1
|
Mikkili I, Gaddirala BVST, Borugadda S, Davuluri SB. Harnessing algal biomass for sustainable energy: cultivation, strain improvement, and biofuel production. Prep Biochem Biotechnol 2024:1-14. [PMID: 39679595 DOI: 10.1080/10826068.2024.2434879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The world faces pressing environmental challenges, including greenhouse gas emissions, global warming, climate change, and rising sea levels. Alongside, these issues, the depletion of fossil fuels has intensified the search for alternative energy sources. Algal biomass presents a promising long-term solution to these global problems. The quest for sustainable energy has driven significant research into algal biofuels as a viable alternative to fossil fuels. Algae offers several advantages as a feedstock for biofuel production, including high biomass yield, rapid growth rates, cost-effective cultivation, carbon dioxide fixation capabilities, and the potential to grow on non-arable land using non-potable water. This manuscript provides an overview of algal biomass cultivation using renewable feedstocks, identifies potential algal strains for biofuel production, and explores bioengineering advancements in algae. Additionally, strain improvement strategies to enhance biofuel yields are discussed. The review also addresses large-scale algal biomass cultivation for biofuel production, assesses its commercial viability, examines challenges faced by the biofuel industry, and outlines prospects for biofuel production using highly potent algal strains. By overcoming and addressing these challenges, algal biofuels have the potential to become a cornerstone of sustainable energy solutions.
Collapse
Affiliation(s)
- Indira Mikkili
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| | | | - Sudarsini Borugadda
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| | - Syam Babu Davuluri
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| |
Collapse
|
2
|
Abdullah M, Ali Z, Yasin MT, Amanat K, Sarwar F, Khan J, Ahmad K. Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions. ENVIRONMENTAL RESEARCH 2024; 262:119902. [PMID: 39222730 DOI: 10.1016/j.envres.2024.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Industrial Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, P.O. Box 577-Jhang Road, Faisalabad, Pakistan; Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| |
Collapse
|
3
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2024:1-29. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
5
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
6
|
Ahmad Sobri MZ, Khoo KS, Liew CS, Lim JW, Tong WY, Zhou Y, Zango ZU, Bashir MJK, Alam MM. Abreast insights of harnessing microalgal lipids for producing biodiesel: A review of improving and advancing the technical aspects of cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121138. [PMID: 38749131 DOI: 10.1016/j.jenvman.2024.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
In the pursuit of alternatives for conventional diesel, sourced from non-renewable fossil fuel, biodiesel has gained attentions for its intrinsic benefits. However, the commercial production process for biodiesel is still not sufficiently competitive. This review analyses microalgal lipid, one of the important sources of biodiesel, and its cultivation techniques with recent developments in the technical aspects. In fact, the microalgal lipids are the third generation feedstock, used for biodiesel production after its benefits outweigh that of edible vegetable oils (first generation) and non-edible oils (second generation). The critical factors influencing microalgal growth and its lipid production and accumulation are also discussed. Following that is the internal enhancement for cellular lipid production through genetic engineering. Moreover, the microalgae cultivation data modelling was also rationalized, with a specific focus on growth kinetic models that allow for the prediction and optimization of lipid production. Finally, the machine learning and environmental impact analysis are as well presented as important aspects to consider in fulfilling the prime objective of commercial sustainability to produce microalgal biodiesel.
Collapse
Affiliation(s)
- Mohamad Zulfadhli Ahmad Sobri
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor, Malaysia.
| | - Yuguang Zhou
- Bioenergy and Environmental Science and Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Mohammed J K Bashir
- School of Engineering and Technology, Tertiary Education Division, Central Queensland University, 120 Spencer St, Melbourne Vic 3000, Australia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
7
|
Dolezel M, Lang A, Greiter A, Miklau M, Eckerstorfer M, Heissenberger A, Willée E, Züghart W. Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BIOTECH 2024; 13:14. [PMID: 38804296 PMCID: PMC11130885 DOI: 10.3390/biotech13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Information on the state of the environment is important to achieve the objectives of the European Green Deal, including the EU's Biodiversity Strategy for 2030. The existing regulatory provisions for genetically modified organisms (GMOs) foresee an obligatory post-market environmental monitoring (PMEM) of potential adverse effects upon release into the environment. So far, GMO monitoring activities have focused on genetically modified crops. With the advent of new genomic techniques (NGT), novel GMO applications are being developed and may be released into a range of different, non-agricultural environments with potential implications for ecosystems and biodiversity. This challenges the current monitoring concepts and requires adaptation of existing monitoring programs to meet monitoring requirements. While the incorporation of existing biodiversity monitoring programs into GMO monitoring at the national level is important, additional monitoring activities will also be required. Using case examples, we highlight that monitoring requirements for novel GMO applications differ from those of GM crop plants previously authorized for commercial use in the European Union.
