1
|
Peralta FT, Shi C, Widanagamage GW, Speight RE, O'Hara I, Zhang Z, Navone L, Behrendorff JB. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 413:131558. [PMID: 39362341 DOI: 10.1016/j.biortech.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.
Collapse
Affiliation(s)
- Francisco T Peralta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Changrong Shi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Gevindu Wathsala Widanagamage
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia.
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Laura Navone
- ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - James B Behrendorff
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
2
|
Karlo J, Carrasco-Navarro V, Koistinen A, Singh SP. Tracking trash to treasure: in situ monitoring of single microbial cell oil biosynthesis from waste cooking oil using Raman spectroscopy and imaging. RSC Adv 2024; 14:33323-33331. [PMID: 39435003 PMCID: PMC11493132 DOI: 10.1039/d4ra05187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Waste cooking oil is a major pollutant that contaminates terrestrial and aquatic bodies which is generated from household kitchens and eateries. The bioremediation of waste cooking oil (WCO) into microbial oil, also known as single microbial cell oil (SMCO), can be accomplished by oleaginous microbes. Conventional methods excel in SMCO analysis but lack efficacy for in situ or lysis-free monitoring of nascent SMCO synthesis and turnover. To bridge this knowledge gap, this study shows the applicability of Raman reverse stable isotope probing (RrSIP) in monitoring time-dependent nascent SMCO synthesis and assimilation in Yarrowia lipolytica, an oleaginous yeast grown in hydrophilic (glucose) as well as hydrophobic carbon sources (cooking oil and waste cooking oil). This study also combines the RrSIP approach with Raman imaging for temporal visualization of the distribution and turnover dynamics of the SMCO pool in a single cell. Our finding provides a unique perspective utilizing optical spectroscopy methods for lysis-free SMCO analysis and holds potential for prospective utility as an adjunct tool in bioprocess and biofuel industries.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad Dharwad 580011 Karnataka India
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus Yliopistonranta 8 Kuopio 70210 Finland
| | - Arto Koistinen
- Department of Technical Physics, University of Eastern Finland Kuopio 70210 Finland
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad Dharwad 580011 Karnataka India
| |
Collapse
|
3
|
Fang L, Chen Y, He Q, Wang L, Duan Q, Huang C, Song H, Cao Y. Mining novel gene targets for improving tolerance to furfural and acetic acid in Yarrowia lipolytica using whole-genome CRISPRi library. BIORESOURCE TECHNOLOGY 2024; 403:130764. [PMID: 38718903 DOI: 10.1016/j.biortech.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/20/2024]
Abstract
Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.
Collapse
Affiliation(s)
- Lixia Fang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qianxi He
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qiyang Duan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Congcong Huang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Okonkwo O, Dou C, Oksen E, Narani A, Marcondes W, Chen X, Kim J, Gao Y, Burnet MC, Webb-Robertson BJM, Poirier BC, Tanjore D, Magnuson JK, Munoz NM, Gardner J. Corn stover variability drives differences in bisabolene production by engineered Rhodotorula toruloides. J Ind Microbiol Biotechnol 2024; 51:kuae034. [PMID: 39317673 PMCID: PMC11467694 DOI: 10.1093/jimb/kuae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Microbial conversion of lignocellulosic biomass represents an alternative route for production of biofuels and bioproducts. While researchers have mostly focused on engineering strains such as Rhodotorula toruloides for better bisabolene production as a sustainable aviation fuel, less is known about the impact of the feedstock heterogeneity on bisabolene production. Critical material attributes like feedstock composition, nutritional content, and inhibitory compounds can all influence bioconversion. Further, the given feedstocks can have a marked influence on selection of suitable pretreatment and hydrolysis technologies, optimizing the fermentation conditions, and possibly even modifying the microorganism's metabolic pathways, to better utilize the available feedstock. This work aimed to examine and understand how variations in corn stover batches, anatomical fractions, and storage conditions impact the efficiency of bisabolene production by R. toruloides. All of these represent different facets of feedstock heterogeneity. Deacetylation, mechanical refining, and enzymatic hydrolysis of these variable feedstocks served as the basis of this research. The resulting hydrolysates were converted to bisabolene via fermentation, a sustainable aviation fuel precursor, using an engineered R. toruloides strain. This study showed that different sources of feedstock heterogeneity can influence microbial growth and product titer in counterintuitive ways, as revealed through global analysis of protein expression. The maximum bisabolene produced by R. toruloides was on the stalk fraction of corn stover hydrolysate (8.89 ± 0.47 g/L). Further, proteomics analysis comparing the protein expression between the anatomic fractions showed that proteins relating to carbohydrate metabolism, energy production, and conversion as well as inorganic ion transport metabolism were either significantly upregulated or downregulated. Specifically, downregulation of proteins related to the iron-sulfur cluster in stalk fraction suggests a coordinated response by R. toruloides to maintain overall metabolic balance, and this was corroborated by the concentration of iron in the feedstocks. ONE-SENTENCE SUMMARY This study elucidates the effects of different sources of corn stover on bisabolene production by engineered Rhodotorula toruloides, highlighting the importance of understanding feedstock variability to enhance bioprocess efficiency and economic outcomes.
