1
|
Gao M, Zhang S, Zhang Z, Wang H, Wu J, Chang Z, Zhang Z, Zhao B. Comparison of toxic effects and underlying mechanisms of carbon quantum dots and CdSe quantum dots on Chromochloris zofingiensis from the chemical composition perspective. CHEMOSPHERE 2024; 363:142911. [PMID: 39038709 DOI: 10.1016/j.chemosphere.2024.142911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Quantum dots (QDs) are widely utilized semiconductor nanocrystal materials with both nanotoxicity and composition-related toxicity. To determine the toxicological impacts and underlying mechanisms of QDs with different compositions on microalgae, carbon QDs (CQDs) and CdSe QDs were used in the present study. Results showed that QDs composed of CdSe were more toxic than QDs composed of carbon, which inhibited cell growth, with reductions in chl b content, chlorophyll fluorescence parameters, and increases in lipids and starch (two major storage substances). In addition, CdSe QDs elevated reactive oxygen species (ROS), resulting in oxidative damage, while CQDs had little effect on antioxidants. Comparative transcriptome analysis showed that gene expression was accelerated by CdSe QDs, and there was a compensatory upregulation of porphyrin metabolism, potentially to support chlorophyll synthesis. In addition, an MYB transcription factor was predicted by weighted gene co-expression network analysis (WGCNA) to serve as regulator in nanoparticle toxicity, while glutathione peroxidase (GPX) and dual-specificity tyrosine phosphorylation regulated kinases 2/3/4 (DYRK2/3/4) may be key mediators of the composition-related toxicity of CdSe QDs. This study highlights the critical role of QDs' composition in determining their impacts on aquatic microalgae, providing a theoretical reference for selecting appropriate QDs materials for various industrial applications.
Collapse
Affiliation(s)
- Min Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Shudong Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Haitong Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiayi Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyu Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Baohua Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
2
|
Sahoo S, Khuswaha GS, Misra N, Suar M. Exploiting AGPase genes and encoded proteins to prioritize development of optimum engineered strains in microalgae towards sustainable biofuel production. World J Microbiol Biotechnol 2023; 39:209. [PMID: 37237168 DOI: 10.1007/s11274-023-03654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Although ADP glucose pyrophosphorylase (AGPase), with two large subunits (ls) and two small subunits (ss), is a promising knockout target for increasing the neutral lipid content, the details regarding the sequence-structure features and their distribution within metabolic system in microalgae is rather limited. Against this backdrop, a comprehensive genome-wide comparative analysis on 14 sequenced microalgal genomes was performed. For the first time the heterotetrameric structure of the enzyme and the interaction of the catalytic unit with the substrate was also studied. Novel findings of the present study includes: (i) at the DNA level, the genes controlling the ss are more conserved than those controlling the ls; the variation in both the gene groups is mainly due to exon number, exon length and exon phase distribution; (ii) at protein level, the ss genes are more conserved relative to those for ls; (III) three putative key consensus sequences 'LGGGAGTRLYPLTKNRAKPAV', 'WFQGTADAV' and 'ASMGIYVFRKD' were ubiquitously conserved in all the AGPases; (iv) molecular dynamics investigations revealed that the modeled AGPase heterotetrameric structure, from oleaginous algae Chlamydomonas reinharditii, was completely stable in real time environment; (v) The binding interfaces of catalytic unit, ssAGPase, from C. reinharditii with α-D-glucose 1-phosphate (αGP) was also analyzed. The results of the present study have provided system-based insights into the structure-function of the genes and encoded proteins, which provided clues for exploitation of variability in these genes that, could be further utilized to design site-specific mutagenic experiments for engineering of microalgal strains towards sustainable development of biofuel.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Khuswaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
3
|
Tsuji Y, Kinoshita A, Tsukahara M, Ishikawa T, Shinkawa H, Yamano T, Fukuzawa H. A YAK1-type protein kinase, triacylglycerol accumulation regulator 1, in the green alga Chlamydomonas reinhardtii is a potential regulator of cell division and differentiation into gametes during photoautotrophic nitrogen deficiency. J GEN APPL MICROBIOL 2022. [PMID: 36002293 DOI: 10.2323/jgam.