1
|
Forsberg Z, Tuveng TR, Eijsink VGH. A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood. FEBS J 2025; 292:75-93. [PMID: 39190632 PMCID: PMC11705215 DOI: 10.1111/febs.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tina R. Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
2
|
Xin D, Xing M, Ran G, Blossom BM. The influence of photosynthetic pigment chlorophyllin in light-driven LPMO system on the hydrolytic action of cellulases. Int J Biol Macromol 2024; 281:136714. [PMID: 39427785 DOI: 10.1016/j.ijbiomac.2024.136714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
It has been demonstrated that LPMO reactions can be driven by light, using the photosynthetic pigment chlorophyllin to achieve efficient oxidative degradation of cellulose. However, the effect of chlorophyllin on cellulases remains unclear. This study discovered that chlorophyllin does not affect the hydrolytic activity of cellulases under dark conditions. However, under light exposure, chlorophyllin-derived reactive oxygen species (ROS) exhibit a strong inhibitory effect on cellulases. These ROS primarily inhibit the hydrolytic action of endoglucanase II (Cel5A) and cellobiohydrolase II (Cel6A), while the action of cellobiohydrolase I and β-glucosidase remains unaffected. Scavenger studies revealed that singlet oxygen (1O₂) is the key inhibitory ROS responsible for the inhibition of Cel5A and Cel6A. The removal of 1O₂ by sodium azide effectively mitigates this inhibition, increasing the conversion yield of cellulose to glucose by 25.9 % when using the light-driven LPMO system in conjunction with cellulases. This study provides new insights into the role of chlorophyllin-derived 1O₂ in hindering hydrolytic action of cellulases and demonstrates the successful mitigation of this inhibition by sodium azide, thereby enhancing the cooperative degradation of cellulose to glucose by the light-driven LPMO system and cellulases.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China
| | - Minyu Xing
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China.
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark; Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, 04544 East Boothbay, ME, USA
| |
Collapse
|
3
|
Shao X, Fang H, Li T, Yang L, Yang D, Pan L. Heterologous Expression and Biochemical Characterization of a Novel Lytic Polysaccharide Monooxygenase from Chitinilyticum aquatile CSC-1. Microorganisms 2024; 12:1381. [PMID: 39065150 PMCID: PMC11278713 DOI: 10.3390/microorganisms12071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of recalcitrant polysaccharides. There are limited reports on LPMOs capable of concurrently catalyzing the oxidative cleavage of both cellulose and chitin. In this study, we identified and cloned a novel LPMO from the newly isolated bacterium Chitinilyticum aquatile CSC-1, designated as CaLPMO10. When using 2, 6-dimethylphenol (2, 6-DMP) as the substrate, CaLPMO10 exhibited optimal activity at 50 °C and pH 8, demonstrating good temperature stability at 30 °C. Even after a 6 h incubation at pH 8 and 30 °C, CaLPMO10 retained approximately 83.03 ± 1.25% residual enzyme activity. Most metal ions were found to enhance the enzyme activity of CaLPMO10, with ascorbic acid identified as the optimal reducing agent. Mass spectrometry analysis indicated that CaLPMO10 displayed oxidative activity towards both chitin and cellulose, identifying it as a C1/C4-oxidized LPMO. CaLPMO10 shows promise as a key enzyme for the efficient utilization of biomass resources in future applications.
Collapse
Affiliation(s)
- Xuezhi Shao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.S.); (H.F.)
| | - Hongliang Fang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.S.); (H.F.)
| | - Tao Li
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China; (T.L.); (L.Y.)
| | - Liyan Yang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China; (T.L.); (L.Y.)
| | - Dengfeng Yang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China; (T.L.); (L.Y.)
| | - Lixia Pan
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China; (T.L.); (L.Y.)
| |
Collapse
|
4
|
Park HJ, Gwon SY, Lee J, Koo NK, Min K. Synergetic effect of lytic polysaccharide monooxygenase from Thermobifida fusca on saccharification of agrowastes. BIORESOURCE TECHNOLOGY 2023; 378:129015. [PMID: 37019417 DOI: 10.1016/j.biortech.2023.129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Saccharification is one of the most noteworthy processes in biomass-based biorefineries. In particular, the lytic polysaccharide monooxygenase has recently emerged as an oxidative cleavage-recalcitrant polysaccharide; however, there is insufficient information regarding its application to actual biomass. Accordingly, this study focused optimizing the recombinant expression level of a bacterial lytic polysaccharide monooxygenase from Thermobifida fusca (TfLPMO), which was characterized as a cellulolytic enzyme. Finally, the synergistic effect of the lytic polysaccharide monooxygenase and a commercial cellulase cocktail on the saccharification of agrowaste was investigated. TfLPMO functioned on various cellulosic and hemicellulosic substrates, and the combination of TfLPMO with cellulase exhibited a synergistic effect on the saccharification of agrowastes, resulting in a 19.2% and 14.1% increase in reducing sugars from rice straw and corncob, respectively. The results discussed herein can lead to an in-depth understanding of enzymatic saccharification and suggest viable options for valorizing agrowastes as renewable feedstocks in biorefineries.
