1
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Liu J, Kang R, Yang X, Xie H, Cui X, Ren M, Feng X, Meng D. Sustainable cellobionic acid biosynthesis from starch via artificial in vitro synthetic enzymatic biosystem. Int J Biol Macromol 2024; 260:129641. [PMID: 38262552 DOI: 10.1016/j.ijbiomac.2024.129641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Cellobionic acid (CBA), a kind of aldobionic acid, offers potential applications in the fields of pharmaceutical, cosmetic, food, and chemical industry. To tackle the high cost of the substrate cellobiose in CBA production using quinoprotein glucose dehydrogenase, this study developed a coenzyme-free and phosphate-balanced in vitro synthetic enzymatic biosystem (ivSEBS) to enable the sustainable CBA synthesis from cost-effective starch in one-pot via the CBA-synthesis module and gluconic acid-supply module. The metabolic fluxes of this artificial biosystem were strengthened using design-build-test-analysis strategy, which involved exquisite pathway design, meticulous enzyme selection, module validation and integration, and optimization of the key enzyme dosage. Under the optimized conditions, a remarkable concentration of 6.2 g/L CBA was achieved from initial 10 g/L maltodextrin with a starch-to-CBA molar conversion rate of 60 %. Taking into account that the biosystem simultaneously accumulated 3.6 g/L of gluconic acid, the maltodextrin utilization rate was calculated to be 93.3 %. Furthermore, a straightforward scaling-up process was performed to evaluate the industrial potential of this enzymatic biosystem, resulting in a yield of 21.2 g/L CBA from 50 g/L maltodextrin. This study presents an artificial ivSEBS for sustainable production of CBA from inexpensive starch, demonstrating an alternative paradigm for biomanufacturing of other aldobionic acids.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Runyuan Kang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinyue Yang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Hanhan Xie
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinyu Cui
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Mengfei Ren
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinming Feng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China.
| | - Dongdong Meng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
3
|
Yan S, Xu Y, Yu XW. Role of cellulose response transporter-like protein CRT2 in cellulase induction in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:118. [PMID: 37488642 PMCID: PMC10364367 DOI: 10.1186/s13068-023-02371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Induction of cellulase in cellulolytic fungi Trichoderma reesei is strongly activated by cellulosic carbon sources. The transport of cellulosic inducer and the perception of inducing signal is generally considered as the critical process for cellulase induction, that the inducing signal would be perceived by a sugar transporter/transceptor in T. reesei. Several sugar transporters are coexpressed during the induction stage, but which function they serve and how they work collaboratively are still difficult to elucidate. RESULTS In this study, we found that the constitutive expression of the cellulose response transporter-like protein CRT2 (previously identified as putative lactose permease TRE77517) improves cellulase induction on a cellulose, cellobiose or lactose medium. Functional studies indicate that the membrane-bound CRT2 is not a transporter of cellobiose, lactose or glucose in a yeast system, and it also does not affect cellobiose and lactose utilization in T. reesei. Further study reveals that CRT2 has a slightly similar function to the cellobiose transporter CRT1 in cellulase induction. Overexpression of CRT2 led to upregulation of CRT1 and the key transcription factor XYR1. Moreover, overexpression of CRT2 could partially compensate for the function loss of CRT1 on cellulase induction. CONCLUSIONS Our study uncovers the novel function of CRT2 in cellulase induction collaborated with CRT1 and XYR1, possibly as a signal transductor. These results deepen the understanding of the influence of sugar transporters in cellulase production.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Bieringer E, García Vázquez U, Klein L, Moretó Bravo N, Tobler M, Weuster-Botz D. Bioproduction and applications of aldobionic acids with a focus on maltobionic and cellobionic acid. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02872-7. [PMID: 37058246 DOI: 10.1007/s00449-023-02872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
Aldobionic acids are sugar acids which consist of a disaccharide with an anomeric acid group. The most famous is lactobionic acid (LBA). LBA is used in many applications such as food and beverages, pharmaceuticals and medicine, cosmetics or chemical processes. During the last decade, all these industries are observing a shift of consumer preferences towards plant-based options. Thus, the biotechnological industry is trying to replace the animal-derived LBA. Maltobionic acid (MBA) and cellobionic acid (CBA) are two stereoisomers of LBA which have emerged as vegan alternatives. However, MBA and CBA face different obstacles related to their industrial production. While traditionally used electrochemical or chemical catalysis often rely on cost intensive and/or hazardous catalysts, novel production methods with microorganisms are still poorly studied. In the first part, this paper discusses both alternatives in terms of their characteristics and applications. In the second part, it reviews the long-studied chemical production and the novel bioproduction methods, which are based on enzymatic and microbial systems. This review concludes with a discussion of future work needed to bring their production to the industrial scale.