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yet another kinase (YAK) 1 is a conserved eukaryotic protein kinase coordinating growth and development. We previously isolated a mutant of Chlamydomonas reinhardtii defective in the YAK1 ortholog triacylglycerol (TAG) accumulation regulator 1 (TAR1). The mutant tar1-1 displayed higher levels of chlorophyll, starch, TAG, and biomass than the parental strain C9 (renamed as C9-3) in photoautotrophic nitrogen (N)-deficient conditions. However, we found that the parental C9-3 showed faster chlorosis upon N-deficiency than the original C9 (C9-1) freshly recovered from cryopreservation, suggesting that C9-3 had acquired particular characteristics during long-term subculturing. To exclude phenotypes dependent on a particular parental strain, we newly created tar1 mutants from two wild-types, C9-1 and CC 125. Like tar1-1, the new tar1 mutants showed higher levels of chlorophyll and TAG/starch than the parental strain. Upon removal of N, Chlamydomonas cells divide once before ceasing further division. Previously, the single division after N-removal was arrested in tar1-1 in photomixotrophic conditions, but this phenotype was not observed in photoautotrophic conditions because of the particular characteristics of the parental C9-3. However, using C9- 1 and CC-125 as parental strains, we showed that cell division after N-removal was impaired in new tar1 mutants in photoautotrophic conditions. Consistent with the view that the division under N-deficiency is necessary for gametic differentiation, new tar1 mutants showed lower mating efficiency than the parental strains. Taken together, TAR1 was suggested to promote differentiation into gametes through the regulation of cell division in response to N-deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Haruka Shinkawa
- Graduate Study of Biostudies, Kyoto University.,Present address: Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University
| | | | | |
Collapse
|
4
|
Shinkawa H, Kajikawa M, Furuya T, Nishihama R, Tsukaya H, Kohchi T, Fukuzawa H. Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:1063-1077. [PMID: 35674121 DOI: 10.1093/pcp/pcac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836 Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493 Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
5
|
Choi BY, Shim D, Kong F, Auroy P, Lee Y, Li-Beisson Y, Lee Y, Yamaoka Y. The Chlamydomonas transcription factor MYB1 mediates lipid accumulation under nitrogen depletion. THE NEW PHYTOLOGIST 2022; 235:595-610. [PMID: 35383411 DOI: 10.1111/nph.18141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Microalgae accumulate high levels of oil under stress, but the underlying biosynthetic pathways are not fully understood. We sought to identify key regulators of lipid metabolism under stress conditions. We found that the Chlamydomonas reinhardtii gene encoding the MYB-type transcription factor MYB1 is highly induced under stress conditions. Two myb1 mutants accumulated less total fatty acids and storage lipids than their parental strain upon nitrogen (N) depletion. Transcriptome analysis revealed that genes involved in lipid metabolism are highly enriched in the wild-type but not in the myb1-1 mutant after 4 h of N depletion. Among these genes were several involved in the transport of fatty acids from the chloroplast to the endoplasmic reticulum (ER): acyl-ACP thioesterase (FAT1), Fatty Acid EXporters (FAX1, FAX2), and long-chain acyl-CoA synthetase1 (LACS1). Furthermore, overexpression of FAT1 in the chloroplast increased lipid production. These results suggest that, upon N depletion, MYB1 promotes lipid accumulation by facilitating fatty acid transport from the chloroplast to the ER. This study identifies MYB1 as an important positive regulator of lipid accumulation in C. reinhardtii upon N depletion, adding another player to the established regulators of this process, including NITROGEN RESPONSE REGULATOR 1 (NRR1) and TRIACYLGLYCEROL ACCUMULATION REGULATOR 1 (TAR1).
Collapse
Affiliation(s)
- Bae Young Choi
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Fantao Kong
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Pascaline Auroy
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Korea
| |
Collapse
|
6
|
Furuya T, Shinkawa H, Kajikawa M, Nishihama R, Kohchi T, Fukuzawa H, Tsukaya H. A plant-specific DYRK kinase DYRKP coordinates cell morphology in Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2021; 134:1265-1277. [PMID: 34549353 PMCID: PMC8514375 DOI: 10.1007/s10265-021-01345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 05/31/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) are activated via the auto-phosphorylation of conserved tyrosine residues in their activation loop during protein translation, and they then phosphorylate serine/threonine residues on substrates. The DYRK family is widely conserved in eukaryotes and is composed of six subgroups. In plant lineages, DYRK homologs are classified into four subgroups, DYRK2s, yet another kinase1s, pre-mRNA processing factor 4 kinases, and DYRKPs. Only the DYRKP subgroup is plant-specific and has been identified in a wide array of plant lineages, including land plants and green algae. It has been suggested that in Arabidopsis thaliana DYRKPs are involved in the regulation of centripetal nuclear positioning induced by dark light conditions. However, the molecular functions, such as kinase activity and the developmental and physiological roles of DYRKPs are poorly understood. Here, we focused on a sole DYRKP ortholog in the model bryophyte, Marchantia polymorpha, MpDYRKP. MpDYRKP has a highly conserved kinase domain located in the C-terminal region and shares common sequence motifs in the N-terminal region with other DYRKP members. To identify the roles of MpDYRKP in M. polymorpha, we generated loss-of-function Mpdyrkp mutants via genome editing. Mpdyrkp mutants exhibited abnormal, shrunken morphologies with less flattening in their vegetative plant bodies, thalli, and male reproductive organs, antheridial receptacles. The surfaces of the thalli in the Mpdyrkp mutants appeared uneven and disordered. Moreover, their epidermal cells were drastically altered to a narrower shape when compared to the wild type. These results suggest that MpDYRKP acts as a morphological regulator, which contributes to orderly tissue morphogenesis via the regulation of cell shape.