Collapse
Affiliation(s)
- Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Seung Yeon Gwon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jeongmi Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Na Kyeong Koo
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Ma W, Fang X. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases. Int J Mol Sci 2023; 24:ijms24098300. [PMID: 37176008 PMCID: PMC10179388 DOI: 10.3390/ijms24098300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
AA9 lytic polysaccharide monooxygenases (LPMOs) are copper-dependent metalloenzymes that play a major role in cellulose degradation and plant infection. Understanding the AA9 LPMO mechanism would facilitate the improvement of plant pathogen control and the industrial application of LPMOs. Herein, via point mutation, we investigated the role of glycine 2 residue in cellulose degradation by Thermoascus aurantiacus AA9 LPMOs (TaAA9). A computational simulation showed that increasing the steric properties of this residue by replacing glycine with threonine or tyrosine altered the H-bonding network of the copper center and copper coordination geometry, decreased the surface charge of the catalytic center, weakened the TaAA9-substrate interaction, and enhanced TaAA9-product binding. Compared with wild-type TaAA9, G2T-TaAA9 and G2Y-TaAA9 variants showed attenuated copper affinity, reduced oxidative product diversity and decreased substrate Avicel binding, as determined using ITC, MALDI-TOF/TOF MS and cellulose binding analyses, respectively. Consistently, the enzymatic activity and synergy with cellulase of the G2T-TaAA9 and G2Y-TaAA9 variants were lower than those of TaAA9. Hence, the investigated residue crucially affects the catalytic activity of AA9 LPMOs, and we propose that the electropositivity of copper may correlate with AA9 LPMO activity. Thus, the relationship among the amino acid at position 2, surface charge and catalytic activity may facilitate an understanding of the proteins in AA9 LPMOs.
Collapse
Affiliation(s)
- Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
6
|
Sun XB, Gao DY, Cao JW, Liu Y, Rong ZT, Wang JK, Wang Q. BsLPMO10A from Bacillus subtilis boosts the depolymerization of diverse polysaccharides linked via β-1,4-glycosidic bonds. Int J Biol Macromol 2023; 230:123133. [PMID: 36621733 DOI: 10.1016/j.ijbiomac.2023.123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is known as an oxidatively cleaving enzyme in recalcitrant polysaccharide deconstruction. Herein, we report a novel AA10 LPMO derived from Bacillus subtilis (BsLPMO10A). A substrate specificity study revealed that the enzyme exhibited an extensive active-substrate spectrum, particularly for polysaccharides linked via β-1,4 glycosidic bonds, such as β-(Man1 → 4Man), β-(Glc1 → 4Glc) and β-(Xyl1 → 4Xyl). HPAEC-PAD and MALDI-TOF-MS analyses indicated that BsLPMO10A dominantly liberated native oligosaccharides with a degree of polymerization (DP) of 3-6 and C1-oxidized oligosaccharides ranging from DP3ox to DP6ox from mixed linkage glucans and beechwood xylan. Due to its synergistic action with a variety of glycoside hydrolases, including glucanase IDSGLUC5-38, xylanase TfXYN11-1, cellulase IDSGLUC5-11 and chitinase BtCHI18-1, BsLPMO10A dramatically accelerated glucan, xylan, cellulose and chitin saccharification. After co-reaction for 72 h, the reducing sugars in Icelandic moss lichenan, beechwood xylan, phosphoric acid swollen cellulose and chitin yielded 3176 ± 97, 7436 ± 165, 649 ± 44, and 2604 ± 130 μmol/L, which were 1.47-, 1.56-, 1.44- and 1.25-fold higher than those in the GHs alone groups, respectively (P < 0.001). In addition, the synergy of BsLPMO10A and GHs was further validated by the degradation of natural feedstuffs, the co-operation of BsLPMO10A and GHs released 3266 ± 182 and 1725 ± 107 μmol/L of reducing sugars from Oryza sativa L. and Arachis hypogaea L. straws, respectively, which were significantly higher than those produced by GHs alone (P < 0.001). Furthermore, BsLPMO10A also accelerated the liberation of reducing sugars from Celluclast® 1.5 L, a commercial cellulase cocktail, on filter paper, A. hypogaea L. and O. sativa L. straws by 49.58 % (P < 0.05), 72.19 % (P < 0.001) and 54.36 % (P < 0.05), respectively. This work has characterized BsLPMO10A with a broad active-substrate scope, providing a promising candidate for lignocellulosic biomass biorefinery.
Collapse
Affiliation(s)
- Xiao-Bao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - De-Ying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Wen Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou-Ting Rong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
8
|
On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Essays Biochem 2022; 67:561-574. [PMID: 36504118 PMCID: PMC10154629 DOI: 10.1042/ebc20220162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have revolutionized our understanding of how enzymes degrade insoluble polysaccharides. Compared with the substantial knowledge developed on the structure and mode of action of the catalytic LPMO domains, the (multi)modularity of LPMOs has received less attention. The presence of other domains, in particular carbohydrate-binding modules (CBMs), tethered to LPMOs has profound implications for the catalytic performance of the full-length enzymes. In the last few years, studies on LPMO modularity have led to advancements in elucidating how CBMs, other domains, and linker regions influence LPMO structure and function. This mini review summarizes recent literature, with particular focus on comparative truncation studies, to provide an overview of the diversity in LPMO modularity and the functional implications of this diversity.
Collapse
|
9
|
Guo X, An Y, Liu F, Lu F, Wang B. Lytic polysaccharide monooxygenase - A new driving force for lignocellulosic biomass degradation. BIORESOURCE TECHNOLOGY 2022; 362:127803. [PMID: 35995343 DOI: 10.1016/j.biortech.2022.127803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can catalyze polysaccharides by oxidative cleavage of glycosidic bonds and have catalytic activity for cellulose, hemicellulose, chitin, starch and pectin, thus playing an important role in the biomass conversion of lignocellulose. The catalytic substrates of LPMOs are different and the specific catalytic mechanism has not been fully elucidated. Although there have been many studies related to LPMOs, few have actually been put into industrial biomass conversion, which poses a challenge for their expression, regulation and application. In this review, the origin, substrate specificity, structural features, and the relationship between structure and function of LPMOs are described. Additionally, the catalytic mechanism and electron donor of LPMOs and their heterologous expression and regulation are discussed. Finally, the synergistic degradation of biomass by LPMOs with other polysaccharide hydrolases is reviewed, and their current problems and future research directions are pointed out.