Collapse
Affiliation(s)
- Marion Dolezel
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Andreas Lang
- Büro Lang, Hoernlehof, Gresgen 108, 79669 Zell im Wiesental, Germany;
- Research Group Environmental Geosciences, Department of Environmental Sciences, University of Basel, Bernoullistr. 30, 4056 Basel, Switzerland
| | - Anita Greiter
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Marianne Miklau
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Michael Eckerstorfer
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Andreas Heissenberger
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Eva Willée
- Division of Terrestrial Monitoring, Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany (W.Z.)
| | - Wiebke Züghart
- Division of Terrestrial Monitoring, Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany (W.Z.)
| |
Collapse
|
8
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
9
|
Dhokane D, Shaikh A, Yadav A, Giri N, Bandyopadhyay A, Dasgupta S, Bhadra B. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Front Bioeng Biotechnol 2023; 11:1267826. [PMID: 37965048 PMCID: PMC10641005 DOI: 10.3389/fbioe.2023.1267826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Microalgae, as photosynthetic organisms, have the potential to produce biomolecules for use in food, feed, cosmetics, nutraceuticals, fuel, and other applications. Faster growth rates and higher protein and lipid content make microalgae a popular chassis for many industrial applications. However, challenges such as low productivity and high production costs have limited their commercialization. To overcome these challenges, bioengineering approaches such as genetic engineering, metabolic engineering, and synthetic biology have been employed to improve the productivity and quality of microalgae-based products. Genetic engineering employing genome editing tools like CRISPR/Cas allows precise and targeted genetic modifications. CRISPR/Cas systems are presently used to modify the genetic makeup of microalgae for enhanced production of specific biomolecules. However, these tools are yet to be explored explicitly in microalgae owing to some limitations. Despite the progress made in CRISPR-based bioengineering approaches, there is still a need for further research to optimize the production of microalgae-based products. This includes improving the efficiency of genome editing tools, understanding the regulatory mechanisms of microalgal metabolism, and optimizing growth conditions and cultivation strategies. Additionally, addressing the ethical, social, and environmental concerns associated with genetic modification of microalgae is crucial for the responsible development and commercialization of microalgae-based products. This review summarizes the advancements of CRISPR-based bioengineering for production of industrially important biomolecules and provides key considerations to use CRISPR/Cas systems in microalgae. The review will help researchers to understand the progress and to initiate genome editing experiments in microalgae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Industries Ltd., Navi Mumbai, India
| |
Collapse
|
10
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
11
|
Song J, Xu Z, Chen Y, Guo J. Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2384. [PMID: 37630969 PMCID: PMC10457966 DOI: 10.3390/nano13162384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Harmful algal blooms (HABs) are a global concern because they harm aquatic ecosystems and pose a risk to human health. Various physical, chemical, and biological approaches have been explored to control HABs. However, these methods have limitations in terms of cost, environmental impact, and effectiveness, particularly for large water bodies. Recently, the use of nanoparticles has emerged as a promising strategy for controlling HABs. Briefly, nanoparticles can act as anti-algae agents via several mechanisms, including photocatalysis, flocculation, oxidation, adsorption, and nutrient recovery. Compared with traditional methods, nanoparticle-based approaches offer advantages in terms of environmental friendliness, effectiveness, and specificity. However, the challenges and risks associated with nanoparticles, such as their toxicity and ecological impact, must be considered. In this review, we summarize recent research progress concerning the use of nanoparticles to control HABs, compare the advantages and disadvantages of different types of nanoparticles, discuss the factors influencing their effectiveness and environmental impact, and suggest future directions for research and development in this field. Additionally, we explore the causes of algal blooms, their harmful effects, and various treatment methods, including restricting eutrophication, biological control, and disrupting living conditions. The potential of photocatalysis for generating reactive oxygen species and nutrient control methods using nanomaterials are also discussed in detail. Moreover, the application of flocculants/coagulants for algal removal is highlighted, along with the challenges and potential solutions associated with their use. This comprehensive overview aims to contribute to the development of efficient and sustainable strategies for controlling HAB control.
Collapse
Affiliation(s)
| | | | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (Z.X.)
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; (J.S.); (Z.X.)
| |
Collapse
|
12
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
13
|
Kim S, Im H, Yu J, Kim K, Kim M, Lee T. Biofuel production from Euglena: Current status and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2023; 371:128582. [PMID: 36610485 DOI: 10.1016/j.biortech.2023.128582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Keunho Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
14
|
LaPanse AJ, Burch TA, Tamburro JM, Traller JC, Pinowska A, Posewitz MC. Adaptive laboratory evolution for increased temperature tolerance of the diatom Nitzschia inconspicua. Microbiologyopen 2023; 12:e1343. [PMID: 36825881 PMCID: PMC9791160 DOI: 10.1002/mbo3.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Outdoor microalgal cultivation for the production of valuable biofuels and bioproducts typically requires high insolation and strains with high thermal (>37°C) tolerance. While some strains are naturally thermotolerant, other strains of interest require improved performance at elevated temperatures to enhance industrial viability. In this study, adaptive laboratory evolution (ALE) was performed for over 300 days using consecutive 0.5°C temperature increases in a constant temperature incubator to attain greater thermal tolerance in the industrially relevant diatom Nitzschia inconspicua str. Hildebrandi. The adapted strain was able to grow at a constant temperature of 37.5°C; whereas this constant temperature was lethal to the parental control, which had an upper-temperature boundary of 35.5°C before adaptive evolution. Several high-temperature clonal isolates were obtained from the evolved population following ALE, and increased temperature tolerance was observed in the clonal, parent, and non-clonal adapted cultures. This ALE method demonstrates the development of enhanced industrial algal strains without the production of genetically modified organisms (GMOs).
