of SSPs at the onset of secondary metabolism, during colony development, and in response to chemical compounds such as 5-hydroxymethylfurfural and aryl alcohols. Genetic manipulation of Ssp1, by knockdown (KDssp1) or overexpression (OEssp1), indicated that they are, in fact, involved in the regulation of the ligninolytic system. To elucidate their potential involvement in fungal development, quantitative secretome analysis was performed during the trophophase and the idiophase and at a transition point between the two growth phases. The mutations conferred a time shift in the secretion and expression patterns: OEssp1 preceded the entrance to idiophase and secondary metabolism, while KDssp1 was delayed. This was also correlated with expression patterns of selected genes. The KDssp1 colony aged at a slower pace, accompanied by a slower decline in biomass over time. In contrast, the OEssp1 strain exhibited severe lysis and aging of the colony at the same time point. These phenomena were accompanied by variations in yellow pigment production, characteristic of entrance of the wild type into idiophase. The pigment was produced earlier and in a larger amount in the OEssp1 strain and was absent from the KDssp1 strain. Furthermore, the dikaryon harboring OEssp1 exhibited a delay in the initiation of fruiting body formation as well as earlier aging. We propose that Ssp1 might function as a part of the fungal communication network and regulate the pattern of fungal development and metabolism in P. ostreatus IMPORTANCE Small secreted proteins (SSPs) are common in fungal saprotrophs, but their roles remain elusive. As such, they comprise part of a gene pool which may be involved in governing fungal lifestyles not limited to symbiosis and pathogenicity, in which they are commonly referred to as "effectors." We propose that Ssp1 in the white-rot fungus Pleurotus ostreatus regulates the transition from primary to secondary metabolism, development, aging, and fruiting body initiation. Our observations uncover a novel regulatory role of effector-like SSPs in a saprotroph, suggesting that they may act in fungal communication as well as in response to environmental cues. The presence of Ssp1 homologues in other fungal species supports a common potential role in environmental sensing and fungal development.
Collapse
|
30
|
Rajesh RO, Godan TK, Rai AK, Sahoo D, Pandey A, Binod P. Biosynthesis of 2,5-furan dicarboxylic acid by Aspergillus flavus APLS-1: Process optimization and intermediate product analysis. BIORESOURCE TECHNOLOGY 2019; 284:155-160. [PMID: 30928827 DOI: 10.1016/j.biortech.2019.03.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to develop an eco-friendly biological process for the production of 2,5-furan dicarboxylic acid (FDCA) from 5-hydroxy methylfurfuraldehyde (HMF) using microorganisms. Microorganisms were isolated from the soil samples and evaluated for its biotransformation efficiency. Among the isolates, Aspergillus flavus APLS-1 was found to be potent for efficient conversion of HMF to FDCA. The bioconversion parameters were optimized by Box-Behnken design. The optimization resulted in 67% conversion efficiency where 1 g/L HMF (8 mM) was transformed to 0.83 g/L (6.6 mM) FDCA in 14 days at pH6.5 with biomass size of 5.7 g/L and biomass age 60 h. This is the first report on Aspergillus sp., capable of detoxifying HMF and produces FDCA.