Collapse
Affiliation(s)
- Xiao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Yajing An
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
10
|
Moon M, Lee JP, Park GW, Lee JS, Park HJ, Min K. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 359:127501. [PMID: 35753567 DOI: 10.1016/j.biortech.2022.127501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Given that traditional biorefineries have been based on microbial fermentation to produce useful fuels, materials, and chemicals as metabolites, saccharification is an important step to obtain fermentable sugars from biomass. It is well-known that glycosidic hydrolases (GHs) are responsible for the saccharification of recalcitrant polysaccharides through hydrolysis, but the discovery of lytic polysaccharide monooxygenase (LPMO), which is a kind of oxidative enzyme involved in cleaving polysaccharides and boosting GH performance, has profoundly changed the understanding of enzyme-based saccharification. This review briefly introduces the classification, structural information, and catalytic mechanism of LPMOs. In addition to recombinant expression strategies, synergistic effects with GH are comprehensively discussed. Challenges and perspectives for LPMO-based saccharification on a large scale are also briefly mentioned. Ultimately, this review can provide insights for constructing an economically viable lignocellulose-based biorefinery system and a closed-carbon loop to cope with climate change.
Collapse
Affiliation(s)
- Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
11
|
Detomasi TC, Rico-Ramírez AM, Sayler RI, Gonçalves AP, Marletta MA, Glass NL. A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in Neurospora crassa allorecognition. eLife 2022; 11:e80459. [PMID: 36040303 PMCID: PMC9550227 DOI: 10.7554/elife.80459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organisms require the ability to differentiate themselves from organisms of different or even the same species. Allorecognition processes in filamentous fungi are essential to ensure identity of an interconnected syncytial colony to protect it from exploitation and disease. Neurospora crassa has three cell fusion checkpoints controlling formation of an interconnected mycelial network. The locus that controls the second checkpoint, which allows for cell wall dissolution and subsequent fusion between cells/hyphae, cwr (cell wall remodeling), encodes two linked genes, cwr-1 and cwr-2. Previously, it was shown that cwr-1 and cwr-2 show severe linkage disequilibrium with six different haplogroups present in N. crassa populations. Isolates from an identical cwr haplogroup show robust fusion, while somatic cell fusion between isolates of different haplogroups is significantly blocked in cell wall dissolution. The cwr-1 gene encodes a putative polysaccharide monooxygenase (PMO). Herein we confirm that CWR-1 is a C1-oxidizing chitin PMO. We show that the catalytic (PMO) domain of CWR-1 was sufficient for checkpoint function and cell fusion blockage; however, through analysis of active-site, histidine-brace mutants, the catalytic activity of CWR-1 was ruled out as a major factor for allorecognition. Swapping a portion of the PMO domain (V86 to T130) did not switch cwr haplogroup specificity, but rather cells containing this chimera exhibited a novel haplogroup specificity. Allorecognition to mediate cell fusion blockage is likely occurring through a protein-protein interaction between CWR-1 with CWR-2. These data highlight a moonlighting role in allorecognition of the CWR-1 PMO domain.
Collapse
Affiliation(s)
- Tyler C Detomasi
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Richard I Sayler
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
| | - A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Michael A Marletta
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
12
|
Duhsaki L, Mukherjee S, Rani TS, Madhuprakash J. Genome analysis of Streptomyces sp. UH6 revealed the presence of potential chitinolytic machinery crucial for chitosan production. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:431-442. [PMID: 34192819 DOI: 10.1111/1758-2229.12986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chitosan and its derivatives have numerous applications in wastewater treatment as bio-coagulants, flocculants and bio-adsorbents against both particulate and dissolved pollutants. Chitinolytic bacteria secrete an array of enzymes, which play crucial role in chitin to chitosan conversion. Consequently, there is a growing demand for identification and characterization of novel bacterial isolates with potential implications in chitosan production. We describe genomic features of the new isolate Streptomyces sp. UH6. Analysis of the 6.51 Mb genome revealed the GC content as 71.95% and presence of 6990 coding sequences of which 63% were functionally annotated. Further, we identified two possible chitin-utilization pathways, which employ secreted enzymes like lytic polysaccharide monooxygenases and family-18 glycoside hydrolases (GHs). More importantly, the genome has six family-4 polysaccharide deacetylases with probable role in chitin to chitosan conversion, as well as two chitosanases belonging to GH46 and GH75 families. In addition, the gene clusters, dasABC and ngcEFG coding for transporters, which mediate the uptake of N,N'-diacetylchitobiose and N-acetyl-d-glucosamine were identified. Several genes responsible for hydrolysis of other polysaccharides and fermentation of sugars were also identified. Taken together, the phylogenetic and genomic analyses suggest that the isolate Streptomyces sp. UH6 secretes potential chitin-active enzymes responsible for chitin to chitosan conversion.
Collapse
Affiliation(s)
- Lal Duhsaki
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | | | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Serra I, Piccinini D, Paradisi A, Ciano L, Bellei M, Bortolotti CA, Battistuzzi G, Sola M, Walton PH, Di Rocco G. Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida. Protein Sci 2022; 31:591-601. [PMID: 34897841 PMCID: PMC8862430 DOI: 10.1002/pro.4255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward β-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates.