Collapse
Affiliation(s)
| | - Tyson A. Burch
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Jacob M. Tamburro
- Department of Quantitative Biosciences and EngineeringColorado School of MinesGoldenColoradoUSA
| | | | | | | |
Collapse
|
15
|
Hassanien A, Saadaoui I, Schipper K, Al-Marri S, Dalgamouni T, Aouida M, Saeed S, Al-Jabri HM. Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Front Bioeng Biotechnol 2023; 10:1104914. [PMID: 36714622 PMCID: PMC9881887 DOI: 10.3389/fbioe.2022.1104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, the increased demand for and regional variability of available water resources, along with sustainable water supply planning, have driven interest in the reuse of produced water. Reusing produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. Therefore, efficient wastewater treatment is a crucial step prior to reuse to meet the requirements for use within the oil and gas industry or by external users. Bioremediation using microalgae has received increased interest as a method for produced water treatment for removing not only major contaminants such as nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some research publications reported nearly 100% removal of total hydrocarbons, total nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced water. Enhancing microalgal removal efficiency as well as growth rate, in the presence of such relevant contaminants is of great interest to many industries to further optimize the process. One novel approach to further enhancing algal capabilities and phytoremediation of wastewater is genetic modification. A comprehensive description of using genetically engineered microalgae for wastewater bioremediation is discussed in this review. This article also reviews random and targeted mutations as a method to alter microalgal traits to produce strains capable of tolerating various stressors related to wastewater. Other methods of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology. This is accompanied by the opportunities, as well as the challenges of using genetically engineered microalgae for this purpose.
Collapse
Affiliation(s)
- Alaa Hassanien
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Tasneem Dalgamouni
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, Qatar Foundation, College of Health and Life Sciences, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Suhur Saeed
- ExxonMobil Research Qatar (EMRQ), Doha, Qatar
| | - Hareb M. Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Hareb M. Al-Jabri,
| |
Collapse
|
16
|
Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 368:128350. [PMID: 36414139 DOI: 10.1016/j.biortech.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.
Collapse
Affiliation(s)
- Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Han Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
17
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
18
|
Chen Y, Liang H, Du H, Jesumani V, He W, Cheong KL, Li T, Hong T. Industry chain and challenges of microalgal food industry-a review. Crit Rev Food Sci Nutr 2022; 64:4789-4816. [PMID: 36377724 DOI: 10.1080/10408398.2022.2145455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the whole world is facing hunger due to the increase in the global population and the rising level of food consumption. Unfortunately, the impact of environmental, climate, and political issues on agriculture has resulted in limited global food resources. Thus, it is important to develop new food sources that are environmentally friendly and not subject to climate or space limitations. Microalgae represent a potential source of nutrients and bioactive components for a wide range of high-value products. Advances in cultivation and genetic engineering techniques provide prospective approaches to widen their application for food. However, there are currently problems in the microalgae food industry in terms of assessing nutritional value, selecting processes for microalgae culture, obtaining suitable commercial strains of microalgae, etc. Additionally, the limitations of real data of market opportunities for microalgae make it difficult to assess their actual potential and to develop a better industrial chain. This review addresses the current status of the microalgae food industry, the process of commercializing microalgae food and breeding methods. Current research progress in addressing the limitations of microalgae industrialization and future prospects for developing microalgae food products are discussed.
Collapse
Affiliation(s)
- Yuanhao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Valentina Jesumani
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
19
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Mohan H, Vadivel S, Rajendran S. Removal of harmful algae in natural water by semiconductor photocatalysis- A critical review. CHEMOSPHERE 2022; 302:134827. [PMID: 35526682 DOI: 10.1016/j.chemosphere.2022.134827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Harmful Algal Blooms (HABs) have turned out to be a global occurrence owing to the detrimental phenomenon like eutrophication and global climate change caused by human activities. This newly emergent threat imposes a severe hazardous to public health, ecosystems and fishery-based economies. Rapid and exponential growth of certain delirious and toxic algal species shall be held causative to the formation of HABs. The potential disadvantages they pose, make it necessary the identification of efficient treatment methodologies. Photocatalysis has been identified as the most promising solution amongst all the identified and investigated methods, for the environmental and economic benefits beheld. Different treatment methodologies were evaluated and light has been thrown on the advantages beheld by photocatalysis over the other methods. Focus has been given to the different photocatalysts that have been so far put to use towards photocatalytic disinfection of HABs and algal toxins. This present study provides useful information on the application of the traditional and photocatalysis process for removal of HABs in water bodies. Moreover, the results revealed that photocatalysis method could cause potent inhibitory effect on growth of algae species and disrupted algal cells membranes to some extent. Finally, the conventional treatment techniques have been recognized to be insufficient for removal of HABs. However, the photocatalyst technology have been utilized mostly for the mineralization and neutralization of the algal pollutants without any harmful secondary pollutants.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sethumathavan Vadivel
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
21
|
Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:969844. [PMID: 36119569 PMCID: PMC9471015 DOI: 10.3389/fpls.2022.969844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.