Collapse
Affiliation(s)
- Onyinye Okonkwo
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| | - Chang Dou
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| | - Ethan Oksen
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| | - Akash Narani
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| | - Wilian Marcondes
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| | - Xiaowen Chen
- National Biology Center, National Renewable Energy Lab, 1617 Cole Blvd., Golden, CO 80401, USA
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Yuqian Gao
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Meagan C Burnet
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bobbie-Jo M Webb-Robertson
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Brenton C Poirier
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Deepti Tanjore
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| | - Jon K Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Nathalie Munoz Munoz
- US Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - James Gardner
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Lab, Berkeley, CA 94608, USA
| |
Collapse
|
5
|
Liu H, Huang X, Liu Y, Jing X, Ning Y, Xu P, Deng L, Wang F. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18909-18918. [PMID: 37999448 DOI: 10.1021/acs.jafc.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Lignocellulose is a promising renewable feedstock for the bioproduction of high-value biochemicals. The poorly expressed xylose catabolic pathway was the bottleneck in the efficient utilization of the lignocellulose feedstock in yeast. Herein, multiple genetic and process engineering strategies were explored to debottleneck the conversion of xylose to the platform chemical triacetic acid lactone (TAL) in Yarrowia lipolytica. We identified that xylose assimilation generating more cofactor NADPH was favorable for the TAL synthesis. pH control improved the expression of acetyl-CoA carboxylase and generated more precursor malonyl-CoA. Combined with the suppression of the lipid synthesis pathway, 5.03 and 4.18 g/L TAL were produced from pure xylose and xylose-rich wheat straw hydrolysate, respectively. Our work removed the bottleneck of the xylose assimilation pathway and effectively upgraded wheat straw hydrolysate to TAL, which enabled us to build a sustainable oleaginous yeast cell factory to cost-efficiently produce green chemicals from low-cost lignocellulose by Y. lipolytica.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolan Huang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangming Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyun Jing
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchen Ning
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Asemoloye MD, Bello TS, Oladoye PO, Remilekun Gbadamosi M, Babarinde SO, Ebenezer Adebami G, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy. Bioengineered 2023; 14:2269328. [PMID: 37850721 PMCID: PMC10586088 DOI: 10.1080/21655979.2023.2269328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the development of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well understood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombinant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Tunde Sheriffdeen Bello
- Department of Plant Biology, School of Life Sciences, Federal University of Technology Minna, Minna Niger State, Nigeria
| | | | | | - Segun Oladiran Babarinde
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | | | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag, Mmabatho, South Africa
| | | | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
| |
Collapse
|
7
|
Jovanovic Gasovic S, Dietrich D, Gläser L, Cao P, Kohlstedt M, Wittmann C. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale. Metab Eng 2023; 80:45-65. [PMID: 37683719 DOI: 10.1016/j.ymben.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
DHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y. lipolytica Af4, which synthetized the PUFA via a heterologous myxobacterial polyketide synthase (PKS)-like gene cluster. As starting point, we used transcriptomics, metabolomics, and 13C-based metabolic pathway profiling to study the cellular dynamics of Y. lipolytica Af4. The shift from the growth to the stationary DHA-production phase was associated with fundamental changes in carbon core metabolism, including a strong upregulation of the PUFA gene cluster, as well as an increase in citrate and fatty acid degradation. At the same time, the intracellular levels of the two DHA precursors acetyl-CoA and malonyl-CoA dropped by up to 98% into the picomolar range. Interestingly, the degradation pathways for the ketogenic amino acids l-lysine, l-leucine, and l-isoleucine were transcriptionally activated, presumably to provide extra acetyl-CoA. Supplementation with small amounts of these amino acids at the beginning of the DHA production phase beneficially increased the intracellular CoA-ester pools and boosted the DHA titer by almost 40%. Isotopic 13C-tracer studies revealed that the supplements were efficiently directed toward intracellular CoA-esters and DHA. Hereby, l-lysine was found to be most efficient, as it enabled long-term activation, due to storage within the vacuole and continuous breakdown. The novel strategy enabled DHA production in Y. lipolytica at the gram scale for the first time. DHA was produced at a high selectivity (27% of total fatty acids) and free of the structurally similar PUFA DPA, which facilitates purification for high-value medical applications that require API-grade DHA. The assembled multi-omics picture of the central metabolism of Y. lipolytica provides valuable insights into this important yeast. Beyond our work, the enhanced catabolism of ketogenic amino acids seems promising for the overproduction of other compounds in Y. lipolytica, whose synthesis is limited by the availability of CoA ester precursors.
Collapse
Affiliation(s)
| | - Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
8
|
Jin H, Kim S, Lee D, Ledesma-Amaro R, Hahn JS. Efficient production of mycosporine-like amino acids, natural sunscreens, in Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:162. [PMID: 37899467 PMCID: PMC10614408 DOI: 10.1186/s13068-023-02415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs), including shinorine and porphyra-334, are gaining attention as safe natural sunscreens. The production of MAAs has been achieved in diverse microbial hosts, including Saccharomyces cerevisiae. While S. cerevisiae is the most extensively studied model yeast, the oleaginous yeast Yarrowia lipolytica has emerged as a promising candidate for the synthesis of valuable products. In this study, we explored the potential of Y. lipolytica as a host for producing MAAs, utilizing its advantages such as a robust pentose phosphate pathway flux and versatile carbon source utilization. RESULTS We produced MAAs in Y. lipolytica by introducing the MAA biosynthetic genes from cyanobacteria Nostoc punctiforme and Anabaena variabilis. These genes include mysA, mysB, and mysC responsible for producing mycosporine-glycine (MG) from sedoheptulose 7-phosphate (S7P). The two strains utilize different enzymes, D-Ala-D-Ala ligase homologue (MysD) in N. punctiforme and NRPS-like enzyme (MysE) in A. variabilis, for amino acid conjugation to MG. MysE specifically generated shinorine, a serine conjugate of MG, while MysD exhibited substrate promiscuity, yielding both shinorine and a small amount of porphyra-334, a threonine conjugate of MG. We enhanced MAAs production by selecting mysA, mysB, and mysC from A. variabilis and mysD from N. punctiforme based on their activities. We further improved production by strengthening promoters, increasing gene copies, and introducing the xylose utilization pathway. Co-utilization of xylose with glucose or glycerol increased MAAs production by boosting the S7P pool through the pentose phosphate pathway. Overexpressing GND1 and ZWF1, key genes in the pentose phosphate pathway, further enhanced MAAs production. The highest achieved MAAs level was 249.0 mg/L (207.4 mg/L shinorine and 41.6 mg/L of porphyra-334) in YP medium containing 10 g/L glucose and 10 g/L xylose. CONCLUSIONS Y. lipolytica was successfully engineered to produce MAAs, primarily shinorine. This achievement involved the introduction of MAA biosynthetic genes from cyanobacteria, establishing xylose utilizing pathway, and overexpressing the pentose phosphate pathway genes. These results highlight the potential of Y. lipolytica as a promising yeast chassis strain for MAAs production, notably attributed to its proficient expression of MysE enzyme, which remains non-functional in S. cerevisiae, and versatile utilization of carbon sources like glycerol.