Collapse
Affiliation(s)
- Rajendran Omana Rajesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Tharangattumana Krishnan Godan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong - 737102, Gangtok, Sikkim, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong - 737102, Gangtok, Sikkim, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
31
|
Chefetz B, Marom R, Salton O, Oliferovsky M, Mordehay V, Ben-Ari J, Hadar Y. Transformation of lamotrigine by white-rot fungus Pleurotus ostreatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:546-553. [PMID: 31026702 DOI: 10.1016/j.envpol.2019.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
One of the most persistent pharmaceutical compounds commonly found in treated wastewater is lamotrigine (LTG). It has also been detected in soils and crops irrigated with treated wastewater. Here we focused on the ability of the white-rot edible mushroom Pleurotus ostreatus to remove and transform LTG in liquid cultures. At concentrations of environmental relevance (1 and 10 μg L-1) LTG was almost completely removed from the culture medium within 20 days. To elucidate the mechanism of LTG removal and transformation, we applied a physiological-based approach using inhibitors and a competing agent. These experiments were conducted at a higher concentration for metabolites detection. Based on identification of sulfur-containing metabolites and LTG N2-oxide and the effect of specific inhibitors, cytochrome P450 oxidation is suggested as one of the reaction mechanisms leading to LTG transformation. The variety and number of transformation products (i.e., conjugates) found in the current study were larger than reported in mammals. Moreover, known conjugates with glucuronide, glutathione, or cysteine/glycine, were not found in our system. Since the majority of the identified transformation products were conjugates of LTG, this study highlights the persistence of LTG as an organic pollutant in ecosystems exposed to wastewater.
Collapse
Affiliation(s)
- Benny Chefetz
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Rotem Marom
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Orit Salton
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Mariana Oliferovsky
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Vered Mordehay
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Julius Ben-Ari
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yitzhak Hadar
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
32
|
Lopez-Nieves S, Pringle A, Maeda HA. Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota). Arch Biochem Biophys 2019; 665:12-19. [PMID: 30771296 DOI: 10.1016/j.abb.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/30/2022]
Abstract
L-Tyrosine is an aromatic amino acid necessary for protein synthesis in all living organisms and a precursor of secondary (specialized) metabolites. In fungi, tyrosine-derived compounds are associated with virulence and defense (i.e. melanin production). However, how tyrosine is produced in fungi is not fully understood. Generally, tyrosine can be synthesized via two pathways: by prephenate dehydrogenase (TyrAp/PDH), a pathway found in most bacteria, or by arogenate dehydrogenase (TyrAa/ADH), a pathway found mainly in plants. Both enzymes require the cofactor NAD+ or NADP+ and typically are strongly feedback inhibited by tyrosine. Here, we biochemically characterized two TyrA enzymes from two distantly related fungi in the Ascomycota and Basidiomycota, Saccharomyces cerevisiae (ScTyrA/TYR1) and Pleurotus ostreatus (PoTyrA), respectively. We found that both enzymes favor the prephenate substrate and NAD+ cofactor in vitro. Interestingly, while PoTyrA was strongly inhibited by tyrosine, ScTyrA exhibited relaxed sensitivity to tyrosine inhibition. We further mutated ScTyrA at the amino acid residue that was previously shown to be involved in the substrate specificity of plant TyrAs; however, no changes in its substrate specificity were observed, suggesting that a different mechanism is involved in the TyrA substrate specificity of fungal TyrAs. The current findings provide foundational knowledge to further understand and engineer tyrosine-derived specialized pathways in fungi.
Collapse
Affiliation(s)
- Samuel Lopez-Nieves
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
33
|
Xu ZH, Cheng AD, Xing XP, Zong MH, Bai YP, Li N. Improved synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfural using acclimatized whole cells entrapped in calcium alginate. BIORESOURCE TECHNOLOGY 2018; 262:177-183. [PMID: 29705609 DOI: 10.1016/j.biortech.2018.04.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) has attracted considerable interest recently. In this work, efficient synthesis of 2,5-bis(hydroxymethyl)furan (BHMF) from HMF was reported with the acclimatized Meyerozyma guilliermondii SC1103 cells entrapped in calcium alginate beads. Catalytic activities of the cells as well as their HMF-tolerant level increased significantly upon acclimatization and immobilization. BHMF was obtained within 7-24 h with good yields (82-85%) and excellent selectivities (99%) when the substrate concentrations were 200-300 mM. In scale-up synthesis, BHMF of up to 181 mM was produced within 7 h, and its productivity was approximately 3.3 g/L h. In addition, the immobilized biocatalyst showed satisfactory operational stability; the cell viability of 70% was retained after reuse 4 times. With rice straw hydrolysate as co-substrate, both the reaction rate and selectivity decreased, likely due to the deleterious influence of xylose in the hydrolysate.
