1
|
Mandal A, Ahmed J, Singh S, Goyal A. Structure elucidation of a multi-modular recombinant endoglucanase, AtGH9C-CBM3A-CBM3B from Acetivibrio thermocellus ATCC 27405 and its substrate binding analysis. Int J Biol Macromol 2024; 273:133212. [PMID: 38897502 DOI: 10.1016/j.ijbiomac.2024.133212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Cellulases from GH9 family show endo-, exo- or processive endocellulase activity, but the reason behind the variation is unclear. A GH9 recombinant endoglucanase, AtGH9C-CBM3A-CBM3B from Acetivibrio thermocellus was structurally characterized for conformation, binding and dynamics assessment. Modeled AtGH9C-CBM3A-CBM3B depicted (α/α)6-barrel structure with Asp98, Asp101 and Glu489 acting as catalytic triad. CD results revealed 25.2 % α-helix, 18.4 % β-sheet and rest 56.4 % of random coils, corroborating with predictions from PSIPRED and SOPMA. MD simulation of AtGH9C-CBM3A-CBM3B bound cellotetraose showed structural stability and global compactness with lowered RMSD values (1.5 nm) as compared with only AtGH9C-CBM3A-CBM3B (1.8 nm) for 200 ns. Higher fluctuation in RMSF values in far-positioned CBM3B pointed to its redundancy in substrate binding. Docking studies showed maximum binding with cellotetraose (ΔG = -5.05 kcal/mol), with reduced affinity towards ligands with degree of polymerization (DP) lower (DP < 4) or higher than 4 (DP > 4). Processivity index displayed the enzyme to be processive with loop 3 (342-379 aa) possibly blocking the non-reducing end of cellulose chain, resulting in cellotetraose release. SAXS analysis of AtGH9C-CBM3A-CBM3B at 5 mg/mL displayed monodispersed state with fist-and-elbow shape in solution. Negative zeta potential of -24 mV at 5 mg/mL indicated stability and free from aggregation.
Collapse
Affiliation(s)
- Ardhendu Mandal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jebin Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shweta Singh
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India; Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
2
|
Iglesias Rando MR, Gorojovsky N, Zylberman V, Goldbaum FA, Craig PO. Improvement of Cellulomonas fimi endoglucanase CenA by multienzymatic display on a decameric structural scaffold. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12581-6. [PMID: 37212884 DOI: 10.1007/s00253-023-12581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
The development of multifunctional particles using polymeric scaffolds is an emerging technology for many nanobiotechnological applications. Here we present a system for the production of multifunctional complexes, based on the high affinity non-covalent interaction of cohesin and dockerin modules complementary fused to decameric Brucella abortus lumazine synthase (BLS) subunits, and selected target proteins, respectively. The cohesin-BLS scaffold was solubly expressed in high yield in Escherichia coli, and revealed a high thermostability. The production of multienzymatic particles using this system was evaluated using the catalytic domain of Cellulomonas fimi endoglucanase CenA recombinantly fused to a dockerin module. Coupling of the enzyme to the scaffold was highly efficient and occurred with the expected stoichiometry. The decavalent enzymatic complexes obtained showed higher cellulolytic activity and association to the substrate compared to equivalent amounts of the free enzyme. This phenomenon was dependent on the multiplicity and proximity of the enzymes coupled to the scaffold, and was attributed to an avidity effect in the polyvalent enzyme interaction with the substrate. Our results highlight the usefulness of the scaffold presented in this work for the development of multifunctional particles, and the improvement of lignocellulose degradation among other applications. KEY POINTS: • New system for multifunctional particle production using the BLS scaffold • Higher cellulolytic activity of polyvalent endoglucanase compared to the free enzyme • Amount of enzyme associated to cellulose is higher for the polyvalent endoglucanase.
Collapse
Affiliation(s)
- Matías R Iglesias Rando
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Natalia Gorojovsky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina
| | - Vanesa Zylberman
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Inmunova SA, Gral. San Martín, 25 de Mayo 1021 (CP 1650), Villa Lynch, Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435 (CP 1405), Buenos Aires, Argentina
- Centro de Rediseño e Ingeniería de Proteínas (CRIP), UNSAM Campus Miguelete, 25 de Mayo y Francia (CP 1650), Gral. San Martín, Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Intendente Güiraldes 2160 (CP 1428), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Kuch NJ, Kutschke ME, Parker A, Bingman CA, Fox BG. Contribution of calcium ligands in substrate binding and product release in the Acetovibrio thermocellus glycoside hydrolase family 9 cellulase CelR. J Biol Chem 2023; 299:104655. [PMID: 36990218 PMCID: PMC10149213 DOI: 10.1016/j.jbc.2023.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.
Collapse
Affiliation(s)
- Nathaniel J Kuch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark E Kutschke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Parker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Dane County Youth Apprenticeship Program, Dane County School Consortium, Monona, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Collaborative Crystallography Core, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Schroeder WL, Kuil T, van Maris AJA, Olson DG, Lynd LR, Maranas CD. A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis. Metab Eng 2023; 77:306-322. [PMID: 37085141 DOI: 10.1016/j.ymben.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PPi) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PPi sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PPi synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PPi-generating cycles. In all cases, the metabolic cost of PPi synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PPi could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PPi sources likely account for most PPi production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PPi levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel G Olson
- Center for Bioenergy Innovation, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Lee R Lynd
- Center for Bioenergy Innovation, Oak Ridge, TN, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
5
|
de Camargo BR, Steindorff AS, da Silva LA, de Oliveira AS, Hamann PRV, Noronha EF. Expression profiling of Clostridium thermocellum B8 during the deconstruction of sugarcane bagasse and straw. World J Microbiol Biotechnol 2023; 39:105. [PMID: 36840776 DOI: 10.1007/s11274-023-03546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
The gram-positive bacterium Clostridium thermocellum contains a set of carbohydrate-active enzymes that can potentially be employed to generate high-value-added products from lignocellulose. In this study, the gene expression profiling of C. thermocellum B8 was provided during growth in the presence of sugarcane bagasse and straw as a carbon source in comparison to growth using microcrystalline cellulose. A total of 625 and 509 genes were up-regulated for growth in the presence of bagasse and straw, respectively. These genes were mainly grouped into carbohydrate-active enzymes (CAZymes), cell motility, chemotaxis, quorum sensing pathway and expression control of glycoside hydrolases. These results show that type of carbon source modulates the gene expression profiling of carbohydrate-active enzymes. In addition, highlight the importance of cell motility, attachment to the substrate and communication in deconstructing complex substrates. This present work may contribute to the development of enzymatic cocktails and industrial strains for biorefineries based on sugarcane residues as feedstock.