Collapse
Grants
- 19K21189 ministry of education, culture, sports, science and technology
- 20K15813 ministry of education, culture, sports, science and technology
- 17K07753 ministry of education, culture, sports, science and technology
- 16H04805 ministry of education, culture, sports, science and technology
- 25113002 ministry of education, culture, sports, science and technology
- 19H05672 ministry of education, culture, sports, science and technology
- 251113009 ministry of education, culture, sports, science and technology
- 25113001 ministry of education, culture, sports, science and technology
- 19H05675 ministry of education, culture, sports, science and technology
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Graduate School of Science, The University of Tokyo, Tokyo, 113- 0033, Japan
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836, Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Faculty of Science and Technology, Tokyo University of Science, Chiba, 278- 8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, 113- 0033, Japan.
| |
Collapse
|
7
|
Billey E, Hafidh S, Cruz-Gallardo I, Litholdo CG, Jean V, Carpentier MC, Picart C, Kumar V, Kulichova K, Maréchal E, Honys D, Conte MR, Deragon JM, Bousquet-Antonelli C. LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. THE PLANT CELL 2021; 33:2637-2661. [PMID: 34124761 PMCID: PMC8408461 DOI: 10.1093/plcell/koab131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/06/2021] [Indexed: 05/15/2023]
Abstract
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Collapse
Affiliation(s)
- Elodie Billey
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Celso G. Litholdo
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Viviane Jean
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Katarina Kulichova
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 38054 Grenoble, France
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jean-Marc Deragon
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Institut Universitaire de France, 75231 Paris Cedex 5, France
| | - Cécile Bousquet-Antonelli
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
8
|
Billey E, Hafidh S, Cruz-Gallardo I, Litholdo CG, Jean V, Carpentier MC, Picart C, Kumar V, Kulichova K, Maréchal E, Honys D, Conte MR, Deragon JM, Bousquet-Antonelli C. LARP6C orchestrates posttranscriptional reprogramming of gene expression during hydration to promote pollen tube guidance. THE PLANT CELL 2021; 33:2637-2661. [PMID: 34124761 DOI: 10.1101/2020.11.27.401307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/06/2021] [Indexed: 05/19/2023]
Abstract
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Collapse
Affiliation(s)
- Elodie Billey
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Celso G Litholdo
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Viviane Jean
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Katarina Kulichova
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 38054 Grenoble, France
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jean-Marc Deragon
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Institut Universitaire de France, 75231 Paris Cedex 5, France
| | - Cécile Bousquet-Antonelli
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS, 66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
9
|
Potijun S, Jaingam S, Sanevas N, Vajrodaya S, Sirikhachornkit A. Green Microalgae Strain Improvement for the Production of Sterols and Squalene. PLANTS 2021; 10:plants10081673. [PMID: 34451718 PMCID: PMC8399004 DOI: 10.3390/plants10081673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023]
Abstract
Sterols and squalene are essential biomolecules required for the homeostasis of eukaryotic membrane permeability and fluidity. Both compounds have beneficial effects on human health. As the current sources of sterols and squalene are plant and shark oils, microalgae are suggested as more sustainable sources. Nonetheless, the high costs of production and processing still hinder the commercialization of algal cultivation. Strain improvement for higher product yield and tolerance to harsh environments is an attractive way to reduce costs. Being an intermediate in sterol synthesis, squalene is converted to squalene epoxide by squalene epoxidase. This step is inhibited by terbinafine, a commonly used antifungal drug. In yeasts, some terbinafine-resistant strains overproduced sterols, but similar microalgae strains have not been reported. Mutants that exhibit greater tolerance to terbinafine might accumulate increased sterols and squalene content, along with the ability to tolerate the drug and other stresses, which are beneficial for outdoor cultivation. To explore this possibility, terbinafine-resistant mutants were isolated in the model green microalga Chlamydomonas reinhardtii using UV mutagenesis. Three mutants were identified and all of them exhibited approximately 50 percent overproduction of sterols. Under terbinafine treatment, one of the mutants also accumulated around 50 percent higher levels of squalene. The higher accumulation of pigments and triacylglycerol were also observed. Along with resistance to terbinafine, this mutant also exhibited higher resistance to oxidative stress. Altogether, resistance to terbinafine can be used to screen for strains with increased levels of sterols or squalene in green microalgae without growth compromise.
Collapse
Affiliation(s)
- Supakorn Potijun
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.P.); (S.J.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok 10900, Thailand
| | - Suparat Jaingam
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.P.); (S.J.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok 10900, Thailand
| | - Nuttha Sanevas
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (N.S.); (S.V.)
| | - Srunya Vajrodaya
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (N.S.); (S.V.)
| | - Anchalee Sirikhachornkit
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.P.); (S.J.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2562-5444; Fax: +66-2579-5528
| |
Collapse
|
10
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
11
|
Starch Production in Chlamydomonas reinhardtii through Supraoptimal Temperature in a Pilot-Scale Photobioreactor. Cells 2021; 10:cells10051084. [PMID: 34062892 PMCID: PMC8147326 DOI: 10.3390/cells10051084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/29/2023] Open
Abstract
An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1-2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.