Collapse
Affiliation(s)
- Ilenia Serra
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly,Present address:
BIMEF Laboratory, Department of ChemistryUniversity of AntwerpAntwerpBelgium
| | - Daniele Piccinini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alessandro Paradisi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly,Department of ChemistryUniversity of YorkYorkUK
| | - Luisa Ciano
- Department of Chemistry and GeologyUniversity of Modena and Reggio EmiliaModenaItaly,Present address:
School of ChemistryUniversity of NottinghamNottinghamUK
| | - Marzia Bellei
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | | | - Marco Sola
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Giulia Di Rocco
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
14
|
Inhibition of LPMOs by Fermented Persimmon Juice. Biomolecules 2021; 11:biom11121890. [PMID: 34944533 PMCID: PMC8699118 DOI: 10.3390/biom11121890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023] Open
Abstract
Fermented persimmon juice, Kakishibu, has traditionally been used for wood and paper protection. This protective effect stems at least partially from inhibition of microbial cellulose degrading enzymes. The inhibitory effect of Kakishibu on lytic polysaccharide monooxygenases (LPMOs) and on a cocktail of cellulose hydrolases was studied, using three different cellulosic substrates. Dose dependent inhibition of LPMO activity by a commercial Kakishibu product was assessed for the well-characterized LPMO from Thermoascus aurantiacus TaAA9A, and the inhibitory effect was confirmed on five additional microbial LPMOs. The model tannin compound, tannic acid exhibited a similar inhibitory effect on TaAA9A as Kakishibu. It was further shown that both polyethylene glycol and tannase can alleviate the inhibitory effect of Kakishibu and tannic acid, indicating a likely mechanism of inhibition caused by unspecific tannin-protein interactions.
Collapse
|
15
|
Tokin R, Frandsen KEH, Ipsen JØ, Lo Leggio L, Poojary MM, Berrin JG, Grisel S, Brander S, Jensen PE, Johansen KS. Inhibition of lytic polysaccharide monooxygenase by natural plant extracts. THE NEW PHYTOLOGIST 2021; 232:1337-1349. [PMID: 34389999 DOI: 10.1111/nph.17676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes of industrial and biological importance. In particular, LPMOs play important roles in fungal lifestyle. No inhibitors of LPMOs have yet been reported. In this study, a diverse library of 100 plant extracts was screened for LPMO activity-modulating effects. By employing protein crystallography and LC-MS, we successfully identified a natural LPMO inhibitor. Extract screening revealed a significant LPMO inhibition by methanolic extract of Cinnamomum cassia (cinnamon), which inhibited LsAA9A LPMO from Lentinus similis in a concentration-dependent manner. With a notable exception, other microbial LPMOs from families AA9 and AA10 were also inhibited by this cinnamon extract. The polyphenol cinnamtannin B1 was identified as the inhibitory component by crystallography. Cinnamtannin B1 was bound to the surface of LsAA9A at two distinct binding sites: one close to the active site and another at a pocket on the opposite side of the protein. Independent characterization of cinnamon extract by LC-MS and subsequent activity measurements confirmed that the compound inhibiting LsAA9A was cinnamtannin B1. The results of this study show that specific natural LPMO inhibitors of plant origin exist in nature, providing the opportunity for future exploitation of such compounds within various biotechnological contexts.
Collapse
Affiliation(s)
- Radina Tokin
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Kristian E H Frandsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
- Department of Chemistry, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Johan Ørskov Ipsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), Marseille, 13009, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), Marseille, 13009, France
| | - Søren Brander
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Katja Salomon Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark
| |
Collapse
|
16
|
Sun P, Valenzuela SV, Chunkrua P, Javier Pastor FI, Laurent CVF, Ludwig R, van Berkel WJH, Kabel MA. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:14124-14133. [PMID: 34722005 PMCID: PMC8549066 DOI: 10.1021/acssuschemeng.1c04100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are essential for enzymatic conversion of lignocellulose-rich biomass in the context of biofuels and platform chemicals production. Considerable insight into the mode of action of LPMOs has been obtained, but research on the cellulose specificity of these enzymes is still limited. Hence, we studied the product profiles of four fungal Auxiliary Activity family 9 (AA9) LPMOs during their oxidative cleavage of three types of cellulose: bacterial cellulose (BC), Avicel PH-101 (AVI), and regenerated amorphous cellulose (RAC). We observed that attachment of a carbohydrate-binding module 1 (CBM1) did not change the substrate specificity of LPMO9B from Myceliophthora thermophila C1 (MtLPMO9B) but stimulated the degradation of all three types of cellulose. A detailed quantification of oxidized ends in both soluble and insoluble fractions, as well as characterization of oxidized cello-oligosaccharide patterns, suggested that MtLPMO9B generates mainly oxidized cellobiose from BC, while producing oxidized cello-oligosaccharides from AVI and RAC ranged more randomly from DP2-8. Comparable product profiles, resulting from BC, AVI, and RAC oxidation, were found for three other AA9 LPMOs. These distinct cleavage profiles highlight cellulose specificity rather than an LPMO-dependent mechanism and may further reflect that the product profiles of AA9 LPMOs are modulated by different cellulose types.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Susana V. Valenzuela
- Department
of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Pimvisuth Chunkrua
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Francisco I. Javier Pastor
- Department
of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Christophe V. F.
P. Laurent
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, BOKU−University
of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
17
|
Hernández-Rollán C, Falkenberg KB, Rennig M, Bertelsen AB, Ipsen JØ, Brander S, Daley DO, Johansen KS, Nørholm MHH. LyGo: A Platform for Rapid Screening of Lytic Polysaccharide Monooxygenase Production. ACS Synth Biol 2021; 10:897-906. [PMID: 33797234 DOI: 10.1021/acssynbio.1c00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.