Collapse
Affiliation(s)
- Brenda Rabello de Camargo
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil
| | | | - Leonardo Assis da Silva
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Athos Silva de Oliveira
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Pedro Ricardo Vieira Hamann
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense,400, Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
6
|
Re A, Mazzoli R. Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microb Biotechnol 2022; 16:238-261. [PMID: 36168663 PMCID: PMC9871528 DOI: 10.1111/1751-7915.14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTorinoItaly,Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
7
|
Lisov AV, Kiselev SS, Trubitsina LI, Belova OV, Andreeva-Kovalevskaya ZI, Trubitsin IV, Shushkova TV, Leontievsky AA. Multifunctional Enzyme with Endoglucanase and Alginase/Glucuronan Lyase Activities from Bacterium Cellulophaga lytica. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:617-627. [PMID: 36154882 DOI: 10.1134/s0006297922070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of β-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas β-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-β-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.
Collapse
Affiliation(s)
- Alexander V Lisov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei S Kiselev
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Liubov I Trubitsina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oxana V Belova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Zhanna I Andreeva-Kovalevskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan V Trubitsin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Shushkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Leontievsky
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
8
|
Kim SR, Eckert CA, Mazzoli R. Editorial: Microorganisms for Consolidated 2nd Generation Biorefining. Front Microbiol 2022; 13:940610. [PMID: 35783433 PMCID: PMC9248810 DOI: 10.3389/fmicb.2022.940610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Soo Rin Kim
- School of Food Science and Biotechnology, Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, South Korea
| | - Carrie A. Eckert
- Synthetic Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Roberto Mazzoli
| |
Collapse
|
9
|
Yin W, Wang X, Liao Y, Ma L, Qiao J, Liu H, Song X, Liu Y. Encapsulating IM7-Displaying Yeast Cells in Calcium Alginate Beads for One-Step Protein Purification and Multienzyme Biocatalysis. Front Bioeng Biotechnol 2022; 10:849542. [PMID: 35372292 PMCID: PMC8969745 DOI: 10.3389/fbioe.2022.849542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
There are several commercial chromatographic systems for protein purification; however, development of cost-effective 3H-grade (high yield, high purity, and high activity) purification approaches is highly demanded. Here, we establish a methodology for encapsulating the IM7-displaying yeast cells in calcium alginate beads. Taking advantage of this biomaterial-based affinity chromatography, rapid and cost-effective purification of proteins with over 90% purity in a single step is achieved. Moreover, our system enables coating the multienzyme complex to produce reusable immobilized cells for efficient cascade biotransformation. Together, the present method has great application potentials not only in the laboratory but also in the industry for production of protein products as well as biocatalysis.
Collapse
Affiliation(s)
- Wenhao Yin
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ying Liao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Hubei, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- BravoVax Co., Ltd., Hubei, China
- *Correspondence: Jie Qiao, ; Xin Song, ; Hui Liu, ; Yi Liu,
| |
Collapse
|
10
|
Biswal AK, Hengge NN, Black IM, Atmodjo MA, Mohanty SS, Ryno D, Himmel ME, Azadi P, Bomble YJ, Mohnen D. Composition and yield of non-cellulosic and cellulosic sugars in soluble and particulate fractions during consolidated bioprocessing of poplar biomass by Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:23. [PMID: 35227303 PMCID: PMC8887089 DOI: 10.1186/s13068-022-02119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Terrestrial plant biomass is the primary renewable carbon feedstock for enabling transition to a sustainable bioeconomy. Consolidated bioprocessing (CBP) by the cellulolytic thermophile Clostridium thermocellum offers a single step microbial platform for production of biofuels and biochemicals via simultaneous solubilization of carbohydrates from lignocellulosic biomass and conversion to products. Here, solubilization of cell wall cellulosic, hemicellulosic, and pectic polysaccharides in the liquor and solid residues generated during CBP of poplar biomass by C. thermocellum was analyzed. RESULTS The total amount of biomass solubilized in the C. thermocellum DSM1313 fermentation platform was 5.8, 10.3, and 13.7% of milled non-pretreated poplar after 24, 48, and 120 h, respectively. These results demonstrate solubilization of 24% cellulose and 17% non-cellulosic sugars after 120 h, consistent with prior reports. The net solubilization of non-cellulosic sugars by C. thermocellum (after correcting for the uninoculated control fermentations) was 13 to 36% of arabinose (Ara), xylose (Xyl), galactose (Gal), mannose (Man), and glucose (Glc); and 15% and 3% of fucose and glucuronic acid, respectively. No rhamnose was solubilized and 71% of the galacturonic acid (GalA) was solubilized. These results indicate that C. thermocellum may be selective for the types and/or rate of solubilization of the non-cellulosic wall polymers. Xyl, Man, and Glc were found to accumulate in the fermentation liquor at levels greater than in uninoculated control fermentations, whereas Ara and Gal did not accumulate, suggesting that C. thermocellum solubilizes both hemicelluloses and pectins but utilizes them differently. After five days of fermentation, the relative amount of Rha in the solid residues increased 21% indicating that the Rha-containing polymer rhamnogalacturonan I (RG-I) was not effectively solubilized by C. thermocellum CBP, a result confirmed by immunoassays. Comparison of the sugars in the liquor versus solid residue showed that C. thermocellum solubilized hemicellulosic xylan and mannan, but did not fully utilize them, solubilized and appeared to utilize pectic homogalacturonan, and did not solubilize RG-I. CONCLUSIONS The significant relative increase in RG-I in poplar solid residues following CBP indicates that C. thermocellum did not solubilize RG-I. These results support the hypothesis that this pectic glycan may be one barrier for efficient solubilization of poplar by C. thermocellum.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Neal N. Hengge
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Ian M. Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Sushree S. Mohanty
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - David Ryno
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| |
Collapse
|
11
|
Ichikawa S, Ito D, Asaoka S, Abe R, Katsuo N, Ito T, Ito D, Karita S. The expression of alternative sigma-I7 factor induces the transcription of cellulosomal genes in the cellulolytic bacterium Clostridium thermocellum. Enzyme Microb Technol 2022; 156:110002. [DOI: 10.1016/j.enzmictec.2022.110002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
|
12
|
Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Metab Eng 2022; 69:286-301. [PMID: 34982997 DOI: 10.1016/j.ymben.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow. By (i) elucidating internal metabolic fluxes in wild-type C. thermocellum grown on cellobiose via 13C-metabolic flux analysis (13C-MFA), (ii) parameterizing a core kinetic model, and (iii) subsequently deploying an ensemble-docking workflow for discovering substrate-level regulations, this paper aims to reveal some of these factors and expand our knowledgebase governing C. thermocellum metabolism. Generated 13C labeling data were used with 13C-MFA to generate a wild-type flux distribution for the metabolic network. Notably, flux elucidation through MFA alluded to serine generation via the mercaptopyruvate pathway. Using the elucidated flux distributions in conjunction with batch fermentation process yield data for various mutant strains, we constructed a kinetic model of C. thermocellum core metabolism (i.e. k-ctherm138). Subsequently, we used the parameterized kinetic model to explore the effect of removing substrate-level regulations on ethanol yield and titer. Upon exploring all possible simultaneous (up to four) regulation removals we identified combinations that lead to many-fold model predicted improvement in ethanol titer. In addition, by coupling a systematic method for identifying putative competitive inhibitory mechanisms using K-FIT kinetic parameterization with the ensemble-docking workflow, we flagged 67 putative substrate-level inhibition mechanisms across central carbon metabolism supported by both kinetic formalism and docking analysis.