Collapse
Affiliation(s)
- Zhong-Hua Xu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Ai-Di Cheng
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xu-Pu Xing
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
34
|
Yuan H, Liu Y, Li J, Shin HD, Du G, Shi Z, Chen J, Liu L. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid. Biotechnol Bioeng 2018; 115:2148-2155. [PMID: 29733430 DOI: 10.1002/bit.26725] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
The compound 5-hydroxymethylfurfural (HMF) has attracted much attention due to its versatility as an important bio-based platform chemical. Here, we engineered Raoultella ornithinolytica BF60 as a whole-cell biocatalyst for a highly efficient synthesis of 2,5-furandicarboxylic acid (FDCA) from HMF. Specifically, various expression cassettes of key genes, such as hmfH (gene encoding HMF/furfural oxidoreductase [HmfH]) and hmfo (gene encoding HMF oxidase), were designed and constructed for fine-tuning FDCA synthesis from HMF. The FDCA titer reached 108.9 mM with a yield of 73% when 150 mM HMF was used as the substrate. This yield was 16% higher than that without balancing key gene expression in FDCA synthetic pathways. Additionally, to strengthen HmfH expression at the translational level, ribosomal binding site (RBS) sequences, which were computationally designed using the RBS calculator, were assembled into HmfH expression cassettes. The HmfH expression in the presence of these sequences enhanced FDCA titer to 139.6 mM with a yield of 93%. Next, previously unknown candidate genes, such as aldR, dkgA, akR, AdhP1, and AdhP2, which encode enzymes that catalyze the reactions leading to the formation of the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol) from HMF, were identified by RNA-sequencing-based transcriptomics. Combinatorial deletion of these five candidate genes led to an 88% reduction in HMF alcohol formation and 12% enhancement in FDCA production (175.6 mM). Finally, FDCA synthesis was further improved by the substrate pulse-feeding strategy, and 221.5 mM FDCA with an 88.6% yield was obtained. The combinatorial synthetic pathway fine-tuning and comparative transcriptomics approach may be useful for improving the biocatalysis efficiency of other industrially useful compounds.
Collapse
Affiliation(s)
- Haibo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Carro J, Fernández-Fueyo E, Fernández-Alonso C, Cañada J, Ullrich R, Hofrichter M, Alcalde M, Ferreira P, Martínez AT. Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:86. [PMID: 29619082 PMCID: PMC5880071 DOI: 10.1186/s13068-018-1091-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND 2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. RESULTS In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H2O2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O2, to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. CONCLUSIONS The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.
Collapse
Affiliation(s)
- Juan Carro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Javier Cañada
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - René Ullrich
- Department of Bio- and Environmental Sciences, International Institute Zittau - Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau - Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Marie Curie 2, E-28049 Madrid, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and BIFI, University of Zaragoza, E-50009 Saragossa, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
36
|
Enzymatic Preparation of 2,5-Furandicarboxylic Acid (FDCA)-A Substitute of Terephthalic Acid-By the Joined Action of Three Fungal Enzymes. Microorganisms 2018; 6:microorganisms6010005. [PMID: 29315223 PMCID: PMC5874619 DOI: 10.3390/microorganisms6010005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 12/03/2022] Open
Abstract
Enzymatic oxidation of 5-hydroxymethylfurfural (HMF) and its oxidized derivatives was studied using three fungal enzymes: wild-type aryl alcohol oxidase (AAO) from three fungal species, wild-type peroxygenase from Agrocybe aegerita (AaeUPO), and recombinant galactose oxidase (GAO). The effect of pH on different reaction steps was evaluated and apparent kinetic data (Michaelis-Menten constants, turnover numbers, specific constants) were calculated for different enzyme-substrate ratios and enzyme combinations. Finally, the target product, 2,5-furandicarboxylic acid (FDCA), was prepared in a multi-enzyme cascade reaction combining three fungal oxidoreductases at micro-scale. Furthermore, an oxidase-like reaction is proposed for heme-containing peroxidases, such as UPO, horseradish peroxidase, or catalase, causing the conversion of 5-formyl-2-furancarboxylic acid into FDCA in the absence of exogenous hydrogen peroxide.