Collapse
Affiliation(s)
- Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
22
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
23
|
Kuo EY, Yang RY, Chin YY, Chien YL, Chen YC, Wei CY, Kao LJ, Chang YH, Li YJ, Chen TY, Lee TM. Multi-omics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 2022; 17:e2100603. [PMID: 35467782 DOI: 10.1002/biot.202100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment. The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan Yu Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu Chu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Cheng-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Jung Kao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Hua Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu-Jia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Te-Yuan Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
24
|
Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-Vivo Induced CAR-T Cell for the Potential Breakthrough to Overcome the Barriers of Current CAR-T Cell Therapy. Front Oncol 2022; 12:809754. [PMID: 35223491 PMCID: PMC8866962 DOI: 10.3389/fonc.2022.809754] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy has shown impressive success in the treatment of hematological malignancies, but the systemic toxicity and complex manufacturing process of current autologous CAR-T cell therapy hinder its broader applications. Universal CAR-T cells have been developed to simplify the production process through isolation and editing of allogeneic T cells from healthy persons, but the allogeneic CAR-T cells have recently encountered safety concerns, and clinical trials have been halted by the FDA. Thus, there is an urgent need to seek new ways to overcome the barriers of current CAR-T cell therapy. In-vivo CAR-T cells induced by nanocarriers loaded with CAR-genes and gene-editing tools have shown efficiency for regressing leukemia and reducing systemic toxicity in a mouse model. The in-situ programming of autologous T-cells avoids the safety concerns of allogeneic T cells, and the manufacture of nanocarriers can be easily standardized. Therefore, the in-vivo induced CAR-T cells can potentially overcome the abovementioned limitations of current CAR-T cell therapy. Here, we provide a review on CAR structures, gene-editing tools, and gene delivery techniques applied in immunotherapy to help design and develop new in-vivo induced CAR-T cells.
Collapse
Affiliation(s)
- Tianqing Xin
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cheng
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchao Zhou
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Zhao
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhua Hu
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
26
|
Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin YS. Microalgal metabolic engineering strategies for the production of fuels and chemicals. BIORESOURCE TECHNOLOGY 2022; 345:126529. [PMID: 34896527 DOI: 10.1016/j.biortech.2021.126529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwangryul Baek
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine Anne Atkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Akella S, Ma X, Bacova R, Harmer ZP, Kolackova M, Wen X, Wright DA, Spalding MH, Weeks DP, Cerutti H. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas. PLANT PHYSIOLOGY 2021; 187:2637-2655. [PMID: 34618092 PMCID: PMC8644747 DOI: 10.1093/plphys/kiab418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 05/20/2023]
Abstract
Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.
Collapse
Affiliation(s)
- Soujanya Akella
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Xinrong Ma
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Romana Bacova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zachary P Harmer
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Xiaoxue Wen
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - David A Wright
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Donald P Weeks
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
28
|
Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, Ho YC, Ng HS, Munawaroh HSH, Show PL. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. BIORESOURCE TECHNOLOGY 2021; 342:125947. [PMID: 34563823 DOI: 10.1016/j.biortech.2021.125947] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung 40154, West Java, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Lin JY, Lin WR, Ng IS. CRISPRa/i with Adaptive Single Guide Assisted Regulation DNA (ASGARD) mediated control of Chlorella sorokiniana to enhance lipid and protein production. Biotechnol J 2021; 17:e2100514. [PMID: 34800080 DOI: 10.1002/biot.202100514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
Chlorella species are indispensable microalgae for biorefinery but are hardly in DNA manipulation due to the high guanine-cytosine (GC) contents of DNA. In this study, we established a new approach via 20 guanines for sgRNA design, which is annotated as "Adaptive Single Guide Assisted Regulation DNA (ASGARD)" and coupling with CRISPR interference associated dCas9 system to overcome the difficulties. At first, C. sorokiniana was predominate as its faster growth rate when compared to C. vulgaris and C. variabilis in the culture using Tris-acetate-phosphate (TAP) medium. Among all the genetic transformants, gene regulation via CRISPRa-VP64 (CRISPRa) enhanced the protein contents up to 60% (w/w) of dry cell weight, where the highest concentration was 570 mg L-1 . Meanwhile, CRISPRi-KRAB (CRISPRi) with ASGARD increased protein content to 65% and lipid formed in the range of 150-250 mg L-1 . From the transcriptome analysis, we deciphered 468 genes down-regulated and 313 genes up-regulated via CRISPRi, while less difference existed in CRISPRa. This novel design and technology reveal a high potential of gene-regulating approach to other species for the biorefinery and bio-industry.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Sharma AK, Nymark M, Flo S, Sparstad T, Bones AM, Winge P. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1658-1669. [PMID: 33759354 PMCID: PMC8384595 DOI: 10.1111/pbi.13582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 05/25/2023]
Abstract
The CRISPR/Cas9 system is an RNA-guided sequence-specific genome editing tool, which has been adopted for single or multiple gene editing in a wide range of organisms. When working with gene families with functional redundancy, knocking out multiple genes within the same family may be required to generate a phenotype. In this study, we tested the possibility of exploiting the known tolerance of Cas9 for mismatches between the single-guide RNA (sgRNA) and target site to simultaneously introduce indels in multiple homologous genes in the marine diatom Phaeodactylum tricornutum. As a proof of concept, we designed two sgRNAs that could potentially target the same six light-harvesting complex (LHC) genes belonging to the LHCF subgroup. Mutations in up to five genes were achieved simultaneously using a previously established CRISPR/Cas9 system for P. tricornutum. A visible colour change was observed in knockout mutants with multiple LHCF lesions. A combination of pigment, LHCF protein and growth analyses was used to further investigate the phenotypic differences between the multiple LHCF mutants and WT. Furthermore, we used the two same sgRNAs in combination with a variant of the existing Cas9 where four amino acids substitutions had been introduced that previously have been shown to increase Cas9 specificity. A significant reduction of off-target editing events was observed, indicating that the altered Cas9 functioned as a high-fidelity (HiFi) Cas9 nuclease.