Collapse
Affiliation(s)
- Emmeran Bieringer
- TUM School of Engineering and Design, Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Uxía García Vázquez
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Luisa Klein
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Núria Moretó Bravo
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Matthias Tobler
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- TUM School of Engineering and Design, Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
5
|
Effect of itaconic acid production on Neurospora crassa in consolidated bioprocessing of cellulose. Microb Cell Fact 2023; 22:28. [PMID: 36774527 PMCID: PMC9922455 DOI: 10.1186/s12934-023-02034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
A system for itaconic acid synthesis from cellulose by Neurospora crassa was established, resulting in the highest yield of itaconic acid was 354.08 + 35.99 mg/L. Meanwhile, cellulase activity increased significantly, without any strain modifications for improved cellulase production. Multi-omics analyses showed that itaconic acid synthesis reduced energy production, leading to decreases in trehalose, cell wall, fatty acids synthesis and downregulations in MAPK signaling pathway, cell cycle and meiosis. More importantly, the low-energy environment enhanced the energy-efficient cellobionic acid/gluconic acid pathway, and the cellulase composition also changed significantly, manifested as the up-regulation of LPMOs and the down-regulation of β-glucosidases. Enhancing LPMOs-cellobionic acid/gluconic acid system has the potential to reduce energy consumption of the consolidated bioprocessing. These findings offer an overview of resource allocations by N. crassa in response to itaconic acid synthesis and highlight a series of intriguing connections between itaconic acid synthesis and cellulase synthesis in consolidated bioprocessing.
Collapse
|
6
|
Havukainen S, Pujol-Giménez J, Valkonen M, Hediger MA, Landowski CP. Functional characterization of a highly specific L-arabinose transporter from Trichoderma reesei. Microb Cell Fact 2021; 20:177. [PMID: 34496831 PMCID: PMC8425032 DOI: 10.1186/s12934-021-01666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lignocellulose biomass has been investigated as a feedstock for second generation biofuels and other value-added products. Some of the processes for biofuel production utilize cellulases and hemicellulases to convert the lignocellulosic biomass into a range of soluble sugars before fermentation with microorganisms such as yeast Saccharomyces cerevisiae. One of these sugars is L-arabinose, which cannot be utilized naturally by yeast. The first step in L-arabinose catabolism is its transport into the cells, and yeast lacks a specific transporter, which could perform this task. RESULTS We identified Trire2_104072 of Trichoderma reesei as a potential L-arabinose transporter based on its expression profile. This transporter was described already in 2007 as D-xylose transporter XLT1. Electrophysiology experiments with Xenopus laevis oocytes and heterologous expression in yeast revealed that Trire2_104072 is a high-affinity L-arabinose symporter with a Km value in the range of [Formula: see text] 0.1-0.2 mM. It can also transport D-xylose but with low affinity (Km [Formula: see text] 9 mM). In yeast, L-arabinose transport was inhibited slightly by D-xylose but not by D-glucose in an assay with fivefold excess of the inhibiting sugar. Comparison with known L-arabinose transporters revealed that the expression of Trire2_104072 enabled yeast to uptake L-arabinose at the highest rate in conditions with low extracellular L-arabinose concentration. Despite the high specificity of Trire2_104072 for L-arabinose, the growth of its T. reesei deletion mutant was only affected at low L-arabinose concentrations. CONCLUSIONS Due to its high affinity for L-arabinose and low inhibition by D-glucose or D-xylose, Trire2_104072 could serve as a good candidate for improving the existing pentose-utilizing yeast strains. The discovery of a highly specific L-arabinose transporter also adds to our knowledge of the primary metabolism of T. reesei. The phenotype of the deletion strain suggests the involvement of other transporters in L-arabinose transport in this species.