Collapse
Affiliation(s)
- Hyunbin Jin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sojeong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Daeyeol Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Chen C, Li YW, Chen XY, Wang YT, Ye C, Shi TQ. Application of adaptive laboratory evolution for Yarrowia lipolytica: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 391:129893. [PMID: 39491116 DOI: 10.1016/j.biortech.2023.129893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Adaptive laboratory evolution is an innovative approach utilized by researchers to enhance the characteristics of microorganisms in the field of biology. With the advancement of this technology, it is now being extended to non-model strains. Yarrowia lipolytica, an oleaginous yeast with significant industrial potential, stands out among the non-conventional fungi. However, the activity of Yarrowia lipolytica is frequently affected by specific substances and environmental factors, necessitating the development of techniques to address these challenges. This manuscript provides an overview of adaptive laboratory evolution experiments conducted on Yarrowia lipolytica, and categorizes the contents into two aspects including improving lignocellulose utilization and enhancing the production in Yarrowia lipolytica. Additionally, we selected several representative examples to illustrate how adaptive laboratory evolution can be combined with other techniques to elucidate the potential mechanisms underlying strain evolution. Lastly, we anticipate a promising future for adaptive laboratory evolution technology and Yarrowia lipolytica in tandem.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xin-Yu Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Llamas M, Greses S, Magdalena JA, González-Fernández C, Tomás-Pejó E. Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review. BIORESOURCE TECHNOLOGY 2023; 386:129499. [PMID: 37460020 DOI: 10.1016/j.biortech.2023.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Global reliance on fossil oil should shift to cleaner alternatives to get a decarbonized society. One option to achieve this ambitious goal is the use of biochemicals produced from lignocellulosic biomass (LCB). The inherent low biodegradability of LCB and the inhibitory compounds that might be released during pretreatment are two main challenges for LCB valorization. At microbiological level, constraints are mostly linked to the need for axenic cultures and the preference for certain carbon sources (i.e., glucose). To cope with these issues, this review focuses on efficient LCB conversion via the sugar platform as well as an innovative carboxylate platform taking advantage of the co-cultivation of microorganisms. This review discusses novel trends in the use of microbial communities and co-cultures aiming at different bioproducts co-generation in single reactors as well as in sequential bioprocess combination. The outlook and further perspectives of these alternatives have been outlined for future successful development.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Jose Antonio Magdalena
- LBE, Univ Montpellier, INRAE, 102 avenue des Étangs, F-11100 Narbonne, France; Vicerrectorado de Investigación y Transferencia de la Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid 47011, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain.
| |
Collapse
|
11
|
Matsuoka Y, Fujie N, Nakano M, Koshiba A, Kondo A, Tanaka T. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion. J Biosci Bioeng 2023; 136:320-326. [PMID: 37574415 DOI: 10.1016/j.jbiosc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
An environmentally sustainable world can be realized by using microorganisms to produce value-added materials from renewable biomass. Triacetic acid lactone (TAL) is a high-value-added compound that is used as a precursor of various organic compounds such as food additives and pharmaceuticals. In this study, we used metabolic engineering to produce TAL from glucose using an oleaginous yeast Yarrowia lipolytica. We first introduced TAL-producing gene 2-pyrone synthase into Y. lipolytica, which enabled TAL production. Next, we increased TAL production by engineering acetyl-CoA and malonyl-CoA biosynthesis pathways by redirecting carbon flux to glycolysis. Finally, we optimized the carbon and nitrogen ratios in the medium, culminating in the production of 4078 mg/L TAL. The strategy presented in this study had the potential to improve the titer and yield of polyketide biosynthesis.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Naofumi Fujie