Collapse
Affiliation(s)
- Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kristoffer B. Falkenberg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Maja Rennig
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Mycropt ApS, Kongens Lyngby, 2800, Denmark
| | - Andreas B. Bertelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Johan Ø. Ipsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Søren Brander
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Daniel O. Daley
- Mycropt ApS, Kongens Lyngby, 2800, Denmark
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Mycropt ApS, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
18
|
Li J, Solhi L, Goddard-Borger ED, Mathieu Y, Wakarchuk WW, Withers SG, Brumer H. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:29. [PMID: 33485381 PMCID: PMC7828015 DOI: 10.1186/s13068-020-01860-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/13/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally changed our understanding of microbial lignocellulose degradation. Cellulomonas bacteria have a rich history of study due to their ability to degrade recalcitrant cellulose, yet little is known about the predicted LPMOs that they encode from Auxiliary Activity Family 10 (AA10). RESULTS Here, we present the comprehensive biochemical characterization of three AA10 LPMOs from Cellulomonas flavigena (CflaLPMO10A, CflaLPMO10B, and CflaLPMO10C) and one LPMO from Cellulomonas fimi (CfiLPMO10). We demonstrate that these four enzymes oxidize insoluble cellulose with C1 regioselectivity and show a preference for substrates with high surface area. In addition, CflaLPMO10B, CflaLPMO10C, and CfiLPMO10 exhibit limited capacity to perform mixed C1/C4 regioselective oxidative cleavage. Thermostability analysis indicates that these LPMOs can refold spontaneously following denaturation dependent on the presence of copper coordination. Scanning and transmission electron microscopy revealed substrate-specific surface and structural morphological changes following LPMO action on Avicel and phosphoric acid-swollen cellulose (PASC). Further, we demonstrate that the LPMOs encoded by Cellulomonas flavigena exhibit synergy in cellulose degradation, which is due in part to decreased autoinactivation. CONCLUSIONS Together, these results advance understanding of the cellulose utilization machinery of historically important Cellulomonas species beyond hydrolytic enzymes to include lytic cleavage. This work also contributes to the broader mapping of enzyme activity in Auxiliary Activity Family 10 and provides new biocatalysts for potential applications in biomass modification.
Collapse
Affiliation(s)
- James Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Laleh Solhi
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ethan D Goddard-Borger
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephen G Withers
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Department of Botany, University of British Columbia, 3200 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
19
|
Kont R, Bissaro B, Eijsink VGH, Väljamäe P. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Nat Commun 2020; 11:5786. [PMID: 33188177 PMCID: PMC7666214 DOI: 10.1038/s41467-020-19561-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, with kcat/KmH2O2 values in the order of 105-106 M-1 s-1. Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases.
Collapse
Affiliation(s)
- Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.,INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
20
|
Forsberg Z, Stepnov AA, Nærdal GK, Klinkenberg G, Eijsink VGH. Engineering lytic polysaccharide monooxygenases (LPMOs). Methods Enzymol 2020; 644:1-34. [PMID: 32943141 DOI: 10.1016/bs.mie.2020.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that catalyze the hydroxylation of glycosidic bonds found in the most abundant and recalcitrant polysaccharides on Earth. Since their discovery in 2010, these enzymes have received extensive attention in both fundamental and applied research due to their remarkable oxidative power and synergistic interplay with hydrolytic enzymes. The harsh and unnatural conditions used in industrial enzymatic saccharification processes and the sensitivity of LPMOs for damage induced by reactive oxygen species call for enzyme engineering to develop LPMOs to become robust industrial biocatalysts. Other engineering targets include improved catalytic activity, adjusted substrate specificity and the introduction of completely new activities. Reaching these targets not only requires appropriate methods for measuring enzyme activity, but also requires in-depth knowledge of the active site and the reaction mechanism, which is yet to be achieved in the LPMO field. Here we describe what has been done in the LPMO engineering field so far. Furthermore, we address the difficulties involved in properly assessing LPMO functionality, which are due to common side reactions taking place in LPMO reactions and which complicate screening methods.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Guro Kruge Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
21
|
Shi Z, Han C, Zhang X, Tian L, Wang L. Novel Synergistic Mechanism for Lignocellulose Degradation by a Thermophilic Filamentous Fungus and a Thermophilic Actinobacterium Based on Functional Proteomics. Front Microbiol 2020; 11:539438. [PMID: 33042052 PMCID: PMC7518101 DOI: 10.3389/fmicb.2020.539438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Effective artificial microbial consortia containing microorganisms with desired biological functions have the potential to optimize the lignocellulose-based bioindustry. Thermobifida fusca was a dominant actinobacterium in high-temperature corn stalk composts, but it was unable to grow alone in corn stalk solid medium. Interestingly, T. fusca showed good growth and secreted enzymes when cocultured with Thermomyces lanuginosus. T. lanuginosus grew firstly during the initial stage, whereas T. fusca dominated the system subsequently during cocultivation. The secretome indicated that T. lanuginosus mainly degraded xylan by expressing a GH11 xylanase (g4601.t1, GenBank AAB94633.1; with relative secretion of 4.95 ± 0.65%). T. fusca was induced by xylan mainly to secrete a xylanase from GH11 family (W8GGR4, GenBank AHK22788.1; with relative secretion of 8.71 ± 3.83%) which could rapidly degrade xylan to xylo-oligosaccharide (XOS) and xylose within 2 min, while high concentrations (>0.5%, w/v) of XOS or xylose suppressed the growth of T. fusca; which may be the reason why T. fusca unable to grow alone in corn stalk solid medium. However, T. lanuginosus could utilize the XOS and xylose produced by xylanases secreted by T. fusca. During the synergistic degradation of lignocellulose by T. lanuginosus and T. fusca, xylan was rapidly consumed by T. lanuginosus, the residual cellulose could specifically induced T. fusca to express a GH10 xylanase with a CBM2 domain (Q47KR6, GenBank AAZ56956.1; with relative secretion of 5.03 ± 1.33%) and 6 cellulases (2 exocellulases and 4 endocellulases). Moreover, T. lanuginosus increased the secretion of cellulases from T. fusca by 19-25%. The order of T. lanuginosus and T. fusca was consistent with the multilayered structures of lignocellulose and could be regulated by different concentrations of XOS and xylose. The novel synergism of T. lanuginosus and T. fusca gave a new sight for revealing more synergetic relationships in natural environments and exploring efficient microbial inoculants and enzyme cocktails for lignocellulose degradation.