Collapse
Affiliation(s)
- Sami Havukainen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mari Valkonen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | | |
Collapse
|
7
|
Enhanced konjac glucomannan hydrolysis by lytic polysaccharide monooxygenases and generating prebiotic oligosaccharides. Carbohydr Polym 2021; 253:117241. [DOI: 10.1016/j.carbpol.2020.117241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
|
8
|
Datamining and functional environmental genomics reassess the phylogenetics and functional diversity of fungal monosaccharide transporters. Appl Microbiol Biotechnol 2021; 105:647-660. [PMID: 33394157 DOI: 10.1007/s00253-020-11076-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Sugar transporters are essential components of carbon metabolism and have been extensively studied to control sugar uptake by yeasts and filamentous fungi used in fermentation processes. Based on published information on characterized fungal sugar porters, we show that this protein family encompasses phylogenetically distinct clades. While several clades encompass transporters that seemingly specialized on specific "sugar-related" molecules (e.g., myo-inositol, charged sugar analogs), others include mostly either mono- or di/oligosaccharide low-specificity transporters. To address the issue of substrate specificity of sugar transporters, that protein primary sequences do not fully reveal, we screened "multi-species" soil eukaryotic cDNA libraries for mannose transporters, a sugar that had never been used to select transporters. We obtained 19 environmental transporters, mostly from Basidiomycota and Ascomycota. Among them, one belonged to the unusual "Fucose H+ Symporter" family, which is only known in Fungi for a rhamnose transporter in Aspergillus niger. Functional analysis of the 19 transporters by expression in yeast and for two of them in Xenopus laevis oocytes for electrophysiological measurements indicated that most of them showed a preference for D-mannose over other tested D-C6 (glucose, fructose, galactose) or D-C5 (xylose) sugars. For the several glucose and fructose-negative transporters, growth of the corresponding recombinant yeast strains was prevented on mannose in the presence of one of these sugars that may act by competition for the binding site. Our results highlight the potential of environmental genomics to figure out the functional diversity of key fungal protein families and that can be explored in a context of biotechnology. KEY POINTS: • Most fungal sugar transporters accept several sugars as substrates. • Transporters, belonging to 2 protein families, were isolated from soil cDNA libraries. • Environmental transporters featured novel substrate specificities.
Collapse
|
9
|
Wu VW, Thieme N, Huberman LB, Dietschmann A, Kowbel DJ, Lee J, Calhoun S, Singan VR, Lipzen A, Xiong Y, Monti R, Blow MJ, O'Malley RC, Grigoriev IV, Benz JP, Glass NL. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proc Natl Acad Sci U S A 2020; 117:6003-6013. [PMID: 32111691 PMCID: PMC7084071 DOI: 10.1073/pnas.1915611117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.
Collapse
Affiliation(s)
- Vincent W Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Nils Thieme
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lori B Huberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Axel Dietschmann
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - David J Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Yi Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Remo Monti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Matthew J Blow
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - J Philipp Benz
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
10
|
Tao W, Kasuga T, Li S, Huang H, Fan Z. Homoethanol production from cellobionate and glycerol using recombinant Klebsiella oxytoca strains. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Homoethanol Production from Glycerol and Gluconate Using Recombinant Klebsiella oxytoca Strains. Appl Environ Microbiol 2019; 85:AEM.02122-18. [PMID: 30578264 DOI: 10.1128/aem.02122-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
Gluconic acid, an oxidized cellulose degradation product, could be produced from cellulosic biomass. Glycerol is an inexpensive and renewable resource for fuels and chemicals production and is available as a byproduct of biodiesel production. Gluconate is a more oxidized substrate than glucose, whereas glycerol is a more reduced substrate than glucose. Although the production of homoethanol from glucose can be achieved, the conversion of gluconate to ethanol is accompanied by the production of oxidized byproduct such as acetate, and reduced byproducts such as 1,3-propanediol are produced, along with ethanol, when glycerol is used as the carbon source. When gluconate and glycerol are used as the sole carbon source by Klebsiella oxytoca BW21, the ethanol yield is about 62 to 64%. Coutilization of both gluconate and glycerol in batch fermentation increased the yield of ethanol to about 78.7% and decreased by-product accumulation (such as acetate and 1,3-propanediol) substantially. Decreasing by-product formation by deleting the pta, frd, ldh, pflA, and pduC genes in strain BW21 increased the ethanol yield to 89.3% in the batch fermentation of a glycerol-gluconate mixture. These deletions produced the strain K. oxytoca WT26. However, the utilization rate of glycerol was significantly slower than that of gluconate in batch fermentation. In addition, substantial amounts of glycerol remain unutilized after gluconate was depleted in batch fermentation. Continuous fed-batch fermentation was used to solve the utilization rate mismatch problem for gluconate and glycerol. An ethanol yield of 97.2% was achieved in continuous fed-batch fermentation of these two substrates, and glycerol was completely used at the end of the fermentation.IMPORTANCE Gluconate is a biomass-derived degradation product, and glycerol can be obtained as a biodiesel byproduct. Compared to glucose, using them as the sole substrate is accompanied by the production of by-products. Our study shows that through pathway engineering and adoption of a fed-batch culture system, high-yield homoethanol production that usually can be achieved by using glucose as the substrate is achievable using gluconate and glycerol as cosubstrates. The same strategy is expected to be able to achieve homofermentative production of other products, such as lactate and 2,3-butanediol, which can be typically achieved using glucose as the substrate and inexpensive biodiesel-derived glycerol and biomass-derived gluconate as the cosubstrates.