Collapse
Affiliation(s)
- Amit K. Sharma
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
- Present address:
The University Centre in SvalbardUNISLongyearbyenNorway
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Snorre Flo
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Torfinn Sparstad
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Per Winge
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| |
Collapse
|
32
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
33
|
Bo DD, Magneschi L, Bedhomme M, Billey E, Deragon E, Storti M, Menneteau M, Richard C, Rak C, Lapeyre M, Lembrouk M, Conte M, Gros V, Tourcier G, Giustini C, Falconet D, Curien G, Allorent G, Petroutsos D, Laeuffer F, Fourage L, Jouhet J, Maréchal E, Finazzi G, Collin S. Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches. FRONTIERS IN PLANT SCIENCE 2021; 12:628684. [PMID: 34113360 PMCID: PMC8185151 DOI: 10.3389/fpls.2021.628684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via β-oxidation in this oleaginous alga.
Collapse
Affiliation(s)
- Davide Dal Bo
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Leonardo Magneschi
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Mariette Bedhomme
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Elodie Billey
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
- Total Refining Chemicals, Tour Coupole, Paris La Défense, France
| | - Etienne Deragon
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Mattia Storti
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Mathilde Menneteau
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Christelle Richard
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Camille Rak
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Morgane Lapeyre
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Mehdi Lembrouk
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Melissa Conte
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Valérie Gros
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Guillaume Tourcier
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Cécile Giustini
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Denis Falconet
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Gilles Curien
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Guillaume Allorent
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Dimitris Petroutsos
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | | | - Laurent Fourage
- Total Refining Chemicals, Tour Coupole, Paris La Défense, France
| | - Juliette Jouhet
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Eric Maréchal
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Séverine Collin
- Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
- Total Refining Chemicals, Tour Coupole, Paris La Défense, France
| |
Collapse
|
34
|
Wang Q, Gong Y, He Y, Xin Y, Lv N, Du X, Li Y, Jeong BR, Xu J. Genome engineering of Nannochloropsis with hundred-kilobase fragment deletions by Cas9 cleavages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1148-1162. [PMID: 33719095 DOI: 10.1111/tpj.15227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Industrial microalgae are promising photosynthetic cell factories, yet tools for large-scale targeted genome engineering are limited. Here for the model industrial oleaginous microalga Nannochloropsis oceanica, we established a method to precisely and serially delete large genome fragments of ~100 kb from its 30.01 Mb nuclear genome. We started by identifying the 'non-essential' chromosomal regions (i.e. low expression region or LER) based on minimal gene expression under N-replete and N-depleted conditions. The largest such LER (LER1) is ~98 kb in size, located near the telomere of the 502.09-kb-long Chromosome 30 (Chr 30). We deleted 81 kb and further distal and proximal deletions of up to 110 kb (21.9% of Chr 30) in LER1 by dual targeting the boundaries with the episome-based CRISPR/Cas9 system. The telomere-deletion mutants showed normal telomeres consisting of CCCTAA repeats, revealing telomere regeneration capability after losing the distal part of Chr 30. Interestingly, the deletions caused no significant alteration in growth, lipid production or photosynthesis (transcript-abundance change for < 3% genes under N depletion). We also achieved double-deletion of both LER1 and LER2 (from Chr 9) that total ~214 kb at maximum, which can result in slightly higher growth rate and biomass productivity than the wild-type. Therefore, loss of the large, yet 'non-essential' regions does not necessarily sacrifice important traits. Such serial targeted deletions of large genomic regions had not been previously reported in microalgae, and will accelerate crafting minimal genomes as chassis for photosynthetic production.