Collapse
|
13
|
Qi K, Chen C, Yan F, Feng Y, Bayer EA, Kosugi A, Cui Q, Liu YJ. Coordinated β-glucosidase activity with the cellulosome is effective for enhanced lignocellulose saccharification. BIORESOURCE TECHNOLOGY 2021; 337:125441. [PMID: 34182347 DOI: 10.1016/j.biortech.2021.125441] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Consolidated bio-saccharification (CBS) technology employs cellulosome-producing bacterial cells, rather than fungal cellulases, as biocatalysts for cost-effective production of lignocellulosic sugars. Extracellular β-glucosidase (BGL) expression in the whole-cell arsenal is indispensable, due to severe cellobiose inhibition of the cellulosome. However, high-level BGL expression in Clostridium thermocellum is challenging, and the optimal BGL production level for efficient cellulose saccharification is currently unknown. Herein, we obtained new CBS biocatalysts by transforming BGL-expressing plasmids into C. thermocellum, which produced abundant BGL proteins and hydrolyzed cellulose effectively. The optimal ratio of extracellular BGL-to-cellulosome activity was determined to be in a range of 5.5 to 21.6. Despite the critical impact of BGL, both excessive BGL expression and its assembly on the cellulosome via type I cohesin-dockerin interaction led to reduced cellulosomal activity, which further confirmed the importance of coordinated BGL expression with the cellulosome. This study will further promote industrial CBS application in lignocellulose conversion.
Collapse
Affiliation(s)
- Kuan Qi
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Engineering Laboratory for Single Cell Oil, Qingdao Engineering Laboratory for Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Engineering Laboratory for Single Cell Oil, Qingdao Engineering Laboratory for Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Yan
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Engineering Laboratory for Single Cell Oil, Qingdao Engineering Laboratory for Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Engineering Laboratory for Single Cell Oil, Qingdao Engineering Laboratory for Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel; Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Engineering Laboratory for Single Cell Oil, Qingdao Engineering Laboratory for Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Engineering Laboratory for Single Cell Oil, Qingdao Engineering Laboratory for Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Dalian National Laboratory for Clean Energy, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
14
|
Enhanced Activity by Genetic Complementarity: Heterologous Secretion of Clostridial Cellulases by Bacillus licheniformis and Bacillus velezensis. Molecules 2021; 26:molecules26185625. [PMID: 34577096 PMCID: PMC8468253 DOI: 10.3390/molecules26185625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
To adapt to various ecological niches, the members of genus Bacillus display a wide spectrum of glycoside hydrolases (GH) responsible for the hydrolysis of cellulose and lignocellulose. Being abundant and renewable, cellulose-containing plant biomass may be applied as a substrate in second-generation biotechnologies for the production of platform chemicals. The present study aims to enhance the natural cellulase activity of two promising 2,3-butanediol (2,3-BD) producers, Bacillus licheniformis 24 and B. velezensis 5RB, by cloning and heterologous expression of cel8A and cel48S genes of Acetivibrio thermocellus. In B. licheniformis, the endocellulase Cel8A (GH8) was cloned to supplement the action of CelA (GH9), while in B. velezensis, the cellobiohydrolase Cel48S (GH48) successfully complemented the activity of endo-cellulase EglS (GH5). The expression of the natural and heterologous cellulase genes in both hosts was demonstrated by reverse-transcription PCR. The secretion of clostridial cellulases was additionally enhanced by enzyme fusion to the subtilisin-like signal peptide, reaching a significant increase in the cellulase activity of the cell-free supernatants. The results presented are the first to reveal the possibility of genetic complementation for enhancement of cellulase activity in bacilli, thus opening the prospect for genetic improvement of strains with an important biotechnological application.
Collapse
|
15
|
Clostridium thermocellum as a Promising Source of Genetic Material for Designer Cellulosomes: An Overview. Catalysts 2021. [DOI: 10.3390/catal11080996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant biomass-based biofuels have gradually substituted for conventional energy sources thanks to their obvious advantages, such as renewability, huge quantity, wide availability, economic feasibility, and sustainability. However, to make use of the large amount of carbon sources stored in the plant cell wall, robust cellulolytic microorganisms are highly demanded to efficiently disintegrate the recalcitrant intertwined cellulose fibers to release fermentable sugars for microbial conversion. The Gram-positive, thermophilic, cellulolytic bacterium Clostridium thermocellum possesses a cellulolytic multienzyme complex termed the cellulosome, which has been widely considered to be nature’s finest cellulolytic machinery, fascinating scientists as an auspicious source of saccharolytic enzymes for biomass-based biofuel production. Owing to the supra-modular characteristics of the C. thermocellum cellulosome architecture, the cellulosomal components, including cohesin, dockerin, scaffoldin protein, and the plentiful cellulolytic and hemicellulolytic enzymes have been widely used for constructing artificial cellulosomes for basic studies and industrial applications. In addition, as the well-known microbial workhorses are naïve to biomass deconstruction, several research groups have sought to transform them from non-cellulolytic microbes into consolidated bioprocessing-enabling microbes. This review aims to update and discuss the current progress in these mentioned issues, point out their limitations, and suggest some future directions.