Collapse
|
12
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
13
|
Li Z, Cao L, Zhao L, Yu L, Chen Y, Yoon KS, Hu Q, Han D. Identification and Biotechnical Potential of a Gcn5-Related N-Acetyltransferase Gene in Enhancing Microalgal Biomass and Starch Production. FRONTIERS IN PLANT SCIENCE 2020; 11:544827. [PMID: 32983212 PMCID: PMC7483765 DOI: 10.3389/fpls.2020.544827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Microalgae are promising feedstocks for starch production, which are precursors for bioenergy and chemicals manufacturing. Though starch biosynthesis has been intensively studied in the green alga Chlamydomonas reinhardtii, regulatory mechanisms governing starch metabolism in this model species have remained largely unknown to date. We proposed that altering triacylglycerol (TAG) biosynthesis may trigger intrinsic regulatory pathways governing starch metabolism. In accordance with the hypothesis, it was observed in this study that overexpression of the plastidial lysophosphatidic acid acyltransferase gene (i.e. LPAAT1) in C. reinhardtii significantly enhanced TAG biosynthesis under nitrogen (N)-replete conditions, whereas the starch biosynthesis was enhanced in turn under N depletion. By the exploitation of transcriptomics analysis, a putative regulatory gene coding Gcn5-related N-acetyltransferase (GNAT19) was identified, which was up-regulated by 11-12 times in the CrLPAAT1 OE lines. Overexpression of the cloned full-length CrGNAT19 cDNA led to significant increase in the starch content of C. reinhardtii cells grown under both N-replete and N-depleted conditions, which was up to 4 times and 26.7% higher than that of the empty vector control, respectively. Moreover, the biomass yield of the CrGNAT19 OE lines reached 1.5 g L-1 after 2 days under N-depleted conditions, 72% higher than that of the empty vector control (0.87 g L-1). Overall, the yield of starch increased by 118.5% in CrGNAT19 OE lines compared to that of the control. This study revealed the great biotechnical potentials of an unprecedented GNAT19 gene in enhancing microalgal starch and biomass production.
Collapse
Affiliation(s)
- Zhongze Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Cao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lihua Yu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kang-sup Yoon
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Yaisamlee C, Sirikhachornkit A. Characterization of Chlamydomonas Very High Light-tolerant Mutants for Enhanced Lipid Production. J Oleo Sci 2020; 69:359-368. [PMID: 32249263 DOI: 10.5650/jos.ess19270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodiesel production from microalgae is still not commercially realized due to the high cost of production. High light-tolerance has been suggested as a desirable phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Nevertheless, it has not been shown if algae with such a phenotype would have better efficiency for lipid production. To determine lipid productivity in high light-tolerant mutants, and to understand the pathways involved in high light-tolerant phenotype, two very high light-tolerant mutants of the green alga Chlamydomonas reinhardtii - CAL028_01_28 and CAL034_01_48 - were selected from eighteen high light-tolerant mutants from the CAL collection. Under high light intensity conditions, and the presence of reactive oxygen species, which are conditions constantly experienced by algae growing in open-pond environments, these strains exhibited higher photosynthetic efficiency and improved survival. The physiological characterization of these mutants revealed that the detoxification of ROS by carotenoids and antioxidant enzymes is crucial for their growth under high light conditions. Neither mutant was affected in terms of its ability to accumulate lipid under nitrogen-depleted condition. More importantly, lipid productivity under high light conditions increased twofold in these mutants compared to that of the wild-type. Taken together, very high light-tolerant mutants confer a high potential for biofuel production under outdoor conditions, and their improved ability to survive under oxidative stress is an important key for efficient growth under outdoor conditions.
Collapse
Affiliation(s)
- Chonlada Yaisamlee
- Microalgal Molecular Genetics and Functional Genomics Special Research Unit, Department of Genetics, Faculty of Science, Kasetsart University.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University
| | - Anchalee Sirikhachornkit
- Microalgal Molecular Genetics and Functional Genomics Special Research Unit, Department of Genetics, Faculty of Science, Kasetsart University.,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University
| |
Collapse
|
15
|
Di Caprio F, Altimari P, Pagnanelli F. New strategies enhancing feasibility of microalgal cultivations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-444-64337-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
16
|
Colina F, Carbó M, Meijón M, Cañal MJ, Valledor L. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:110. [PMID: 32577129 PMCID: PMC7305600 DOI: 10.1186/s13068-020-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii-a simple Plantae model-into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. RESULTS The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. CONCLUSION Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Burlacot A, Peltier G, Li-Beisson Y. Subcellular Energetics and Carbon Storage in Chlamydomonas. Cells 2019; 8:E1154. [PMID: 31561610 PMCID: PMC6830334 DOI: 10.3390/cells8101154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
Microalgae have emerged as a promising platform for production of carbon- and energy- rich molecules, notably starch and oil. Establishing an economically viable algal biotechnology sector requires a holistic understanding of algal photosynthesis, physiology, cell cycle and metabolism. Starch/oil productivity is a combined effect of their cellular content and cell division activities. Cell growth, starch and fatty acid synthesis all require carbon building blocks and a source of energy in the form of ATP and NADPH, but with a different requirement in ATP/NADPH ratio. Thus, several cellular mechanisms have been developed by microalgae to balance ATP and NADPH supply which are essentially produced by photosynthesis. Major energy management mechanisms include ATP production by the chloroplast-based cyclic electron flow and NADPH removal by water-water cycles. Furthermore, energetic coupling between chloroplast and other cellular compartments, mitochondria and peroxisome, is increasingly recognized as an important process involved in the chloroplast redox poise. Emerging literature suggests that alterations of energy management pathways affect not only cell fitness and survival, but also influence biomass content and composition. These emerging discoveries are important steps towards diverting algal photosynthetic energy to useful products for biotechnological applications.