Collapse
|
37
|
Yoav S, Salame TM, Feldman D, Levinson D, Ioelovich M, Morag E, Yarden O, Bayer EA, Hadar Y. Effects of cre1 modification in the white-rot fungus Pleurotus ostreatus PC9: altering substrate preference during biological pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:212. [PMID: 30065786 PMCID: PMC6062969 DOI: 10.1186/s13068-018-1209-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/18/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND During the process of bioethanol production, cellulose is hydrolyzed into its monomeric soluble units. For efficient hydrolysis, a chemical and/or mechanical pretreatment step is required. Such pretreatment is designed to increase enzymatic digestibility of the cellulose chains inter alia by de-crystallization of the cellulose chains and by removing barriers, such as lignin from the plant cell wall. Biological pretreatment, in which lignin is decomposed or modified by white-rot fungi, has also been considered. One disadvantage in biological pretreatment, however, is the consumption of the cellulose by the fungus. Thus, fungal species that attack lignin with only minimal cellulose loss are advantageous. The secretomes of white-rot fungi contain carbohydrate-active enzymes (CAZymes) including lignin-modifying enzymes. Thus, modification of secretome composition can alter the ratio of lignin/cellulose degradation. RESULTS Pleurotus ostreatus PC9 was genetically modified to either overexpress or eliminate (by gene replacement) the transcriptional regulator CRE1, known to act as a repressor in the process of carbon catabolite repression. The cre1-overexpressing transformant demonstrated lower secreted cellulolytic activity and slightly increased selectivity (based on the chemical composition of pretreated wheat straw), whereas the knockout transformant demonstrated increased cellulolytic activity and significantly reduced residual cellulose, thereby displaying lower selectivity. Pretreatment of wheat straw using the wild-type PC9 resulted in 2.8-fold higher yields of soluble sugar compared to untreated wheat straw. The overexpression transformant showed similar yields (2.6-fold), but the knockout transformant exhibited lower yields (1.2-fold) of soluble sugar. Based on proteomic secretome analysis, production of numerous CAZymes was affected by modification of the expression level of cre1. CONCLUSIONS The gene cre1 functions as a regulator for expression of fungal CAZymes active against plant cell wall lignocelluloses, hence altering the substrate preference of the fungi tested. While the cre1 knockout resulted in a less efficient biological pretreatment, i.e., less saccharification of the treated biomass, the converse manipulation of cre1 (overexpression) failed to improve efficiency. Despite the inverse nature of the two genetic alterations, the expected "mirror image" (i.e., opposite regulatory response) was not observed, indicating that the secretion level of CAZymes, was not exclusively dependent on CRE1 activity.
Collapse
Affiliation(s)
- Shahar Yoav
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Tomer M. Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Daria Feldman
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Dana Levinson
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | | | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| |
Collapse
|
38
|
He YC, Jiang CX, Chong GG, Di JH, Ma CL. Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. BIORESOURCE TECHNOLOGY 2018; 247:1215-1220. [PMID: 28943097 DOI: 10.1016/j.biortech.2017.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Biocatalytic upgrading of bio-based platform chemical 5-hydroxymethylfurfural (5-HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is currently of great interest due to the product specificity, mild reaction and high efficiency. In this work, 200mM 5-HMF could be effectively biotransformed to BHMF at 90.6% with highly 5-HMF-tolerant recombinant E. coli CCZU-K14 whole cells at pH 6.5 and 30°C under the optimum reaction conditions (cosubstrate glucose 1.0mol glucose/(mol 5-HMF), D-xylose 400mM, l-glutamic acid 250mM, Mg2+ 1.5mM, 0.2mol β-cyclodextrin/(mol 5-HMF), CTAB (cetyltrimethyl ammonium bromide) 12.5mM, and 0.1g wet cells/mL). It was found that E. coli CCZU-K14 was highly tolerant to 5-HMF (up to 400mM). Effective bioreduction of biomass-derived 5-HMF (≤200) to BHMF was successfully demonstrated in this study. In conclusion, this strategy showed high potential application for the synthesis of BHMF.