Collapse
Affiliation(s)
- Zelu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chao Han
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiujun Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Li Tian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
22
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
23
|
Srivastava S, Dafale NA, Purohit HJ. Functional genomics assessment of lytic polysaccharide mono-oxygenase with glycoside hydrolases in Paenibacillus dendritiformis CRN18. Int J Biol Macromol 2020; 164:3729-3738. [PMID: 32835796 DOI: 10.1016/j.ijbiomac.2020.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022]
Abstract
Recently discovered Lytic Polysaccharide Mono-Oxygenase (LPMO) enhances the enzymatic deconstruction of complex polysaccharide by oxidation. The present study demonstrates the agricultural waste hydrolyzing capabilities of Paenibacillus dendritiformis CRN18, which exhibits the enzyme activity of exo-glucanase, β-glucosidase, β-glucuronidase, endo-1, 4 β-xylanases, arabinosidase, and α-galactosidase as 0.1U/ml, 0.3U/ml, 0.09U/ml, 0.1U/ml, 0.05U/ml, and 0.41U/ml, respectively. The genome analysis of strain reveals the presence of four LPMO genes, along with lignocellulolytic genes. The gene structure of LPMO and its phylogenetic analysis shows the evolutionary relatedness with the Bacillus LPMO gene. Gene position of LPMOs in the genome of strains shows the close association of two LPMOs with chitin active enzyme GH18, and the other two are associated with hemicellulases (GH39, GH23). Protein-protein interaction and gene networking of LPMO sheds light on the co-occurrence, neighborhood, and interaction of LPMOs with chitinase and xylanase enzymes. Structural prediction of LPMOs unravels the information of the LPMO's binding site. Although the LPMO has been explored for its oxidative mechanism, a little light has been shed on its gene structure. This study provides insights into the LPMO gene structure in P. dendritiformis CRN18 and its potential in lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India; AcSIR-Academy for Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India; AcSIR-Academy for Scientific and Innovative Research, Ghaziabad 201 002, India.
| | - Hemant J Purohit
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| |
Collapse
|
24
|
Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0300-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractRenewable biomass such as cellulose and chitin are the most abundant sustainable sources of energy and materials. However, due to the low degradation efficiency of these recalcitrant substrates by conventional hydrolases, these biomass resources cannot be utilized efficiently. In 2010, the discovery of lytic polysaccharide monooxygenases (LPMOs) led to a major breakthrough. Currently, LPMOs are distributed in 7 families in CAZy database, including AA9–11 and AA13–16, with different species origins, substrate specificity and oxidative regioselectivity. Effective application of LPMOs in the biotransformation of biomass resources needs the elucidation of the molecular basis of their function. Since the discovery of LPMOs, great advances have been made in the study of their substrate specificity and regioselectivity, as well as their structural basis, which will be reviewed below.
Collapse
|
25
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
26
|
Zhou X, Qi X, Huang H, Zhu H. Sequence and Structural Analysis of AA9 and AA10 LPMOs: An Insight into the Basis of Substrate Specificity and Regioselectivity. Int J Mol Sci 2019; 20:ijms20184594. [PMID: 31533304 PMCID: PMC6771041 DOI: 10.3390/ijms20184594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are key enzymes in both the natural carbon cycle and the biorefinery industry. Understanding the molecular basis of LPMOs acting on polysaccharide substrates is helpful for improving industrial cellulase cocktails. Here we analyzed the sequences, structures, and substrate binding modes of LPMOs to uncover the factors that influence substrate specificity and regioselectivity. Our results showed that the different compositions of a motif located on L2 affect the electrostatic potentials of substrate binding surfaces, which in turn affect substrate specificities of AA10 LPMOs. A conserved Asn at a distance of 7 Å from the active center Cu might, together with the conserved Ser immediately before the second catalytic His, determine the localization of LPMOs on substrate, and thus contribute to C4-oxidizing regioselectivity. The findings in this work provide an insight into the molecular basis of substrate specificity and regioselectivity of LPMOs.
Collapse
Affiliation(s)
- Xiaoli Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiaohua Qi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Hongxia Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
27
|
Vu VV, Hangasky JA, Detomasi TC, Henry SJW, Ngo ST, Span EA, Marletta MA. Substrate selectivity in starch polysaccharide monooxygenases. J Biol Chem 2019; 294:12157-12166. [PMID: 31235519 DOI: 10.1074/jbc.ra119.009509] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/21/2019] [Indexed: 11/06/2022] Open
Abstract
Degradation of polysaccharides is central to numerous biological and industrial processes. Starch-active polysaccharide monooxygenases (AA13 PMOs) oxidatively degrade starch and can potentially be used with industrial amylases to convert starch into a fermentable carbohydrate. The oxidative activities of the starch-active PMOs from the fungi Neurospora crassa and Myceliophthora thermophila, NcAA13 and MtAA13, respectively, on three different starch substrates are reported here. Using high-performance anion-exchange chromatography coupled with pulsed amperometry detection, we observed that both enzymes have significantly higher oxidative activity on amylose than on amylopectin and cornstarch. Analysis of the product distribution revealed that NcAA13 and MtAA13 more frequently oxidize glycosidic linkages separated by multiples of a helical turn consisting of six glucose units on the same amylose helix. Docking studies identified important residues that are involved in amylose binding and suggest that the shallow groove that spans the active-site surface of AA13 PMOs favors the binding of helical amylose substrates over nonhelical substrates. Truncations of NcAA13 that removed its native carbohydrate-binding module resulted in diminished binding to amylose, but truncated NcAA13 still favored amylose oxidation over other starch substrates. These findings establish that AA13 PMOs preferentially bind and oxidize the helical starch substrate amylose. Moreover, the product distributions of these two enzymes suggest a unique interaction with starch substrates.