Collapse
Affiliation(s)
- Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehui He
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Byeong-Ryool Jeong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Sanchez-Tarre V, Kiparissides A. The effects of illumination and trophic strategy on gene expression in Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Incorporating a molecular antenna in diatom microalgae cells enhances photosynthesis. Sci Rep 2021; 11:5209. [PMID: 33664413 PMCID: PMC7933240 DOI: 10.1038/s41598-021-84690-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/03/2021] [Indexed: 11/22/2022] Open
Abstract
Diatom microalgae have great industrial potential as next-generation sources of biomaterials and biofuels. Effective scale-up of their production can be pursued by enhancing the efficiency of their photosynthetic process in a way that increases the solar-to-biomass conversion yield. A proof-of-concept demonstration is given of the possibility of enhancing the light absorption of algae and of increasing their efficiency in photosynthesis by in vivo incorporation of an organic dye which acts as an antenna and enhances cells’ growth and biomass production without resorting to genetic modification. A molecular dye (Cy5) is incorporated in Thalassiosira weissflogii diatom cells by simply adding it to the culture medium and thus filling the orange gap that limits their absorption of sunlight. Cy5 enhances diatoms’ photosynthetic oxygen production and cell density by 49% and 40%, respectively. Cy5 incorporation also increases by 12% the algal lipid free fatty acid (FFA) production versus the pristine cell culture, thus representing a suitable way to enhance biofuel generation from algal species. Time-resolved spectroscopy reveals Förster Resonance Energy Transfer (FRET) from Cy5 to algal chlorophyll. The present approach lays the basis for non-genetic tailoring of diatoms’ spectral response to light harvesting, opening up new ways for their industrial valorization.
Collapse
|
38
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
39
|
Abstract
Energy security and climate change have cascading effects on the world's burgeoning population in terms of food security, environment, and sustainability. Due to depletion of fossil fuels and undesirable changes of climatic conditions, increase in air and water pollution, mankind started exploring alternate and sustainable means of meeting growing energy needs. One of the options is to use renewable sources of fuel-biofuel. In this chapter the authors have reviewed and presented sustainability impact on production of biofuels. Authors further reviewed state-of-the-art gene editing technologies toward improvement of biofuel crops. The authors recommend a phased transition from first-generation biofuel, and an acceleration toward use of technology to drive adoption of second-generation biofuels. Key aspects of technology and application of resource management models will enable these crops to bridge the global energy demand before we can completely transition to a more sustainable biofuel economy.
Collapse
|
40
|
Kang S, Jeon S, Kim S, Chang YK, Kim YC. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci Rep 2020; 10:22158. [PMID: 33335164 PMCID: PMC7747696 DOI: 10.1038/s41598-020-78968-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances related to the CRISPR/Cas9-based genome editing system have enabled sophisticated genome editing in microalgae. Although the demand for research on genome editing in microalgae has increased over time, methodological research has not been established to date for the delivery of a ribonucleoprotein (Cas9/sgRNA complex) using a cell penetrating peptide into microalgal cell lines. Here, we present a ribonucleoprotein delivery system for Chlamydomonas reinhardtii mediated by the cell penetrating peptide pVEC (LLIILRRRIRKQAHAHSK) which is in a non-covalent form. Using this technically simple method, the ribonucleoprotein was successfully delivered into C. reinhardtii. Gene Maa7 and FKB12 were disrupted, and their distinguishing patterns of Indel mutations were analyzed with the observation of several insertions of sequences not originating from the genome DNA, such as chloroplast DNA, into the expected loci. In addition, the cytotoxicity of Cas9 and the ribonucleoprotein was investigated according to the concentration and time in the algal cells. It was observed that Cas9 alone without the sgRNA induces a more severe cytotoxicity compared to the ribonucleoprotein. Our study will not only contribute to algal cell biology and its genetic engineering for further applications involving various organisms but will also provide a deeper understating of the basic science of the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Seongsu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungcheol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
41
|
Teng SY, Yew GY, Sukačová K, Show PL, Máša V, Chang JS. Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol Adv 2020; 44:107631. [PMID: 32931875 DOI: 10.1016/j.biotechadv.2020.107631] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
Collapse
Affiliation(s)
- Sin Yong Teng
- Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Kateřina Sukačová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno 603 00, Czech Republic.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Vítězslav Máša
- Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
42
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
43
|
Lee JW, Lee MW, Ha JS, Kim DS, Jin E, Lee HG, Oh HM. Development of a species-specific transformation system using the novel endogenous promoter calreticulin from oleaginous microalgae Ettlia sp. Sci Rep 2020; 10:13947. [PMID: 32811857 PMCID: PMC7434781 DOI: 10.1038/s41598-020-70503-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
Microalgae not only serve as raw materials for biofuel but also have uses in the food, pharmaceutical, and cosmetic industries. However, regulated gene expression in microalgae has only been achieved in a few strains due to the lack of genome information and unstable transformation. This study developed a species-specific transformation system for an oleaginous microalga, Ettlia sp. YC001, using electroporation. The electroporation was optimized using three parameters (waveform, field strength, and number of pulses), and the final selection was a 5 kV cm-1 field strength using an exponential decay wave with one pulse. A new strong endogenous promoter CRT (Pcrt) was identified using transcriptome and quantitative PCR analysis of highly expressed genes during the late exponential growth phase. The activities of this promoter were characterized using a codon optimized cyan fluorescent protein (CFP) as a reporter. The expression of CFP was similar under Pcrt and under the constitutive promoter psaD (PpsaD). The developed transformation system using electroporation with the endogenous promoter is simple to prepare, is easy to operate with high repetition, and utilizes a species-specific vector for high expression. This system could be used not only in molecular studies on microalgae but also in various industrial applications of microalgae.