Collapse
Affiliation(s)
- Adrien Burlacot
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
18
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
19
|
Prioretti L, Carriere F, Field B, Avilan L, Montané MH, Menand B, Gontero B. Targeting TOR signaling for enhanced lipid productivity in algae. Biochimie 2019; 169:12-17. [PMID: 31265860 DOI: 10.1016/j.biochi.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
Microalgae can produce large quantities of triacylglycerols (TAGs) and other neutral lipids that are suitable for making biofuels and as feedstocks for green chemistry. However, TAGs accumulate under stress conditions that also stop growth, leading to a trade-off between biomass production and TAG yield. Recently, in the model marine diatom Phaeodactylum tricornutum it was shown that inhibition of the target of rapamycin (TOR) kinase boosts lipid productivity by promoting TAG production without stopping growth. We believe that basic knowledge in this emerging field is required to develop innovative strategies to improve neutral lipid accumulation in oleaginous microalgae. In this minireview, we discuss current research on the TOR signaling pathway with a focus on its control on lipid homeostasis. We first provide an overview of the well characterized roles of TOR in mammalian lipogenesis, adipogenesis and lipolysis. We then present evidence of a role for TOR in controlling TAG accumulation in microalgae, and draw parallels between the situation in animals, plants and microalgae to propose a model of TOR signaling for TAG accumulation in microalgae.
Collapse
Affiliation(s)
- Laura Prioretti
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Frédéric Carriere
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Marie-Hélène Montané
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France.
| |
Collapse
|
20
|
Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2019; 60:1184-1196. [PMID: 30715500 DOI: 10.1093/pcp/pcz022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Microalgae constitute a highly diverse group of eukaryotic and photosynthetic microorganisms that have developed extremely efficient systems for harvesting and transforming solar energy into energy-rich molecules such as lipids. Although microalgae are considered to be one of the most promising platforms for the sustainable production of liquid oil, the oil content of these organisms is naturally low, and algal oil production is currently not economically viable. Chlamydomonas reinhardtii (Chlamydomonas) is an established algal model due to its fast growth, high transformation efficiency, and well-understood physiology and to the availability of detailed genome information and versatile molecular tools for this organism. In this review, we summarize recent advances in the development of genetic manipulation tools for Chlamydomonas, from gene delivery methods to state-of-the-art genome-editing technologies and fluorescent dye-based high-throughput mutant screening approaches. Furthermore, we discuss practical strategies and toolkits that enhance transgene expression, such as choice of expression vector and background strain. We then provide examples of how advanced genetic tools have been used to increase oil content in Chlamydomonas. Collectively, the current literature indicates that microalgal oil content can be increased by overexpressing key enzymes that catalyze lipid biosynthesis, blocking lipid degradation, silencing metabolic pathways that compete with lipid biosynthesis and modulating redox state. The tools and knowledge generated through metabolic engineering studies should pave the way for developing a synthetic biological approach to enhance lipid productivity in microalgae.
Collapse
Affiliation(s)
- Fantao Kong
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yasuyo Yamaoka
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, Japan
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Yonghua Li-Beisson
- Aix-Marseille Univ., CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F, France
| |
Collapse
|
21
|
Shinkawa H, Kajikawa M, Nomura Y, Ogura M, Sawaragi Y, Yamano T, Nakagami H, Sugiyama N, Ishihama Y, Kanesaki Y, Yoshikawa H, Fukuzawa H. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:916-930. [PMID: 30668822 DOI: 10.1093/pcp/pcz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Mayu Ogura
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Liang Y, Kong F, Torres-Romero I, Burlacot A, Cuine S, Légeret B, Billon E, Brotman Y, Alseekh S, Fernie AR, Beisson F, Peltier G, Li-Beisson Y. Branched-Chain Amino Acid Catabolism Impacts Triacylglycerol Homeostasis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2019; 179:1502-1514. [PMID: 30728273 PMCID: PMC6446750 DOI: 10.1104/pp.18.01584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) starvation-induced triacylglycerol (TAG) synthesis, and its complex relationship with starch metabolism in algal cells, has been intensively studied; however, few studies have examined the interaction between amino acid metabolism and TAG biosynthesis. Here, via a forward genetic screen for TAG homeostasis, we isolated a Chlamydomonas (Chlamydomonas reinhardtii) mutant (bkdE1α) that is deficient in the E1α subunit of the branched-chain ketoacid dehydrogenase (BCKDH) complex. Metabolomics analysis revealed a defect in the catabolism of branched-chain amino acids in bkdE1α Furthermore, this mutant accumulated 30% less TAG than the parental strain during N starvation and was compromised in TAG remobilization upon N resupply. Intriguingly, the rate of mitochondrial respiration was 20% to 35% lower in bkdE1α compared with the parental strains. Three additional knockout mutants of the other components of the BCKDH complex exhibited phenotypes similar to that of bkdE1α Transcriptional responses of BCKDH to different N status were consistent with its role in TAG homeostasis. Collectively, these results indicate that branched-chain amino acid catabolism contributes to TAG metabolism by providing carbon precursors and ATP, thus highlighting the complex interplay between distinct subcellular metabolisms for oil storage in green microalgae.