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
12
|
Han Z, Maruwan J, Tang Y, Su WW. Conditional protein degradation in Yarrowia lipolytica using the auxin-inducible degron. Front Bioeng Biotechnol 2023; 11:1188119. [PMID: 37324427 PMCID: PMC10264656 DOI: 10.3389/fbioe.2023.1188119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Conditional protein degradation is a powerful tool for controlled protein knockdown. The auxin-inducible degron (AID) technology uses a plant auxin to induce depletion of degron-tagged proteins, and it has been shown to be functional in several non-plant eukaryotes. In this study, we demonstrated AID-based protein knockdown in an industrially important oleaginous yeast Yarrowia lipolytica. Using the mini-IAA7 (mIAA7) degron derived from Arabidopsis IAA7, coupled with an Oryza sativa TIR1 (OsTIR1) plant auxin receptor F-box protein (expressed from the copper-inducible MT2 promoter), C-terminal degron-tagged superfolder GFP could be degraded in Yarrowia lipolytica upon addition of copper and the synthetic auxin 1-Naphthaleneacetic acid (NAA). However, leaky degradation of the degron-tagged GFP in the absence of NAA was also noted. This NAA-independent degradation was largely eliminated by replacing the wild-type OsTIR1 and NAA with the OsTIR1F74A variant and the auxin derivative 5-Ad-IAA, respectively. Degradation of the degron-tagged GFP was rapid and efficient. However, Western blot analysis revealed cellular proteolytic cleavage within the mIAA7 degron sequence, leading to the production of a GFP sub-population lacking an intact degron. The utility of the mIAA7/OsTIR1F74A system was further explored in controlled degradation of a metabolic enzyme, β-carotene ketolase, which converts β-carotene to canthaxanthin via echinenone. This enzyme was tagged with the mIAA7 degron and expressed in a β-carotene producing Y. lipolytica strain that also expressed OsTIR1F74A controlled by the MT2 promoter. By adding copper and 5-Ad-IAA at the time of culture inoculation, canthaxanthin production was found to be reduced by about 50% on day five compared to the control culture without adding 5-Ad-IAA. This is the first report that demonstrates the efficacy of the AID system in Y. lipolytica. Further improvement of AID-based protein knockdown in Y. lipolytica may be achieved by preventing proteolytic removal of the mIAA7 degron tag.
Collapse
Affiliation(s)
- Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Jessica Maruwan
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Yinjie Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, United States
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI, United States
| |
Collapse
|
13
|
Dias B, Fernandes H, Lopes M, Belo I. Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12565-6. [PMID: 37191683 DOI: 10.1007/s00253-023-12565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
In recent years, lignocellulosic biomass has become an attractive low-cost raw material for microbial bioprocesses aiming the production of biofuels and other valuable chemicals. However, these feedstocks require preliminary pretreatments to increase their utilization by microorganisms, which may lead to the formation of various compounds (acetic acid, formic acid, furfural, 5-hydroxymethylfurfural, p-coumaric acid, vanillin, or benzoic acid) with antimicrobial activity. Batch cultures in microplate wells demonstrated the ability of Yarrowia strains (three of Y. lipolytica and one of Y. divulgata) to grow in media containing each one of these compounds. Cellular growth of Yarrowia lipolytica W29 and NCYC 2904 (chosen strains) was proven in Erlenmeyer flasks and bioreactor experiments where an accumulation of intracellular lipids was also observed in culture medium mimicking lignocellulosic biomass hydrolysate containing glucose, xylose, acetic acid, formic acid, furfural, and 5-HMF. Lipid contents of 35% (w/w) and 42% (w/w) were obtained in bioreactor batch cultures with Y. lipolytica W29 and NCYC 2904, respectively, showing the potential of this oleaginous yeast to use lignocellulosic biomass hydrolysates as feedstock for obtaining valuable compounds, such as microbial lipids that have many industrial applications. KEY POINTS: • Yarrowia strains tolerate compounds found in lignocellulosic biomass hydrolysate • Y. lipolytica consumed compounds found in lignocellulosic biomass hydrolysate • 42% (w/w) of microbial lipids was attained in bioreactor batch cultures.