Collapse
|
16
|
Zhuang H, Lee PH, Wu Z, Jing H, Guan J, Tang X, Tan GYA, Leu SY. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 333:125148. [PMID: 33878497 DOI: 10.1016/j.biortech.2021.125148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.
Collapse
Affiliation(s)
- Huichuan Zhuang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Po-Heng Lee
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Zhuoying Wu
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Houde Jing
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaojing Tang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shao-Yuan Leu
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
17
|
Revisiting the Phenomenon of Cellulase Action: Not All Endo- and Exo-Cellulase Interactions Are Synergistic. Catalysts 2021. [DOI: 10.3390/catal11020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The conventional endo–exo synergism model has extensively been supported in literature, which is based on the perception that endoglucanases (EGs) expose or create accessible sites on the cellulose chain to facilitate the action of processive cellobiohydrolases (CBHs). However, there is a lack of information on why some bacterial and fungal CBHs and EGs do not exhibit synergism. Therefore, the present study evaluated and compared the synergistic relationships between cellulases from different microbial sources and provided insights into how different GH families govern synergism. The results showed that CmixA2 (a mixture of TlCel7A and CtCel5A) displayed the highest effect with BaCel5A (degree of synergy for reducing sugars and glucose of 1.47 and 1.41, respectively) in a protein mass ratio of 75–25%. No synergism was detected between CmixB1/B2 (as well as CmixC1/C2) and any of the EGs, and the combinations did not improve the overall cellulose hydrolysis. These findings further support the hypothesis that “not all endo-to exo-cellulase interactions are synergistic”, and that the extent of synergism is dependent on the composition of cellulase systems from various sources and their compatibility in the cellulase cocktail. This method of screening for maximal compatibility between exo- and endo-cellulases constitutes a critical step towards the design of improved synergistic cellulose-degrading cocktails for industrial-scale biomass degradation.
Collapse
|
18
|
Aymé L, Hébert A, Henrissat B, Lombard V, Franche N, Perret S, Jourdier E, Heiss-Blanquet S. Characterization of three bacterial glycoside hydrolase family 9 endoglucanases with different modular architectures isolated from a compost metagenome. Biochim Biophys Acta Gen Subj 2021; 1865:129848. [PMID: 33460770 DOI: 10.1016/j.bbagen.2021.129848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Environmental bacteria express a wide diversity of glycoside hydrolases (GH). Screening and characterization of GH from metagenomic sources provides an insight into biomass degradation strategies of non-cultivated prokaryotes. METHODS In the present report, we screened a compost metagenome for lignocellulolytic activities and identified six genes encoding enzymes belonging to family GH9 (GH9a-f). Three of these enzymes (GH9b, GH9d and GH9e) were successfully expressed and characterized. RESULTS A phylogenetic analysis of the catalytic domain of pro- and eukaryotic GH9 enzymes suggested the existence of two major subgroups. Bacterial GH9s displayed a wide variety of modular architectures and those harboring an N-terminal Ig-like domain, such as GH9b and GH9d, segregated from the remainder. We purified and characterized GH9 endoglucanases from both subgroups and examined their stabilities, substrate specificities and product profiles. GH9e exhibited an original hydrolysis pattern, liberating an elevated proportion of oligosaccharides longer than cellobiose. All of the enzymes exhibited processive behavior and a synergistic action on crystalline cellulose. Synergy was also evidenced between GH9d and a GH48 enzyme identified from the same metagenome. CONCLUSIONS The characterized GH9 enzymes displayed different modular architectures and distinct substrate and product profiles. The presence of a cellulose binding domain was shown to be necessary for binding and digestion of insoluble cellulosic substrates, but not for processivity. GENERAL SIGNIFICANCE The identification of six GH9 enzymes from a compost metagenome and the functional variety of three characterized members highlight the importance of this enzyme family in bacterial biomass deconstruction.
Collapse
Affiliation(s)
- Laure Aymé
- IFP Energies Nouvelles, 1 - 4 avenue du Bois-Préau, 92852 Rueil-Malmaison, France
| | - Agnès Hébert
- IFP Energies Nouvelles, 1 - 4 avenue du Bois-Préau, 92852 Rueil-Malmaison, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy, 13288 Aix Marseille Université, Marseille, France; INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), 163 avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy, 13288 Aix Marseille Université, Marseille, France; INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), 163 avenue de Luminy, 13288 Marseille, France
| | - Nathalie Franche
- Aix Marseille Université, CNRS, LCB, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Stéphanie Perret
- Aix Marseille Université, CNRS, LCB, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Etienne Jourdier
- IFP Energies Nouvelles, 1 - 4 avenue du Bois-Préau, 92852 Rueil-Malmaison, France
| | - Senta Heiss-Blanquet
- IFP Energies Nouvelles, 1 - 4 avenue du Bois-Préau, 92852 Rueil-Malmaison, France.
| |
Collapse
|
19
|
Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J, Tomazetto G, Huang L, Bunk B, Spröer C, Benndorf D, Zverlov V, Pühler A, Klocke M, Sczyrba A, Schlüter A. The Role of Petrimonas mucosa ING2-E5A T in Mesophilic Biogas Reactor Systems as Deduced from Multiomics Analyses. Microorganisms 2020; 8:E2024. [PMID: 33348776 PMCID: PMC7768429 DOI: 10.3390/microorganisms8122024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species.
Collapse
Affiliation(s)
- Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| | - Tom Tubbesing
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (T.T.); (L.H.); (A.S.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| | - Robert Heyer
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany; (R.H.); (D.B.)
- Database and Software Engineering Group, Department of Computer Science, Institute for Technical and Business Information Systems, Otto von Guericke University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Geizecler Tomazetto
- Biological and Chemical Engineering Section (BCE), Department of Engineering, Aarhus University, 8000 Aarhus, Denmark;
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (T.T.); (L.H.); (A.S.)
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (B.B.); (C.S.)
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (B.B.); (C.S.)
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätspl. 2, 39106 Magdeburg, Germany; (R.H.); (D.B.)