Collapse
Affiliation(s)
- Yu-Cai He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| | - Chun-Xia Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
39
|
Domínguez de María P, Guajardo N. Biocatalytic Valorization of Furans: Opportunities for Inherently Unstable Substrates. CHEMSUSCHEM 2017; 10:4123-4134. [PMID: 28869788 DOI: 10.1002/cssc.201701583] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Biogenic furans (furfural and 5-hydroxymethylfurfural) are expected to become relevant building blocks based on their high degree of functionality and versatility. However, the inherent instability of furans poses considerable challenges for their synthetic modifications. Valorization routes of furans typically generate byproducts, impurities, wastes, and a cumbersome downstream processing, compromising their ecological footprint. Biocatalysis may become an alternative, given the high selectivity of enzymes, together with the mild reaction conditions applied. This Review critically discusses the options for enzymes in the upgrading of furans. Based on previous reports, a variety of biocatalytic transformations have been applied to furans, with successful cases both in aqueous and in water-free media. Options comprise the biodetoxification of toxic furans in hydrolysates, selective syntheses based on oxidation-reduction processes, solvent-free esterifications, or carboligations to afford C12 derivatives. Reported strategies show in general promising but still modest productivities (2-30 gproduct L-1 d-1 , depending on the example). There are opportunities with high potential and deserving of further development, scale-up, and technoeconomic assessment, to entirely validate them as realistic alternatives.
Collapse
Affiliation(s)
| | - Nadia Guajardo
- Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Avda. Viel 1497, Santiago, Chile
- IONCHEM Ltda, Avda. Diego Portales 925, 301, Viña del Mar, Chile
| |
Collapse
|
40
|
Feldman D, Kowbel DJ, Glass NL, Yarden O, Hadar Y. A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus. Sci Rep 2017; 7:14553. [PMID: 29109463 PMCID: PMC5674062 DOI: 10.1038/s41598-017-15112-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Small secreted proteins (SSPs), along with lignocellulose degrading enzymes, are integral components of the secretome of Pleurotus ostreatus, a white rot fungus. In this study, we identified 3 genes (ssp1, 2 and 3) encoding proteins that are annotated as SSPs and that exhibited of ~4,500- fold expression, 24 hr following exposure to the toxic compound 5-hydroxymethylfurfural (HMF). Homologues to genes encoding these SSPs are present in the genomes of other basidiomycete fungi, however the role of SSPs is not yet understood. SSPs, aryl-alcohol oxidases (AAO) and the intracellular aryl-alcohol dehydrogenases (AAD) were also produced after exposure to other aryl-alcohols, known substrates and inducers of AAOs, and during idiophase (after the onset of secondary metabolism). A knockdown strain of ssp1 exhibited reduced production of AAO-and AAD-encoding genes after HMF exposure. Conversely, a strain overexpressing ssp1 exhibited elevated expression of genes encoding AAOs and ADD, resulting in a 3-fold increase in enzymatic activity of AAOs, as well as increased expression and protein abundance of versatile peroxidase 1, which directly degrades lignin. We propose that in addition to symbionts and pathogens, SSPs also have roles in saprophytes and function in P. ostreatus as components of the ligninolytic system.