Collapse
Affiliation(s)
- Bruna Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Helena Fernandes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Marlene Lopes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| | - Isabel Belo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
14
|
Sun T, Yu Y, Wang L, Qi Y, Xu T, Wang Z, Lin L, Ledesma-Amaro R, Ji XJ. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in Yarrowia lipolytica. ACS Synth Biol 2023; 12:761-767. [PMID: 36789673 DOI: 10.1021/acssynbio.2c00550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The production of biodiesel using microbial lipids derived from renewable lignocellulosic biomass is considered a promising strategy to reduce environmental pressure and promote the green energy transition. The hydrolysates of lignocellulosic biomass are rich in glucose and xylose, which makes it crucial to efficiently utilize both sugars. Here, we combined metabolic engineering and adaptive laboratory evolution (ALE) to construct an engineered Yarrowia lipolytica strain that can efficiently produce lipids from glucose and xylose. First, the "Push-Pull-Block" strategy was adopted to increase lipid content to 73.42% of the dry cell weight (DCW). Then, a heterologous xylose-utilization pathway was integrated into the engineered strain, which was subjected to ALE. The final evolved strain could accumulate 53.64% DCW of lipids from xylose, and the lipid titer reached 16.25 g/L. This work sheds light on the potential of microbial lipid overproduction from lignocellulose using engineered Y. lipolytica.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lexin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yichun Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
15
|
Homologous High-Level Lipase and Single-Cell Protein Production with Engineered Yarrowia lipolytica via Scale-Up Fermentation for Industrial Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Yarrowia lipolytica is a promising feed additives. Here, we aimed to produce extracellular lipases and single-cell proteins (SCPs) at high levels simultaneously through fed-batch fermentation of engineered Y. lipolytica. The parameters for 500 mL shake flask cultures were optimized with a single factorial design. The resultant activity of lipase reached 880.6 U/mL after 84 h of fermentation, and 32.0 g/L fermentation broth of dry SCP was obtained at 120 h. To attain high SCP and lipase productivity, the high-density fed-batch fermentation of Y. lipolytica was scaled up in 10 L, 30 L, and 100 L fermentors. Using glycerol as the sole carbon source, the lipase activity peaked to 8083.3 U/mL, and the final dry SCP weight was 183.1 g/L at 94.6 h in 10 L fermentors. The extracellular lipase activity and SCP weight reached 11,100.0 U/mL and 173.3 g of dry SCP/L at 136 h in 30 L fermentors, respectively. Following 136 h of fed-batch fermentation, the extracellular lipase activity and dry SCP weight reached 8532.0 U/mL and 170.3 g/L in 100 L fermentors, respectively. A balance between the lipase secretion and growth of Y. lipolytica recombinant strain was achieved, indicating that an efficient fermentation strategy could promote further scale-up for industrial SCP production from engineered Y. lipolytica.
Collapse
|
16
|
Campos-Valdez A, Kirchmayr MR, Barrera-Martínez I, Casas-Godoy L. Sustainable production of single-cell oil and protein from wastepaper hydrolysate: identification and optimization of a Rhodotorula mucilaginosa strain as a promising yeast. FEMS Yeast Res 2023; 23:foad044. [PMID: 37796891 DOI: 10.1093/femsyr/foad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
This study investigated the potential of wastepaper hydrolysate as a sustainable and low-cost carbon source for single-cell oil and protein production, attending to the growing need for alternative feedstocks and waste management strategies. Wastepaper, characterized by its high carbohydrate content, was subjected to enzymatic and chemo-enzymatic treatments for carbohydrate release. The chemo-enzymatic treatment performed better, yielding 65.3 g l-1 of fermentable sugars. A total of 62 yeast strains were screened for single-cell oil accumulation, identifying Rhodotorula mucilaginosa M1K4 as the most advantageous oleaginous yeast. M1K4 lipid production was optimized in liquid culture, and its fatty acid profile was analyzed, showing a high content of industrially valuable fatty acids, particularly palmitic (28%) and oleic (51%). Batch-culture of M1K4 in a 3-l reactor demonstrated the strain's ability to utilize wastepaper hydrolysate as a carbon source, with dry cell weight, total lipid and protein production of 17.7 g l-1, 4.5 g l-1, and 2.1 g l-1, respectively. Wastepaper as a substrate provides a sustainable solution for waste management and bioproduction. This research highlights the potential of R. mucilaginosa for lipid and protein production from wastepaper hydrolysate.