Collapse
Affiliation(s)
- Jun-Woo Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Min-Woo Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ji-San Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dae-Soo Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
44
|
Harada R, Nomura T, Yamada K, Mochida K, Suzuki K. Genetic Engineering Strategies for Euglena gracilis and Its Industrial Contribution to Sustainable Development Goals: A Review. Front Bioeng Biotechnol 2020; 8:790. [PMID: 32760709 PMCID: PMC7371780 DOI: 10.3389/fbioe.2020.00790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
The sustainable development goals (SDGs) adopted at the 2015 United Nations Summit are globally applicable goals designed to help countries realize a sustainable future. To achieve these SDGs, it is necessary to utilize renewable biological resources. In recent years, bioeconomy has been an attractive concept for achieving the SDGs. Microalgae are one of the biological resources that show promise in realizing the "5F"s (food, fiber, feed, fertilizer, and fuel). Among the microalgae, Euglena gracilis has the potential for achieving the "5F"s strategy owing to its unique features, such as production of paramylon, that are lacking in other microalgae. E. gracilis has already been produced on an industrial scale for use as an ingredient in functional foods and cosmetics. In recent years, genetic engineering methods for breeding E. gracilis have been researched and developed to achieve higher yields. In this article, we summarize how microalgae contribute toward achieving the SDGs. We focus on the contribution of E. gracilis to the bioeconomy, including its advantages in industrial use as well as its unique characteristics. In addition, we review genetic engineering-related research trends centered on E. gracilis, including a complete nuclear genome determination project, genome editing technology using the CRISPR-Cas9 system, and the development of a screening method for selecting useful strains. In particular, genome editing in E. gracilis could be a breakthrough for molecular breeding of industrially useful strains because of its high efficiency.
Collapse
Affiliation(s)
- Ryo Harada
- RIKEN Baton Zone Program, Yokohama, Japan
| | - Toshihisa Nomura
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Koji Yamada
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| | - Keiichi Mochida
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kengo Suzuki
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| |
Collapse
|
45
|
George J, Kahlke T, Abbriano RM, Kuzhiumparambil U, Ralph PJ, Fabris M. Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:513. [PMID: 32582656 PMCID: PMC7290003 DOI: 10.3389/fbioe.2020.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental “position-effects” such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.
Collapse
Affiliation(s)
- Jestin George
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | | | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Michele Fabris
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Highly Efficient CRISPR-Associated Protein 9 Ribonucleoprotein-Based Genome Editing in Euglena gracilis. STAR Protoc 2020; 1:100023. [PMID: 33111076 PMCID: PMC7580193 DOI: 10.1016/j.xpro.2020.100023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Euglena gracilis, a unicellular phytoflagellate microalga, is a promising biomaterial for foods, feeds, and biofuels. However, targeted mutagenesis in this species has been a long-standing challenge. We recently developed a transgene-free, highly efficient, genome editing method for E. gracilis using CRISPR/Cas9 ribonucleoproteins (RNPs). Our method achieved mutagenesis rates of approximately 80% or more through an electroporation-based direct delivery of Cas9 RNPs. Therefore, this method is suitable for basic research and industrial applications, such as the breeding of Euglena. For complete details on the use and execution of this protocol, please refer to Nomura et al. (2019). Protocol for an efficient genome editing method using Cas9 RNPs in Euglena gracilis Transgene-free targeted mutagenesis is possible via direct delivery of Cas9 RNPs Highly efficient knock-in of short sequences into the target site is possible
Collapse
|
47
|
Johansson S, Stephenson P, Edwards R, Yoshida K, Moore C, Terauchi R, Zubkov M, Terry M, Bibby T. Isolation and molecular characterisation of Dunaliella tertiolecta with truncated light-harvesting antenna for enhanced photosynthetic efficiency. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv 2020; 43:107554. [PMID: 32437732 DOI: 10.1016/j.biotechadv.2020.107554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Microalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield. In recent years, novel genome editing tools like RNAi, ZNFs, TALENs, and CRISPR/Cas9 are used to enhance the quality and quantity of the desired products. Genetic and metabolic engineering are frequently applied because of their rapid and precise results than random mutagenesis. Omic approaches help enhance biorefinery capabilities and are now in the developing stage for algae. The future is very bright for transgenic algae with increased biomass yield, carbon dioxide uptake rate, accumulating high-value compounds, reduction in cultivation, and production costs, thus reaching the goal in the global algal market and capital flow. However, microalgae are primary producers and any harmful exposure to the wild strains can affect the entire ecosystem. Therefore, strict regulation and monitoring are required to assess the potential risks before introducing genetically modified microalgae into the natural ecosystem.