Collapse
Affiliation(s)
- Yuanxue Liang
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Fantao Kong
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Ismael Torres-Romero
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Adrien Burlacot
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Stéphan Cuine
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Bertrand Légeret
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Emmanuelle Billon
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Fred Beisson
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Gilles Peltier
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| |
Collapse
|
23
|
Chen Y, Shimoda Y, Yokono M, Ito H, Tanaka A. Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1022-1031. [PMID: 30471153 DOI: 10.1111/tpj.14174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The STAY-GREEN (SGR) gene encodes Mg-dechelatase which catalyzes the conversion of chlorophyll (Chl) a to pheophytin (Pheo) a. This reaction is the first and most important regulatory step in the Chl degradation pathway. Conversely, Pheo a is an indispensable molecule in photosystem (PS) II, suggesting the involvement of SGR in the formation of PSII. To investigate the physiological functions of SGR, we isolated Chlamydomonas sgr mutants by screening an insertion-mutant library. The sgr mutants had reduced maximum quantum efficiency of PSII (Fv /Fm ) and reduced Pheo a levels. These phenotypes were complemented by the introduction of the Chlamydomonas SGR gene. Blue Native polyacrylamide gel electrophoresis and immunoblotting analysis showed that although PSII levels were reduced in the sgr mutants, PSI and light-harvesting Chl a/b complex levels were unaffected. Under nitrogen starvation conditions, Chl degradation proceeded in the sgr mutants as in the wild type, indicating that ChlamydomonasSGR is not required for Chl degradation and primarily contributes to the formation of PSII. In contrast, in the Arabidopsis sgr triple mutant (sgr1 sgr2 sgrL), which completely lacks SGR activity, PSII was synthesized normally. These results suggest that the Arabidopsis SGR participates in Chl degradation while the ChlamydomonasSGR participates in PSII formation despite having the same catalytic property.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| |
Collapse
|
24
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
25
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
26
|
Yamazaki T, Konosu E, Takeshita T, Hirata A, Ota S, Kazama Y, Abe T, Kawano S. Independent regulation of the lipid and starch synthesis pathways by sulfate metabolites in the green microalga Parachlorella kessleri under sulfur starvation conditions. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Kong F, Burlacot A, Liang Y, Légeret B, Alseekh S, Brotman Y, Fernie AR, Krieger-Liszkay A, Beisson F, Peltier G, Li-Beisson Y. Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. THE PLANT CELL 2018; 30:1824-1847. [PMID: 29997239 PMCID: PMC6139685 DOI: 10.1105/tpc.18.00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 05/17/2023]
Abstract
Plants and algae must tightly coordinate photosynthetic electron transport and metabolic activities given that they often face fluctuating light and nutrient conditions. The exchange of metabolites and signaling molecules between organelles is thought to be central to this regulation but evidence for this is still fragmentary. Here, we show that knocking out the peroxisome-located MALATE DEHYDROGENASE2 (MDH2) of Chlamydomonas reinhardtii results in dramatic alterations not only in peroxisomal fatty acid breakdown but also in chloroplast starch metabolism and photosynthesis. mdh2 mutants accumulated 50% more storage lipid and 2-fold more starch than the wild type during nitrogen deprivation. In parallel, mdh2 showed increased photosystem II yield and photosynthetic CO2 fixation. Metabolite analyses revealed a >60% reduction in malate, together with increased levels of NADPH and H2O2 in mdh2 Similar phenotypes were found upon high light exposure. Furthermore, based on the lack of starch accumulation in a knockout mutant of the H2O2-producing peroxisomal ACYL-COA OXIDASE2 and on the effects of H2O2 supplementation, we propose that peroxisome-derived H2O2 acts as a regulator of chloroplast metabolism. We conclude that peroxisomal MDH2 helps photoautotrophs cope with nitrogen scarcity and high light by transmitting the redox state of the peroxisome to the chloroplast by means of malate shuttle- and H2O2-based redox signaling.
Collapse
Affiliation(s)
- Fantao Kong
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Adrien Burlacot
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Yuanxue Liang
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Bertrand Légeret
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell, CEA Saclay, CNRS, University Paris-Sud, University Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fred Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Gilles Peltier
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille University, CEA, CNRS, BIAM, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, F-13108 Saint Paul-Lez-Durance, France
| |
Collapse
|
28
|
Sturme MH, Gong Y, Heinrich JM, Klok AJ, Eggink G, Wang D, Xu J, Wijffels RH. Transcriptome analysis reveals the genetic foundation for the dynamics of starch and lipid production in Ettlia oleoabundans. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Bayro-Kaiser V, Nelson N. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy. PHOTOSYNTHESIS RESEARCH 2017; 133:49-62. [PMID: 28239761 PMCID: PMC5500669 DOI: 10.1007/s11120-017-0350-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 05/17/2023]
Abstract
Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.
Collapse
Affiliation(s)
- Vinzenz Bayro-Kaiser
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
30
|
Huang WY, Wu YC, Pu HY, Wang Y, Jang GJ, Wu SH. Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1735-1747. [PMID: 28437590 DOI: 10.1111/pce.12977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here, we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth.