Collapse
Affiliation(s)
- Van V Vu
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam.
| | - John A Hangasky
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - Tyler C Detomasi
- Department of Chemistry, University of California, Berkeley, California 94720
| | - Skylar J W Henry
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Elise A Span
- Biophysics Graduate Group, University of California, Berkeley, California 94720
| | - Michael A Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720; Department of Chemistry, University of California, Berkeley, California 94720; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
28
|
Corrêa TLR, Júnior AT, Wolf LD, Buckeridge MS, dos Santos LV, Murakami MT. An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:117. [PMID: 31168322 PMCID: PMC6509861 DOI: 10.1186/s13068-019-1449-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/22/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction. They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones. RESULTS The enzyme KpLPMO10A from the actinomycete Kitasatospora papulosa was cloned and overexpressed in Escherichia coli cells in the functional form with native N-terminal. The enzyme can release oxidized species from chitin (C1-type oxidation) and cellulose (C1/C4-type oxidation) similarly to other AA10 members from clade II (subclade A). Interestingly, KpLPMO10A also cleaves isolated xylan (not complexed with cellulose, C4-type oxidation), a rare activity among LPMOs not described yet for the AA10 family. The synergistic effect of KpLPMO10A with Celluclast® and an endo-β-1,4-xylanase also supports this finding. The crystallographic elucidation of KpLPMO10A at 1.6 Å resolution along with extensive structural analyses did not indicate any evident difference with other characterized AA10 LPMOs at the catalytic interface, tempting us to suggest that these enzymes might also be active on xylan or that the ability to attack both crystalline and non-crystalline substrates involves yet obscure mechanisms of substrate recognition and binding. CONCLUSIONS This work expands the spectrum of substrates recognized by AA10 family, opening a new perspective for the understanding of the synergistic effect of these enzymes with canonical glycoside hydrolases to deconstruct ligno(hemi)cellulosic biomass.
Collapse
Affiliation(s)
- Thamy Lívia Ribeiro Corrêa
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Atílio Tomazini Júnior
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Lúcia Daniela Wolf
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | | | - Leandro Vieira dos Santos
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Mario Tyago Murakami
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| |
Collapse
|
29
|
Hangasky JA, Detomasi TC, Marletta MA. Glycosidic Bond Hydroxylation by Polysaccharide Monooxygenases. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Russo DA, Zedler JAZ, Wittmann DN, Möllers B, Singh RK, Batth TS, van Oort B, Olsen JV, Bjerrum MJ, Jensen PE. Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:74. [PMID: 30976324 PMCID: PMC6442416 DOI: 10.1186/s13068-019-1416-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cyanobacteria have the potential to become next-generation cell factories due to their ability to use CO2, light and inorganic nutrients to produce a range of biomolecules of commercial interest. Synechococcus elongatus UTEX 2973, in particular, is a fast-growing, genetically tractable, cyanobacterium that has garnered attention as a potential biotechnological chassis. To establish this unique strain as a host for heterologous protein production, we aimed to demonstrate expression and secretion of the industrially relevant TfAA10A, a lytic polysaccharide monooxygenase from the Gram-positive bacterium Thermobifida fusca. RESULTS Two variations of TfAA10A were successfully expressed in S. elongatus UTEX 2973: One containing the native N-terminal, Sec-targeted, signal peptide and a second with a Tat-targeted signal peptide from the Escherichia coli trimethylamine-N-oxide reductase (TorA). Although the TorA signal peptide correctly targeted the protein to the plasma membrane, the majority of the TorA-TfAA10A was found unprocessed in the plasma membrane with a small fraction of the mature protein ultimately translocated to the periplasm. The native Sec signal peptide allowed for efficient secretion of TfAA10A into the medium with virtually no protein being found in the cytosol, plasma membrane or periplasm. TfAA10A was demonstrated to be correctly cleaved and active on the model substrate phosphoric acid swollen cellulose. Additionally, expression and secretion only had a minor impact on cell growth. The secretion yield was estimated at 779 ± 40 µg L-1 based on densitometric analysis. To our knowledge, this is the highest secretion yield ever registered in cyanobacteria. CONCLUSIONS We have shown for the first time high-titer expression and secretion of an industrially relevant and catalytically active enzyme in S. elongatus UTEX 2973. This proof-of-concept study will be valuable for the development of novel and sustainable applications in the fields of bioremediation and biocatalysis.