Collapse
Affiliation(s)
- Daria Feldman
- The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Department of Plant Pathology and Microbiology, Rehovot, 76100, Israel
| | - David J Kowbel
- University of California at Berkeley UC Berkeley, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California, 94720, USA
| | - N Louise Glass
- University of California at Berkeley UC Berkeley, Department of Plant and Microbial Biology, 111 Koshland Hall, Berkeley, California, 94720, USA
| | - Oded Yarden
- The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Department of Plant Pathology and Microbiology, Rehovot, 76100, Israel
| | - Yitzhak Hadar
- The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Department of Plant Pathology and Microbiology, Rehovot, 76100, Israel.
| |
Collapse
|
41
|
Xiao Q, Ma F, Li Y, Yu H, Li C, Zhang X. Differential Proteomic Profiles of Pleurotus ostreatus in Response to Lignocellulosic Components Provide Insights into Divergent Adaptive Mechanisms. Front Microbiol 2017; 8:480. [PMID: 28386251 PMCID: PMC5362632 DOI: 10.3389/fmicb.2017.00480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022] Open
Abstract
Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by metabolizing the main constituents. Extracellular enzymes play a key role in this process. During the hydrolysis of lignocellulose, potentially toxic molecules are released from lignin, and the molecules are derived from hemicellulose or cellulose that trigger various responses in fungus, thereby influencing mycelial growth. In order to characterize the mechanism underlying the response of P. ostreatus to lignin, we conducted a comparative proteomic analysis of P. ostreatus grown on different lignocellulose substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were identified, most of which were classified into five types according to their function. Proteins with an antioxidant function that play a role in the stress response were upregulated in response to lignin. Most proteins involving in carbohydrate and energy metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of carbohydrate metabolism by regulating the level of expression of various carbohydrate metabolism-related proteins. The change of protein expression level was related to the adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into the mechanisms underlying the response of white-rot fungus to lignocellulose.
Collapse
Affiliation(s)
- Qiuyun Xiao
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yan Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Chengyun Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
42
|
Li YM, Zhang XY, Li N, Xu P, Lou WY, Zong MH. Biocatalytic Reduction of HMF to 2,5-Bis(hydroxymethyl)furan by HMF-Tolerant Whole Cells. CHEMSUSCHEM 2017; 10:372-378. [PMID: 27966286 DOI: 10.1002/cssc.201601426] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Catalytic upgrading of 5-hydroxymethylfurfural (HMF), an important biobased platform chemical for high-value products, is currently of great interest. In this work, a new highly HMFtolerant yeast strain-Meyerozyma guilliermondii SC1103 was isolated, and biocatalytic reduction of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) using its resting cells was reported. Cosubstrates exerted a significant effect on the catalytic activity and selectivity of microbial cells as well as their HMF-tolerant levels whereas the nitrogen source and mineral salts had no effects. In addition, M. guilliermondii SC1103 cells exhibited good catalytic performances within the range of pH 4.0-10.0. The yeast was highly tolerant to both HMF (up to 110 mm) and BHMF (up to 200 mm). In addition, 100 mm HMF could be selectively reduced to BHMF within 12 h by its resting cells in the presence of 100 mm glucose (as cosubstrate), with a yield of 86 % and selectivity of >99 %. The production of 191 mm of BHMF was realized within 24.5 h by using a fed-batch strategy, with a productivity of approximately 24 g L-1 per day. In addition, this new biocatalytic approach was applied for the reduction of furfural and 5-methylfurfural, affording the corresponding furfuryl alcohols with yields of 83 and 89 %, respectively.