Collapse
|
12
|
Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab Eng 2018; 48:94-108. [DOI: 10.1016/j.ymben.2018.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 01/02/2023]
|
13
|
Mao S, Liu Y, Hou Y, Ma X, Yang J, Han H, Wu J, Jia L, Qin H, Lu F. Efficient production of sugar-derived aldonic acids by Pseudomonas fragi TCCC11892. RSC Adv 2018; 8:39897-39901. [PMID: 35558231 PMCID: PMC9091311 DOI: 10.1039/c8ra07556e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas fragi TCCC11892 was found to be an efficient producer of aldonic acids which are receiving increased interest due to their applications in nanotechnology, food, pharmaceutical and chemical industries.
Collapse
|
14
|
Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Int J Biol Macromol 2017; 102:771-778. [DOI: 10.1016/j.ijbiomac.2017.04.077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
|
15
|
A fungal transcription factor essential for starch degradation affects integration of carbon and nitrogen metabolism. PLoS Genet 2017; 13:e1006737. [PMID: 28467421 PMCID: PMC5435353 DOI: 10.1371/journal.pgen.1006737] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/17/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26 mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution. In nature, filamentous fungi sense nutrient availability in the surrounding environment and adjust their metabolism for optimal utilization, growth and reproduction. Carbon and nitrogen are two of major elements required for life. Within cells, signals from carbon and nitrogen catabolism are integrated, resulting in balanced metabolic activities for optimal carbon and nitrogen distribution. However, coordination of carbon and nitrogen metabolism is often missed in studies that are based on comparisons between single carbon or nitrogen sources. In this study, we performed systematic transcriptional profiling of Neurospora crassa on different components of starch and identified the transcription factor COL-26 to be an essential regulator for starch utilization and needed for coordinating carbon and nitrogen regulation and metabolism. Proteins with sequence similar to COL-26 widely exist among ascomycete fungi. Here we provide experimental evidence for shared function of a col-26 ortholog in Trichoderma reesei. Our finding provides novel insight into how the regulation of carbon and nitrogen metabolism can be integrated in filamentous fungi by the function of COL-26 and which may aid in the rational design of fungal strains for industrial purposes.
Collapse
|
16
|
Lin H, Hildebrand A, Kasuga T, Fan Z. Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition. Enzyme Microb Technol 2017; 99:25-31. [DOI: 10.1016/j.enzmictec.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
17
|
An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol 2017; 101:3627-3636. [DOI: 10.1007/s00253-017-8134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
18
|
Corrêa TLR, dos Santos LV, Pereira GAG. AA9 and AA10: from enigmatic to essential enzymes. Appl Microbiol Biotechnol 2016; 100:9-16. [PMID: 26476647 DOI: 10.1007/s00253-015-7040-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
The lignocellulosic biomass, comprised mainly of cellulose, hemicellulose, and lignin, is a strong competitor for petroleum to obtain fuels and other products because of its renewable nature, low cost, and non-competitiveness with food production when obtained from agricultural waste. Due to its recalcitrance, lignocellulosic material requires an arsenal of enzymes for its deconstruction and the consequent release of fermentable sugars. In this context, enzymes currently classified as auxiliary activity 9 (AA9/formerly GH61) and 10 (AA10/formerly CBM 33) or lytic polysaccharide monooxygenases (LPMO) have emerged as cellulase boosting enzymes. AA9 and AA10 are the new paradigm for deconstruction of lignocellulosic biomass by enhancing the activity and decreasing the loading of classical enzymes to the reaction and, consequently, reducing costs of the hydrolysis step in the second-generation ethanol production chain. In view of that disclosed above, the goal of this work is to review experimental data that supports the relevance of AA9 and AA10 for the biomass deconstruction field.
Collapse
|
19
|
Sekar R, Shin HD, DiChristina TJ. Direct conversion of cellulose and hemicellulose to fermentable sugars by a microbially-driven Fenton reaction. BIORESOURCE TECHNOLOGY 2016; 218:1133-1139. [PMID: 27469094 DOI: 10.1016/j.biortech.2016.07.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to develop a microbially-driven Fenton reaction that fragments cellulose and hemicellulose, degrades cellodextrins and xylodextrins, and produces short-chain oligosaccharides and monomeric sugars in a single bioreactor. The lignocellulose degradation system operates at neutral pH and does not require addition of conventional lignocellulose-degrading enzymes, thus avoiding problems associated with enzyme accessibility and specificity. The ability to produce useful bioproducts was demonstrated by production of the bioplastic polyhydroxybutyrate with the xylan degradation products as starting substrate.
Collapse
Affiliation(s)
- Ramanan Sekar
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Hyun Dong Shin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Thomas J DiChristina
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|