Collapse
Affiliation(s)
- Wen-Yu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yi-Chen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Yi Pu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
31
|
Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu W, Carlson TJ, Francis K, Konigsfeld K, Bartalis J, Schultz A, Lambert W, Schwartz AS, Brown R, Moellering ER. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 2017. [DOI: 10.1038/nbt.3865] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Koo KM, Jung S, Lee BS, Kim JB, Jo YD, Choi HI, Kang SY, Chung GH, Jeong WJ, Ahn JW. The Mechanism of Starch Over-Accumulation in Chlamydomonas reinhardtii High-Starch Mutants Identified by Comparative Transcriptome Analysis. Front Microbiol 2017; 8:858. [PMID: 28588557 PMCID: PMC5440458 DOI: 10.3389/fmicb.2017.00858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The focus of this study was the mechanism of starch accumulation in Chlamydomonas reinhardtii high-starch mutants. Three C. reinhardtii mutants showing high-starch content were generated using gamma irradiation. When grown under nitrogen-deficient conditions, these mutants had more than twice as much starch than a wild-type control. The mechanism of starch over-accumulation in these mutants was studied with comparative transcriptome analysis. In all mutants, induction of phosphoglucomutase 1 (PGM1) expression was detected; PGM1 catalyzes the inter-conversion of glucose 1-phosphate and glucose 6-phosphate in both starch biosynthetic and glycolytic pathway. Interestingly, transcript levels of phosphoglucose isomerase 1 (PGI1), fructose 1,6-bisphosphate aldolase 1 and 2 (FBA1 and FBA2) were down-regulated in all mutants; PGI1, FBA1, and FBA2 act on downstream of glucose 6-phosphate conversion in glycolytic pathway. Therefore, down-regulations of PGI1, FBA1, and FBA2 may lead to accumulation of upstream metabolites, notably glucose 6-phosphate, resulting in induction of PGM1 expression through feed-forward regulation and that PGM1 overexpression caused starch over-accumulation in mutants. These results suggest that PGI1, FBA1, FBA2, and PGM1 correlate with each other in terms of coordinated transcriptional regulation and play central roles for starch over-accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- Kwang M Koo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea.,Department of Biological Sciences, Chonbuk National UniversityJeonju, South Korea
| | - Sera Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Beom S Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Yeong D Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Gook-H Chung
- Department of Biological Sciences, Chonbuk National UniversityJeonju, South Korea
| | - Won-Joong Jeong
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| |
Collapse
|
33
|
Ozasa K, Won J, Song S, Tamaki S, Ishikawa T, Maeda M. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis. PLoS One 2017; 12:e0172813. [PMID: 28234984 PMCID: PMC5325543 DOI: 10.1371/journal.pone.0172813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light.
Collapse
Affiliation(s)
| | - June Won
- Department of Mechanical Convergence Engineering, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Simon Song
- Department of Mechanical Convergence Engineering, Hanyang University, Seongdong-gu, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Shun Tamaki
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahiro Ishikawa
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Mizuo Maeda
- Bioengineering Lab, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
34
|
Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:231. [PMID: 29046718 PMCID: PMC5635583 DOI: 10.1186/s13068-017-0919-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/30/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic engineering of microalgae is necessary to produce economically feasible strains for biofuel production. Current efforts are focused on the manipulation of individual metabolic genes, but the outcomes are not sufficiently stable and/or efficient for large-scale production of biofuels and other materials. Transcription factors (TFs) are emerging as good alternatives for engineering of microalgae, not only to increase production of biomaterials but to enhance stress tolerance. Here, we investigated an AP2 type TF Wrinkled1 in Arabidopsis (AtWRI1) known as a key regulator of lipid biosynthesis in plants, and applied it to industrial microalgae, Nannochloropsis salina. RESULTS We expressed AtWRI1 TF heterologously in N. salina, named NsAtWRI1, in an effort to re-enact its key regulatory function of lipid accumulation. Stable integration AtWRI1 was confirmed by RESDA PCR, and its expression was confirmed by Western blotting using the FLAG tag. Characterizations of transformants revealed that the neutral and total lipid contents were greater in NsAtWRI1 transformants than in WT under both normal and stress conditions from day 8. Especially, total lipid contents were 36.5 and 44.7% higher in NsAtWRI1 2-3 than in WT under normal and osmotic stress condition, respectively. FAME contents of NsAtWRI1 2-3 were also increased compared to WT. As a result, FAME yield of NsAtWRI1 2-3 was increased to 768 mg/L/day, which was 64% higher than that of WT under the normal condition. We identified candidates of AtWRI1-regulated genes by searching for the presence of the AW-box in promoter regions, among which lipid metabolic genes were further analyzed by qRT-PCR. Overall, qRT-PCR results on day 1 indicated that AtWRI1 down-regulated TAGL and DAGK, and up-regulated PPDK, LPL, LPGAT1, and PDH, resulting in enhanced lipid production in NsAtWRI1 transformants from early growth phase. CONCLUSION AtWRI1 TF regulated several genes involved in lipid synthesis in N. salina, resulting in enhancement of neutral lipid and FAME production. These findings suggest that heterologous expression of AtWRI1 TF can be utilized for efficient biofuel production in industrial microalgae.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Kyung Kim
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Young Uk Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
35
|
Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:75. [PMID: 28344650 PMCID: PMC5364641 DOI: 10.1186/s13068-017-0753-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microalgae are highly efficient cellular factories that capture CO2 and are also alternative feedstock for biofuel production. Carbohydrates, proteins, and lipids are major biochemical components in microalgae. Carbohydrates or starch in microalgae are possible substrates in yeast fermentation for biofuel production. The carbon partitioning in microalgae could be regulated through environmental stresses, such as high concentration of CO2, high light intensity, and nitrogen starvation conditions. It is essential to obtain carbohydrate-rich microalgae via an optimal bioprocess strategy. RESULTS The carbohydrate accumulation in a CO2 tolerance strain, Chlorella sp. AE10, was investigated with a two-stage process. The CO2 concentration, light intensity, and initial nitrogen concentration were changed drastically in both stages. During the first stage, it was cultivated over 3 days under 1% CO2, a photon flux of 100 μmol m-2 s-1, and 1.5 g L-1 NaNO3. It was cultivated under 10% CO2, 1000 μmol m-2 s-1, and 0.375 g L-1 NaNO3 during the second stage. In addition, two operation modes were compared. At the beginning of the second stage of mode 2, cells were diluted to 0.1 g L-1 and there was no cell dilution in mode 1. The total carbohydrate productivity of mode 2 was increased about 42% compared with that of mode 1. The highest total carbohydrate content and the highest starch content of mode 2 were 77.6% (DW) and 60.3% (DW) at day 5, respectively. The starch productivity was 0.311 g L-1 day-1 and the total carbohydrate productivity was 0.421 g L-1 day-1 in 6 days. CONCLUSIONS In this study, a novel two-stage process was proposed for improving carbohydrate and starch accumulation in Chlorella sp. AE10. Despite cell dilution at the beginning of the second stage, environmental stress conditions of high concentration of CO2, high light intensity, and limited nitrogen concentration at the second stage were critical for carbohydrate and starch accumulation. Although the cells were diluted, the growths were not inhibited and the carbohydrate productivity was improved. These results were helpful to establish an integrated approach from CO2 capture to biofuel production by microalgae.