Collapse
Affiliation(s)
- Yan-Mei Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Xue-Ying Zhang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Pei Xu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P.R. China
| |
Collapse
|
43
|
Tramontina R, Franco Cairo JPL, Liberato MV, Mandelli F, Sousa A, Santos S, Rabelo SC, Campos B, Ienczak J, Ruller R, Damásio ARL, Squina FM. The Coptotermes gestroi aldo-keto reductase: a multipurpose enzyme for biorefinery applications. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:4. [PMID: 28053664 PMCID: PMC5209882 DOI: 10.1186/s13068-016-0688-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/14/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND In nature, termites can be considered as a model biological system for biofuel research based on their remarkable efficiency for lignocellulosic biomass conversion. Redox enzymes are of interest in second-generation ethanol production because they promote synergic enzymatic activity with classical hydrolases for lignocellulose saccharification and inactivate fermentation inhibitory compounds produced after lignocellulose pretreatment steps. RESULTS In the present study, the biochemical and structural characteristics of the Coptotermes gestroi aldo-keto reductase (CgAKR-1) were comprehensively investigated. CgAKR-1 displayed major structural differences compared with others AKRs, including the differences in the amino acid composition of the substrate-binding site, providing basis for classification as a founding member of a new AKR subfamily (family AKR1 I). Immunolocalization assays with anti-CgAKR-1 antibodies resulted in strong fluorescence in the salivary gland, proventriculus, and foregut. CgAKR-1 supplementation caused a 32% reduction in phenolic aldehydes, such as furfural, which act as fermentation inhibitors of hemicellulosic hydrolysates, and improved ethanol fermentation by the xylose-fermenting yeast Scheffersomyces stipitis by 45%. We observed synergistic enzymatic interactions between CgAKR-1 and commercial cellulosic cocktail for sugarcane bagasse saccharification, with a maximum synergism degree of 2.17 for sugar release. Our data indicated that additive enzymatic activity could be mediated by reactive oxygen species because CgAKR-1 could produce hydrogen peroxide. CONCLUSION In summary, we identified the founding member of an AKRI subfamily with a potential role in the termite digestome. CgAKR-1 was found to be a multipurpose enzyme with potential biotechnological applications. The present work provided a basis for the development and application of integrative and multipurpose enzymes in the bioethanol production chain.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
- Programa de Pós Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB)-Instituto de Biologia-CP 6109, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP Brazil
| | - João Paulo L. Franco Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Marcelo V. Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Fernanda Mandelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Amanda Sousa
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
- Programa de Pós Graduação em Biociências e Tecnologia de Produtos Bioativos (BTPB)-Instituto de Biologia-CP 6109, Universidade Estadual de Campinas-UNICAMP, 13083-970 Campinas, SP Brazil
| | - Samantha Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Sarita Cândida Rabelo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Bruna Campos
- Brazilian Biosciences National Laboratory (LNBio), from the Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Jaciane Ienczak
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| | - André R. L. Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Fabio Marcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, no 10000 Campinas, SP Brazil
| |
Collapse
|
44
|
Duwe A, Tippkötter N, Ulber R. Lignocellulose-Biorefinery: Ethanol-Focused. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:177-215. [PMID: 29071401 DOI: 10.1007/10_2016_72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.
Collapse
Affiliation(s)
- A Duwe
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - N Tippkötter
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - R Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
45
|
Zhang J, Presley GN, Hammel KE, Ryu JS, Menke JR, Figueroa M, Hu D, Orr G, Schilling JS. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta. Proc Natl Acad Sci U S A 2016; 113:10968-73. [PMID: 27621450 PMCID: PMC5047196 DOI: 10.1073/pnas.1608454113] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Gerald N Presley
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108
| | - Kenneth E Hammel
- Institute for Microbial and Biochemical Technology, US Forest Products Laboratory, Madison, WI 53726; Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| | - Jae-San Ryu
- Eco-Friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, Republic of Korea
| | - Jon R Menke
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108
| | - Melania Figueroa
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108
| | - Dehong Hu
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Galya Orr
- Chemical and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Jonathan S Schilling
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108;
| |
Collapse
|
46
|
An aryl-alcohol oxidase of Pleurotus sapidus: heterologous expression, characterization, and application in a 2-enzyme system. Appl Microbiol Biotechnol 2016; 100:8021-30. [DOI: 10.1007/s00253-016-7567-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|