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
- Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06354 Köthen, Germany
| | - Vladimir Zverlov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany;
- Institute of Molecular Genetics, National Research Centre «Kurchatov Institute», Kurchatov Sq. 2, 123128 Moscow, Russia
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects Affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany;
| | - Alexander Sczyrba
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (T.T.); (L.H.); (A.S.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (I.M.); (D.W.); (J.H.); (A.P.)
| |
Collapse
|
20
|
Kumar K, Singh S, Sharma K, Goyal A. Computational modeling and small-angle X-ray scattering based structure analysis and identifying ligand cleavage mechanism by processive endocellulase of family 9 glycoside hydrolase (HtGH9) from Hungateiclostridium thermocellum ATCC 27405. J Mol Graph Model 2020; 103:107808. [PMID: 33248343 DOI: 10.1016/j.jmgm.2020.107808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
The cellulases of family 9 glycoside hydrolase with subtle difference in amino acid sequence have shown different types of catalytic activities such as endo-, exo- or processive endocellulase. However, the reason behind the different types of catalytic activities still unclear. In this study, the processive endocellulase, HtGH9 of family 9 GH from Hungateiclostridium thermocellum was modeled by homology modeling. The catalytic module (HtGH9t) of HtGH9 modeled structure displayed the (α/α)6 barrel topology and associated family 3 carbohydrate binding module (HtCBM3c) displayed β-sandwich fold. Ramachandran plot of HtGH9 modeled structure displayed all the amino acid residues in allowed region except Asn225 and Asp317. Secondary structure analysis of modeled HtGH9 showed the presence of 41.3% α-helices and 11.0% β-strands which was validated through circular dichroism analysis that showed the presence of 42.6% α-helices and 14.5% β-strands. Molecular Dynamic (MD) simulation of HtGH9 structure for 50 ns showed Root Mean Square Deviation (RMSD), 0.84 nm and radius of gyration (Rg) 3.1 nm. The Small-angle X-ray scattering of HtGH9 confirmed the monodisperse state. The radius of gyration for globular shape (Rg) was 5.50 ± 0.15 nm and for rod shape (Rc) by Guinier plot was 2.0 nm. The loop formed by amino acid residues, 264-276 towards one end of the catalytic site of HtGH9 forms a barrier, that blocks the non-reducing end of the cellulose chain causing the processive cleavage resulting in the release of cellotetraose. The position of the corresponding loop in cellulases of family 9 GH is responsible for different types of cleavage patterns.
Collapse
Affiliation(s)
- Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shubha Singh
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Laboratory of Small Molecules & Macro Molecular Crystallography, Department of Bioengineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
21
|
Dong C, Qiao J, Wang X, Sun W, Chen L, Li S, Wu K, Ma L, Liu Y. Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:108. [PMID: 32549912 PMCID: PMC7296672 DOI: 10.1186/s13068-020-01749-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUNDS Engineering yeast as a consolidated bioprocessing (CBP) microorganism by surface assembly of cellulosomes has been aggressively utilized for cellulosic ethanol production. However, most of the previous studies focused on Saccharomyces cerevisiae, achieving efficient conversion of phosphoric acid-swollen cellulose (PASC) or microcrystalline cellulose (Avicel) but not carboxymethyl cellulose (CMC) to ethanol, with an average titer below 2 g/L. RESULTS Harnessing an ultra-high-affinity IM7/CL7 protein pair, here we describe a method to engineer Pichia pastoris with minicellulosomes by in vitro assembly of three recombinant cellulases including an endoglucanase (EG), an exoglucanase (CBH) and a β-glucosidase (BGL), as well as a carbohydrate-binding module (CBM) on the cell surface. For the first time, the engineered yeasts enable efficient and direct conversion of CMC to bioethanol, observing an impressive ethanol titer of 5.1 g/L. CONCLUSIONS The research promotes the application of P. pastoris as a CBP cell factory in cellulosic ethanol production and provides a promising platform for screening the cellulases from different species to construct surface-assembly celluosome.
Collapse
Affiliation(s)
- Ce Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Jie Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Xinping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Wenli Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Lixia Chen
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Shuntang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Ke Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
- BravoVax Co., Ltd., Wuhan, 430000 Hubei China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
22
|
Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol Adv 2020; 40:107535. [DOI: 10.1016/j.biotechadv.2020.107535] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
|
23
|
Blumer-Schuette SE. Insights into Thermophilic Plant Biomass Hydrolysis from Caldicellulosiruptor Systems Biology. Microorganisms 2020; 8:E385. [PMID: 32164310 PMCID: PMC7142884 DOI: 10.3390/microorganisms8030385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
Plant polysaccharides continue to serve as a promising feedstock for bioproduct fermentation. However, the recalcitrant nature of plant biomass requires certain key enzymes, including cellobiohydrolases, for efficient solubilization of polysaccharides. Thermostable carbohydrate-active enzymes are sought for their stability and tolerance to other process parameters. Plant biomass degrading microbes found in biotopes like geothermally heated water sources, compost piles, and thermophilic digesters are a common source of thermostable enzymes. While traditional thermophilic enzyme discovery first focused on microbe isolation followed by functional characterization, metagenomic sequences are negating the initial need for species isolation. Here, we summarize the current state of knowledge about the extremely thermophilic genus Caldicellulosiruptor, including genomic and metagenomic analyses in addition to recent breakthroughs in enzymology and genetic manipulation of the genus. Ten years after completing the first Caldicellulosiruptor genome sequence, the tools required for systems biology of this non-model environmental microorganism are in place.
Collapse
|
24
|
Liu T, Yang L, Liu B, Tan L. Hydroxycinnamic acids release during bioconversion of corn stover and their effects on lignocellulolytic enzymes. BIORESOURCE TECHNOLOGY 2019; 294:122116. [PMID: 31520858 DOI: 10.1016/j.biortech.2019.122116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Hydroxycinnamic acids released during alkaline pretreatment of lignocellulose, especially p-coumaric acid (p-CA) and ferulic acid (FA), negatively affect the enzymatic hydrolysis and fermentation. However, the mechanism of this effect is not well understood. In this study, we investigated the releasing behavior and negative effect and examined the underlying mechanisms. The results demonstrated that the hydrogen peroxide concentration and biomass loading affected the release of p-CA and FA significantly during alkaline hydrogen peroxide (AHP) pretreatment of corn stover. p-CA and FA mainly inhibited the activity of endoglucanase, xylanase, and filter paper activity (FPA), while the amount of lignocellulolytic enzyme protein was not affected. Thus, they acted as inhibitors of enzyme activities. Molecular docking study indicated that p-CA and FA inhibited the lignocellulolytic enzyme activity and enzymatic hydrolysis efficiency mainly by forming non-covalent bonds to specific amino acids in the active sites of the lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Tongjun Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Yang
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Liu
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Liping Tan
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
25
|
Cheepudom J, Lin TL, Lee CC, Meng M. Characterization of a Novel Thermobifida fusca Bacteriophage P318. Viruses 2019; 11:E1042. [PMID: 31717440 PMCID: PMC6893835 DOI: 10.3390/v11111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3'-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.