Collapse
Affiliation(s)
- Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049 China
- ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| | - Dengjin Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049 China
- ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| | - Lin Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
| | - Xuyang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
| | - Tong Wu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
| | - Liang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
- ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| | - Wei Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
- ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| | - Yuhan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China
- ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| |
Collapse
|
36
|
Roustan V, Bakhtiari S, Roustan PJ, Weckwerth W. Quantitative in vivo phosphoproteomics reveals reversible signaling processes during nitrogen starvation and recovery in the biofuel model organism Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:280. [PMID: 29209414 PMCID: PMC5704542 DOI: 10.1186/s13068-017-0949-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/01/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Nitrogen deprivation and replenishment induces massive changes at the physiological and molecular level in the green alga Chlamydomonas reinhardtii, including reversible starch and lipid accumulation. Stress signal perception and acclimation involves transient protein phosphorylation. This study aims to provide the first experimental phosphoprotein dataset for the adaptation of C. reinhardtii during nitrogen depletion and recovery growth phases and its impact on lipid accumulation. RESULTS To decipher the signaling pathways involved in this dynamic process, we applied a label-free in vivo shotgun phosphoproteomics analysis on nitrogen-depleted and recovered samples. 1227 phosphopeptides belonging to 732 phosphoproteins were identified and quantified. 470 phosphopeptides showed a significant change across the experimental set-up. Multivariate statistics revealed the reversible phosphorylation process and the time/condition-dependent dynamic rearrangement of the phosphoproteome. Protein-protein interaction analysis of differentially regulated phosphoproteins identified protein kinases and phosphatases, such as DYRKP and an AtGRIK1 orthologue, called CDPKK2, as central players in the coordination of translational, photosynthetic, proteomic and metabolomic activity. Phosphorylation of RPS6, ATG13, and NNK1 proteins points toward a specific regulation of the TOR pathway under nitrogen deprivation. Differential phosphorylation pattern of several eukaryotic initiation factor proteins (EIF) suggests a major control on protein translation and turnover. CONCLUSION This work provides the first phosphoproteomics dataset obtained for Chlamydomonas responses to nitrogen availability, revealing multifactorial signaling pathways and their regulatory function for biofuel production. The reproducibility of the experimental set-up allows direct comparison with proteomics and metabolomics datasets and refines therefore the current model of Chlamydomonas acclimation to various nitrogen levels. Integration of physiological, proteomics, metabolomics, and phosphoproteomics data reveals three phases of acclimation to N availability: (i) a rapid response triggering starch accumulation as well as energy metabolism while chloroplast structure is conserved followed by (ii) chloroplast degradation combined with cell autophagy and lipid accumulation and finally (iii) chloroplast regeneration and cell growth activation after nitrogen replenishment. Plastid development seems to be further interconnected with primary metabolism and energy stress signaling in order to coordinate cellular mechanism to nitrogen availability stress.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Shiva Bakhtiari
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Goold HD, Nguyen HM, Kong F, Beyly-Adriano A, Légeret B, Billon E, Cuiné S, Beisson F, Peltier G, Li-Beisson Y. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii. Sci Rep 2016; 6:25209. [PMID: 27141848 PMCID: PMC4855234 DOI: 10.1038/srep25209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023] Open
Abstract
Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France.,Faculty of Agriculture and the Environment, University of Sydney, Australia
| | - Hoa Mai Nguyen
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Fantao Kong
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Audrey Beyly-Adriano
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Bertrand Légeret
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Emmanuelle Billon
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Stéphan Cuiné
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Fred Beisson
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Gilles Peltier
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| | - Yonghua Li-Beisson
- CEA, BIAM, Lab Bioenerget Biotechnol Bacteries &Microalgues, Saint-Paul-lez-Durance, 13108, France.,CNRS, UMR 7265 Biol Veget &Microbiol Environ, Saint-Paul-lez-Durance, 13108, France.,Aix Marseille Université, BVME UMR7265, Marseille, 13284, France
| |
Collapse
|