Collapse
Affiliation(s)
- Mehmooda Fayyaz
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
49
|
Ryu AJ, Kang NK, Jeon S, Hur DH, Lee EM, Lee DY, Jeong BR, Chang YK, Jeong KJ. Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:38. [PMID: 32158502 PMCID: PMC7057510 DOI: 10.1186/s13068-020-01681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The necessity to develop high lipid-producing microalgae is emphasized for the commercialization of microalgal biomass, which is environmentally friendly and sustainable. Nannochloropsis are one of the best industrial microalgae and have been widely studied for their lipids, including high-value polyunsaturated fatty acids (PUFAs). Many reports on the genetic and biological engineering of Nannochloropsis to improve their growth and lipid contents have been published. RESULTS We performed insertional mutagenesis in Nannochloropsis salina, and screened mutants with high lipid contents using fluorescence-activated cell sorting (FACS). We isolated a mutant, Mut68, which showed improved growth and a concomitant increase in lipid contents. Mut68 exhibited 53% faster growth rate and 34% higher fatty acid methyl ester (FAME) contents after incubation for 8 days, resulting in a 75% increase in FAME productivity compared to that in the wild type (WT). By sequencing the whole genome, we identified the disrupted gene in Mut68 that encoded trehalose-6-phosphate (T6P) synthase (TPS). TPS is composed of two domains: TPS domain and T6P phosphatase (TPP) domain, which catalyze the initial formation of T6P and dephosphorylation to trehalose, respectively. Mut68 was disrupted at the TPP domain in the C-terminal half, which was confirmed by metabolic analyses revealing a great reduction in the trehalose content in Mut68. Consistent with the unaffected N-terminal TPS domain, Mut68 showed moderate increase in T6P that is known for regulation of sugar metabolism, growth, and lipid biosynthesis. Interestingly, the metabolic analyses also revealed a significant increase in stress-related amino acids, including proline and glutamine, which may further contribute to the Mut68 phenotypes. CONCLUSION We have successfully isolated an insertional mutant showing improved growth and lipid production. Moreover, we identified the disrupted gene encoding TPS. Consistent with the disrupted TPP domain, metabolic analyses revealed a moderate increase in T6P and greatly reduced trehalose. Herein, we provide an excellent proof of concept that the selection of insertional mutations via FACS can be employed for the isolation of mutants with improved growth and lipid production. In addition, trehalose and genes encoding TPS will provide novel targets for chemical and genetic engineering, in other microalgae and organisms as well as Nannochloropsis.
Collapse
Affiliation(s)
- Ae Jin Ryu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: Carl. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Dong Hoon Hur
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Mi Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Present Address: Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Qingdao, 266101 Shandong China
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
50
|
Molina-Márquez A, Vila M, Rengel R, Fernández E, García-Maroto F, Vigara J, León R. Validation of a New Multicistronic Plasmid for the Efficient and Stable Expression of Transgenes in Microalgae. Int J Mol Sci 2020; 21:E718. [PMID: 31979077 PMCID: PMC7037629 DOI: 10.3390/ijms21030718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
Low stability of transgenes and high variability of their expression levels among the obtained transformants are still pending challenges in the nuclear genetic transformation of microalgae. We have generated a new multicistronic microalgal expression plasmid, called Phyco69, to make easier the large phenotypic screening usually necessary for the selection of high-expression stable clones. This plasmid contains a polylinker region (PLK) where any gene of interest (GOI) can be inserted and get linked, through a short viral self-cleaving peptide to the amino terminus of the aminoglycoside 3'-phosphotransferase (APHVIII) from Streptomyces rimosus, which confers resistance to the antibiotic paromomycin. The plasmid has been validated by expressing a second antibiotic resistance marker, the ShBLE gene, which confers resistance to phleomycin. It has been shown, by RT-PCR and by phenotypic studies, that the fusion of the GOI to the selective marker gene APHVIII provides a simple method to screen and select the transformants with the highest level of expression of both the APHVIII gene and the GOI among the obtained transformants. Immunodetection studies have shown that the multicistronic transcript generated from Phyco69 is correctly processed, producing independent gene products from a common promoter.
Collapse
Affiliation(s)
- Ana Molina-Márquez
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Marta Vila
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Rocío Rengel
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology. University of Córdoba, 14071 Córdoba, Spain;
| | - Federico García-Maroto
- Laboratory of Biotechnology of Natural Products, Agro-feed International Excellence campus, University of Almería, 04071 Almería, Spain;
| | - Javier Vigara
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| | - Rosa León
- Laboratory of Biochemistry. Faculty of Experimental Sciences. Marine International Campus of Excellence and RENSMA. University of Huelva, 21071 Huelva, Spain; (M.V.); (R.R.); (J.V.); (R.L.)
| |
Collapse
|