Collapse
Affiliation(s)
| | | | | | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (J.C.); (T.-L.L.); (C.-C.L.)
| |
Collapse
|
26
|
Kumar K, Singal S, Goyal A. Role of carbohydrate binding module (CBM3c) of GH9 β-1,4 endoglucanase (Cel9W) from Hungateiclostridium thermocellum ATCC 27405 in catalysis. Carbohydr Res 2019; 484:107782. [DOI: 10.1016/j.carres.2019.107782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
|
27
|
Ichikawa S, Ogawa S, Nishida A, Kobayashi Y, Kurosawa T, Karita S. Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium Clostridium thermocellum. FEMS Microbiol Lett 2019; 366:5526221. [DOI: 10.1093/femsle/fnz145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
ABSTRACTMembrane vesicles released from bacteria contribute to cell–cell communication by carrying various cargos such as proteins, nucleic acids and signaling molecules. Cellulolytic bacteria have been isolated from many environments, yet the function of membrane vesicles for cellulolytic ability has been rarely described. Here, we show that a Gram-positive cellulolytic bacterium Clostridium thermocellum released membrane vesicles, each approximately 50–300 nm in diameter, into the broth. The observations with immunoelectron microscopy also revealed that cellulosomes, which are carbohydrate-active enzyme complexes that give C. thermocellum high cellulolytic activity, localized on the surface of the membrane vesicles. The membrane vesicles collected by ultracentrifugation maintained the cellulolytic activity. Supplementation with the biosurfactant surfactin or sonication treatment disrupted the membrane vesicles in the exoproteome of C. thermocellum and significantly decreased the degradation activity of the exoproteome for microcrystalline cellulose. However, these did not affect the degradation activity for soluble carboxymethyl cellulose. These results suggest a novel function of membrane vesicles: C. thermocellum releases cellulolytic enzymes on the surface of membrane vesicles to enhance the cellulolytic activity of C. thermocellum for crystalline cellulose.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Satoru Ogawa
- Faculty of Medicine, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Ayami Nishida
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Yuzuki Kobayashi
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Toshihito Kurosawa
- Advanced Science Research Promotion Center, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
| |
Collapse
|
28
|
Zhivin-Nissan O, Dassa B, Morag E, Kupervaser M, Levin Y, Bayer EA. Unraveling essential cellulosomal components of the ( Pseudo) Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:115. [PMID: 31086567 PMCID: PMC6507058 DOI: 10.1186/s13068-019-1447-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo)Bacteroides cellulosolvens is a cellulolytic bacterium that produces the most extensive and intricate cellulosomal system known in nature. Recently, the elaborate architecture of the B. cellulosolvens cellulosomal system was revealed from analysis of its genome sequence, and the first evidence regarding the interactions between its structural and enzymatic components were detected in vitro. Yet, the understanding of the cellulolytic potential of the bacterium in carbohydrate deconstruction is inextricably linked to its high-molecular-weight protein complexes, which are secreted from the bacterium. RESULTS The current proteome-wide work reveals patterns of protein expression of the various cellulosomal components, and explores the signature of differential expression upon growth of the bacterium on two major carbon sources-cellobiose and microcrystalline cellulose. Mass spectrometry analysis of the bacterial secretome revealed the expression of 24 scaffoldin structural units and 166 dockerin-bearing components (mainly enzymes), in addition to free enzymatic subunits. The dockerin-bearing components comprise cell-free and cell-bound cellulosomes for more efficient carbohydrate degradation. Various glycoside hydrolase (GH) family members were represented among 102 carbohydrate-degrading enzymes, including the omnipresent, most abundant GH48 exoglucanase. Specific cellulosomal components were found in different molecular-weight fractions associated with cell growth on different carbon sources. Overall, microcrystalline cellulose-derived cellulosomes showed markedly higher expression levels of the structural and enzymatic components, and exhibited the highest degradation activity on five different cellulosic and/or hemicellulosic carbohydrates. The cellulosomal activity of B. cellulosolvens showed high degradation rates that are very promising in biotechnological terms and were compatible with the activity levels exhibited by Clostridium thermocellum purified cellulosomes. CONCLUSIONS The current research demonstrates the involvement of key cellulosomal factors that participate in the mechanism of carbohydrate degradation by B. cellulosolvens. The powerful ability of the bacterium to exhibit different degradation strategies on various carbon sources was revealed. The novel reservoir of cellulolytic components of the cellulosomal degradation machineries may serve as a pool for designing new cellulolytic cocktails for biotechnological purposes.