Collapse
Affiliation(s)
- D. A. Russo
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - J. A. Z. Zedler
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - D. N. Wittmann
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - B. Möllers
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - R. K. Singh
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - T. S. Batth
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B. van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. V. Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M. J. Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - P. E. Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
31
|
Courtade G, Aachmann FL. Chitin-Active Lytic Polysaccharide Monooxygenases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:115-129. [PMID: 31102244 DOI: 10.1007/978-981-13-7318-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the cleavage of 1,4-glycosidic bonds various plant cell wall polysaccharides and chitin. In contrast to glycoside hydrolases, LPMOs are active on the crystalline regions of polysaccharides and thus synergize with hydrolytic enzymes. This synergism leads to an overall increase in the biomass-degradation activity of enzyme mixtures. Chitin-active LPMOs were discovered in 2010 and are currently classified in families AA10, AA11, and AA15 of the Carbohydrate-Active enZYmes database, which include LPMOs from bacteria, fungi, insects, and viruses. LPMOs have become important enzymes both industrially and scientifically and, in this chapter, we provide a brief introduction to chitin-active LPMOs including a summary of the 20+ chitin-active LPMOs that have been characterized so far. Then, we describe their structural features, catalytic mechanism, and appended carbohydrate modules. Finally, we show how chitin-active LPMOs can be used to perform chemo-enzymatic modification of chitin substrates.
Collapse
Affiliation(s)
- Gaston Courtade
- Department of Biotechnology and Food Science, NOBIPOL, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491, Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NOBIPOL, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491, Trondheim, Norway.
| |
Collapse
|
32
|
Zhang H, Dong S, Lou T, Wang S. Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208. J Basic Microbiol 2018; 59:267-276. [PMID: 30589093 DOI: 10.1002/jobm.201800563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 11/10/2022]
Abstract
Marine Streptomyces sp. CC0208 isolated from the Bohai Bay showed high efficiency of cellulose degradation under optimized fermentation parameters. Also, as one of the bioinformatics-based approaches for the discovery of novel natural product and enzyme effectively, genome mining has been developed and applied widely. Herein, we reported the complete genome sequence of Streptomyces sp. CC0208.Whole-genome sequencing analysis revealed a genome size of 9,325,981 bp with a linear chromosome, GC content of 70.59% and 8487 protein-coding genes. Abundant genes have predicted functions in antibiotic metabolism and enzymes. A 20 enzymes closely associated with cellulose degradation were discovered. A total of 25 biosynthetic gene clusters (BGCs) of secondary metabolites were identified, including diverse classes of natural products. The availability of genome sequence of Streptomyces sp. CC0208 not only will assist in cracking the mechanism of cellulose degradation but also will provide the insights into the significant secondary metabolic potentials for the production of diverse compound classes based on rational strategies.
Collapse
Affiliation(s)
- Hongyu Zhang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shirui Dong
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tingting Lou
- Tianjin Entry and Exit Inspection and Quarantine Bureau, Tianjin, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
33
|
Kuusk S, Kont R, Kuusk P, Heering A, Sørlie M, Bissaro B, Eijsink VGH, Väljamäe P. Kinetic insights into the role of the reductant in H 2O 2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J Biol Chem 2018; 294:1516-1528. [PMID: 30514757 DOI: 10.1074/jbc.ra118.006196] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides in the presence of an external electron donor (reductant). In the classical O2-driven monooxygenase reaction, the reductant is needed in stoichiometric amounts. In a recently discovered, more efficient H2O2-driven reaction, the reductant would be needed only for the initial reduction (priming) of the LPMO to its catalytically active Cu(I) form. However, the influence of the reductant on reducing the LPMO or on H2O2 production in the reaction remains undefined. Here, we conducted a detailed kinetic characterization to investigate how the reductant affects H2O2-driven degradation of 14C-labeled chitin by a bacterial LPMO, SmLPMO10A (formerly CBP21). Sensitive detection of 14C-labeled products and careful experimental set-ups enabled discrimination between the effects of the reductant on LPMO priming and other effects, in particular enzyme-independent production of H2O2 through reactions with O2 When supplied with H2O2, SmLPMO10A catalyzed 18 oxidative cleavages per molecule of ascorbic acid, suggesting a "priming reduction" reaction. The dependence of initial rates of chitin degradation on reductant concentration followed hyperbolic saturation kinetics, and differences between the reductants were manifested in large variations in their half-saturating concentrations (K mR app). Theoretical analyses revealed that K mR app decreases with a decreasing rate of polysaccharide-independent LPMO reoxidation (by either O2 or H2O2). We conclude that the efficiency of LPMO priming depends on the relative contributions of reductant reactivity, on the LPMO's polysaccharide monooxygenase/peroxygenase and reductant oxidase/peroxidase activities, and on reaction conditions, such as O2, H2O2, and polysaccharide concentrations.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Piret Kuusk
- Institute of Molecular and Physics, University of Tartu, 51010 Tartu, Estonia
| | - Agnes Heering
- Institute of Molecular and Chemistry, University of Tartu, 51010 Tartu, Estonia
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
34
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
35
|
Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 2018; 46:1431-1447. [DOI: 10.1042/bst20170549] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.
Collapse
|
36
|
Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z. Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus. FEBS Lett 2018; 592:2562-2571. [PMID: 29993123 DOI: 10.1002/1873-3468.13189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) contribute to enzymatic conversion of recalcitrant polysaccharides such as chitin and cellulose and may also play a role in bacterial infections. Some LPMOs are multimodular, the implications of which remain only partly understood. We have studied the properties of a tetra-modular LPMO from the food poisoning bacterium Bacillus cereus (named BcLPMO10A). We show that BcLPMO10A, comprising an LPMO domain, two fibronectin-type III (FnIII)-like domains, and a carbohydrate-binding module (CBM5), is a powerful chitin-active LPMO. While the role of the FnIII domains remains unclear, we show that enzyme functionality strongly depends on the CBM5, which, by promoting substrate binding, protects the enzyme from inactivation. BcLPMO10A enhances the activity of chitinases during the degradation of α-chitin.
Collapse
Affiliation(s)
- Zeeshan Mutahir
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Faiza Abbas
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|