Collapse
Affiliation(s)
- Olga Zhivin-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Liu S, Liu YJ, Feng Y, Li B, Cui Q. Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:35. [PMID: 30820245 PMCID: PMC6378752 DOI: 10.1186/s13068-019-1374-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The industrial conversion of biomass to high-value biofuels and biochemical is mainly restricted by lignocellulose solubilization. Consolidated bio-saccharification (CBS) is considered a promising process for lignocellulose solubilization depending on whole-cell biocatalysts that simultaneously perform effective cellulase production and hydrolysis. However, it usually takes a long time to reach a high saccharification level using the current CBS biocatalyst and process. RESULTS To promote the saccharification efficiency and reduce the cost, a Clostridium thermocellum recombinant strain ∆pyrF::KBm was constructed as a new CBS biocatalyst in this study. The key CBS factors, including the medium, inoculum size and cultivation, and substrate load, were investigated and optimized. The saccharification process was also stimulated by adding free hemicellulases, suggesting the need to further enhance hemicellulase activity of the whole-cell catalyst. Under the optimal conditions, the CBS process was shortened by 50% with pretreated wheat straw as the substrate. The sugar yield reached 0.795 g/g and the saccharification level was 89.3%. CONCLUSIONS This work provided a new biocatalyst and an optimized process of CBS and confirmed that CBS is a feasible strategy for cost-efficient solubilization of lignocellulose, which will greatly promote the industrial utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shiyue Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
30
|
Jeng WY, Liu CI, Lu TJ, Lin HJ, Wang NC, Wang AHJ. Crystal Structures of the C-Terminally Truncated Endoglucanase Cel9Q from Clostridium thermocellum Complexed with Cellodextrins and Tris. Chembiochem 2019; 20:295-307. [PMID: 30609216 DOI: 10.1002/cbic.201800789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/11/2022]
Abstract
Endoglucanase CtCel9Q is one of the enzyme components of the cellulosome, which is an active cellulase system in the thermophile Clostridium thermocellum. The precursor form of CtCel9Q comprises a signal peptide, a glycoside hydrolase family 9 catalytic domain, a type 3c carbohydrate-binding module (CBM), and a type I dockerin domain. Here, we report the crystal structures of C-terminally truncated CtCel9Q (CtCel9QΔc) complexed with Tris, Tris+cellobiose, cellobiose+cellotriose, cellotriose, and cellotetraose at resolutions of 1.50, 1.70, 2.05, 2.05 and 1.75 Å, respectively. CtCel9QΔc forms a V-shaped homodimer through residues Lys529-Glu542 on the type 3c CBM, which pairs two β-strands (β4 and β5 of the CBM). In addition, a disulfide bond was formed between the two Cys535 residues of the protein monomers in the asymmetric unit. The structures allow the identification of four minus (-) subsites and two plus (+) subsites; this is important for further understanding the structural basis of cellulose binding and hydrolysis. In the oligosaccharide-free and cellobiose-bound CtCel9QΔc structures, a Tris molecule was found to be bound to three catalytic residues of CtCel9Q and occupied subsite -1 of the CtCel9Q active-site cleft. Moreover, the enzyme activity assay in the presence of 100 mm Tris showed that the Tris almost completely suppressed CtCel9Q hydrolase activity.
Collapse
Affiliation(s)
- Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Te-Jung Lu
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, 89 Wenhua 1st Street, Tainan, 717, Taiwan
| | - Hong-Jie Lin
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
| | - Nai-Chen Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Sec 2, Taipei, 115, Taiwan
| |
Collapse
|
31
|
de Araújo EA, de Oliveira Neto M, Polikarpov I. Biochemical characterization and low-resolution SAXS structure of two-domain endoglucanase BlCel9 from Bacillus licheniformis. Appl Microbiol Biotechnol 2018; 103:1275-1287. [PMID: 30547217 DOI: 10.1007/s00253-018-9508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Lignocellulose feedstock constitutes the most abundant carbon source in the biosphere; however, its recalcitrance remains a challenge for microbial conversion into biofuel and bioproducts. Bacillus licheniformis is a microbial mesophilic bacterium capable of secreting a large number of glycoside hydrolase (GH) enzymes, including a glycoside hydrolase from GH family 9 (BlCel9). Here, we conducted biochemical and biophysical studies of recombinant BlCel9, and its low-resolution molecular shape was retrieved from small angle X-ray scattering (SAXS) data. BlCel9 is an endoglucanase exhibiting maximum catalytic efficiency at pH 7.0 and 60 °C. Furthermore, it retains 80% of catalytic activity within a broad range of pH values (5.5-8.5) and temperatures (up to 50 °C) for extended periods of time (over 48 h). It exhibits the highest hydrolytic activity against phosphoric acid swollen cellulose (PASC), followed by bacterial cellulose (BC), filter paper (FP), and to a lesser extent carboxymethylcellulose (CMC). The HPAEC-PAD analysis of the hydrolytic products demonstrated that the end product of the enzymatic hydrolysis is primarily cellobiose, and also small amounts of glucose, cellotriose, and cellotetraose are produced. SAXS data analysis revealed that the enzyme adopts a monomeric state in solution and has a molecular mass of 65.8 kDa as estimated from SAXS data. The BlCel9 has an elongated shape composed of an N-terminal family 3 carbohydrate-binding module (CBM3c) and a C-terminal GH9 catalytic domain joined together by 20 amino acid residue long linker peptides. The domains are closely juxtaposed in an extended conformation and form a relatively rigid structure in solution, indicating that the interactions between the CBM3c and GH9 catalytic domains might play a key role in cooperative cellulose biomass recognition and hydrolysis.
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil
| | - Mário de Oliveira Neto
- Departmento de Física e Biofísica, Universidade Estadual Paulista "Júlio de Mesquita Filho", R. Prof. Dr. Antonio Celso Wagner Zanin 689, Jardim Sao Jose, Botucatu, SP, 18618-970, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
32
|
Evaluation of promoter sequences for the secretory production of a Clostridium thermocellum cellulase in Paenibacillus polymyxa. Appl Microbiol Biotechnol 2018; 102:10147-10159. [PMID: 30259100 DOI: 10.1007/s00253-018-9369-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.
Collapse
|
33
|
Herlet J, Schwarz WH, Zverlov VV, Liebl W, Kornberger P. Addition of β-galactosidase boosts the xyloglucan degradation capability of endoglucanase Cel9D from Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:238. [PMID: 30202433 PMCID: PMC6122707 DOI: 10.1186/s13068-018-1242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Increasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock. Synergistic effects between the enzymes deployed in the hydrolysis of various hemicelluloses have been demonstrated, which can reduce process costs by lowering the amount of enzyme required for the reaction. Xyloglucan is the only major hemicellulose for which no such effects have been described yet. RESULTS We report the beneficial combination of two enzymes for the degradation of the hemicellulose xyloglucan. The addition of β-galactosidase Bga2B from Clostridium stercorarium to an in vitro hydrolysis reaction of a model xyloglucan substrate increased the enzymatic efficiency of endoglucanase Cel9D from Clostridium thermocellum to up to 22-fold. Furthermore, the total amount of enzyme required for high hydrolysis yields was lowered by nearly 80%. Increased yields were also observed when using a natural complex substrate-tamarind kernel powder. CONCLUSION The findings of this study may improve the valorization of feedstocks containing high-xyloglucan amounts. The combination of the endoglucanase Cel9D and the β-galactosidase Bga2B can be used to efficiently produce the heptasaccharide XXXG. The exploitation of one specific oligosaccharide may open up possibilities for the use as a prebiotic or platform chemical in additional reactions.
Collapse
Affiliation(s)
- Jonathan Herlet
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| | - Petra Kornberger
- Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
34
|
Leis B, Held C, Andreeßen B, Liebl W, Graubner S, Schulte LP, Schwarz WH, Zverlov VV. Optimizing the composition of a synthetic cellulosome complex for the hydrolysis of softwood pulp: identification of the enzymatic core functions and biochemical complex characterization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:220. [PMID: 30116297 PMCID: PMC6083626 DOI: 10.1186/s13068-018-1220-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/31/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND The development of efficient cellulase blends is a key factor for cost-effectively valorizing biomass in a new bio-economy. Today, the enzymatic hydrolysis of plant-derived polysaccharides is mainly accomplished with fungal cellulases, whereas potentially equally effective cellulose-degrading systems from bacteria have not been developed. Particularly, a thermostable multi-enzyme cellulase complex, the cellulosome from the anaerobic cellulolytic bacterium Clostridium thermocellum is promising of being applied as cellulolytic nano-machinery for the production of fermentable sugars from cellulosic biomass. RESULTS In this study, 60 cellulosomal components were recombinantly produced in E. coli and systematically permuted in synthetic complexes to study the function-activity relationship of all available enzymes on Kraft pulp from pine wood as the substrate. Starting from a basic exo/endoglucanase complex, we were able to identify additional functional classes such as mannanase and xylanase for optimal activity on the substrate. Based on these results, we predicted a synthetic cellulosome complex consisting of seven single components (including the scaffoldin protein and a β-glucosidase) and characterized it biochemically. We obtained a highly thermostable complex with optimal activity around 60-65 °C and an optimal pH in agreement with the optimum of the native cellulosome (pH 5.8). Remarkably, a fully synthetic complex containing 47 single cellulosomal components showed comparable activity with a commercially available fungal enzyme cocktail on the softwood pulp substrate. CONCLUSIONS Our results show that synthetic bacterial multi-enzyme complexes based on the cellulosome of C. thermocellum can be applied as a versatile platform for the quick adaptation and efficient degradation of a substrate of interest.
Collapse
Affiliation(s)
- Benedikt Leis
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Present Address: Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchester Str. 2, 35394 Gießen, Germany
| | - Claudia Held
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Björn Andreeßen
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sigrid Graubner
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Louis-Philipp Schulte
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, Technische Universität München, TUM School of Life Sciences Weihenstephan, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| |
Collapse
|
35
|
Schwarz WH, Brunecky R, Broeker J, Liebl W, Zverlov VV. Handling gene and protein names in the age of bioinformatics: the special challenge of secreted multimodular bacterial enzymes such as the cbhA/cbh9A gene of Clostridium thermocellum. World J Microbiol Biotechnol 2018; 34:42. [PMID: 29480332 DOI: 10.1007/s11274-018-2424-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 01/11/2023]
Abstract
An increasing number of researchers working in biology, biochemistry, biotechnology, bioengineering, bioinformatics and other related fields of science are using biological molecules. As the scientific background of the members of different scientific communities is more diverse than ever before, the number of scientists not familiar with the rules for non-ambiguous designation of genetic elements is increasing. However, with biological molecules gaining importance through biotechnology, their functional and unambiguous designation is vital. Unfortunately, naming genes and proteins is not an easy task. In addition, the traditional concepts of bioinformatics are challenged with the appearance of proteins comprising different modules with a respective function in each module. This article highlights basic rules and novel solutions in designation recently used within the community of bacterial geneticists, and we discuss the present-day handling of gene and protein designations. As an example we will utilize a recent mischaracterization of gene nomenclature. We make suggestions for better handling of names in future literature as well as in databases and annotation projects. Our methodology emphasizes the hydrolytic function of multi-modular genes and extracellular proteins from bacteria.
Collapse
Affiliation(s)
- Wolfgang H Schwarz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil‑Ramann‑Str. 4, 85354, Freising, Germany.
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Jannis Broeker
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil‑Ramann‑Str. 4, 85354, Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil‑Ramann‑Str. 4, 85354, Freising, Germany
| | - Vladimir V Zverlov
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil‑Ramann‑Str. 4, 85354, Freising, Germany. .,Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, 123182, Moscow, Russia.
| |
Collapse
|
36
|
Sakai K, Kojiya S, Kamijo J, Tanaka Y, Tanaka K, Maebayashi M, Oh JS, Ito M, Hori M, Shimizu M, Kato M. Oxygen-radical pretreatment promotes cellulose degradation by cellulolytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:290. [PMID: 29213329 PMCID: PMC5713004 DOI: 10.1186/s13068-017-0979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The efficiency of cellulolytic enzymes is important in industrial biorefinery processes, including biofuel production. Chemical methods, such as alkali pretreatment, have been extensively studied and demonstrated as effective for breaking recalcitrant lignocellulose structures. However, these methods have a detrimental effect on the environment. In addition, utilization of these chemicals requires alkali- or acid-resistant equipment and a neutralization step. RESULTS Here, a radical generator based on non-thermal atmospheric pressure plasma technology was developed and tested to determine whether oxygen-radical pretreatment enhances cellulolytic activity. Our results showed that the viscosity of carboxymethyl cellulose (CMC) solutions was reduced in a time-dependent manner by oxygen-radical pretreatment using the radical generator. Compared with non-pretreated CMC, oxygen-radical pretreatment of CMC significantly increased the production of reducing sugars in culture supernatant containing various cellulases from Phanerochaete chrysosporium. The production of reducing sugar from oxygen-radical-pretreated CMC by commercially available cellobiohydrolases I and II was 1.7- and 1.6-fold higher, respectively, than those from non-pretreated and oxygen-gas-pretreated CMC. Moreover, the amount of reducing sugar from oxygen-radical-pretreated wheat straw was 1.8-fold larger than those from non-pretreated and oxygen-gas-pretreated wheat straw. CONCLUSIONS Oxygen-radical pretreatment of CMC and wheat straw enhanced the degradation of cellulose by reducing- and non-reducing-end cellulases in the supernatant of a culture of the white-rot fungus P. chrysosporium. These findings indicated that oxygen-radical pretreatment of plant biomass offers great promise for improvements in lignocellulose-deconstruction processes.
Collapse
Affiliation(s)
- Kiyota Sakai
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Saki Kojiya
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Junya Kamijo
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Yuta Tanaka
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Kenta Tanaka
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | | | - Jun-Seok Oh
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masafumi Ito
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masaru Hori
- Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi 464-8603 Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| |
Collapse
|