Collapse
Affiliation(s)
- Amador Campos-Valdez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Industrial, Camino Arenero 1227, El Bajío, 45019 Zapopan, Jalisco, México
| | - Manuel R Kirchmayr
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Industrial, Camino Arenero 1227, El Bajío, 45019 Zapopan, Jalisco, México
| | - Iliana Barrera-Martínez
- CONAHCYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Industrial, Camino Arenero 1227, El Bajío, 45019 Zapopan, Jalisco, México
| | - Leticia Casas-Godoy
- CONAHCYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Industrial, Camino Arenero 1227, El Bajío, 45019 Zapopan, Jalisco, México
| |
Collapse
|
17
|
Optimization of Solvent Extraction of Lipids from Yarrowia lipolytica towards Industrial Applications. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extraction of intracellular lipids of the oleaginous yeast Yarrowia lipolytica has been systematically studied aiming towards a sustainable extraction process for lipid recovery. Selection of suitable industrial (bulk) solvents and extraction parameters that lead to maximization of lipid recovery are significant issues to be addressed, with industrial applications motivating this study. Biomass from fermentation of Yarrowia lipolytica (MUCL 28849) was used in small laboratory tests to assess different solvent mixtures (i.e., methanol/hexane, isopropanol/hexane, and methanol/ethyl acetate), implementing a systematic design of experiments methodology to identify near-optimum values of key extraction variables (i.e., polar/non-polar ratio, vortex time, dry biomass/solvent ratio) in regard to lipid yield (g lipids/g dry biomass). The methanol/hexane mixture exhibited the highest extraction yield in a wide range of experimental conditions, resulting in the following optimum parameters: polar/non-polar ratio 3/5, vortex time 0.75 h, and dry biomass/solvent ratio 40. Extraction tests on a fifty-times-larger scale (in a Soxhlet apparatus employing the optimal extraction parameters) confirmed the optimization outcome by obtaining up to 27.6% lipids per dry biomass (L/DB), compared to 12.1% L/DB with the reference lipid extraction method employing chloroform/methanol. Assessment of lipid composition showed that unsaturated fatty acid recovery was favored by the methanol/hexane solvent. Fatty acid composition was not affected by the increase in Soxhlet reflux cycles, whilst the lipid yield was notably favored.
Collapse
|
18
|
Gordillo Sierra AR, Amador-Castro LF, Ramírez-Partida AE, García-Cayuela T, Carrillo-Nieves D, Alper HS. Valorization of Caribbean Sargassum biomass as a source of alginate and sugars for de novo biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116364. [PMID: 36191503 DOI: 10.1016/j.jenvman.2022.116364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Since 2011, a massive influx of pelagic brown algae Sargassum has invaded coastlines causing environmental and economic disaster. Valorizing this plentiful macroalgae can present much needed economic relief to the areas affected. Here the production of biodiesel and a high-value alginate stream using Sargassum biomass collected from the coast of Quintana Roo, Mexico is reported. Biomass was pretreated via AEA (Alginate Extraction Autohydrolysis) and enzymatic saccharification via fungal Solid State Fermentation, releasing 7 g/L total sugars. The sugar mixture was fermented using engineered Yarrowia lipolytica resulting in 0.35 g/L total lipid titer at the lab tube scale. Additionally, the capability of extracting 0.3875 g/g DW of a high-value, purified alginate stream from this material is demonstrated. The findings presented here are promising and suggest an opportunity for the optimization and scale up of a biodiesel production biorefinery for utilization of Sargassum seaweeds during seasons of high invasion.
Collapse
Affiliation(s)
- Angela R Gordillo Sierra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Luis Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carrillo Biorefinery Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Andreé E Ramírez-Partida
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carrillo Biorefinery Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carrillo Biorefinery Lab, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA.
| |
Collapse
|
19
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Drzymała-Kapinos K, Mirończuk AM, Dobrowolski A. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. Microb Cell Fact 2022; 21:226. [PMID: 36307797 PMCID: PMC9617373 DOI: 10.1186/s12934-022-01951-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utilization of industrial wastes as feedstock in microbial-based processes is a one of the high-potential approach for the development of sustainable, environmentally beneficial and valuable bioproduction, inter alia, lipids. Rye straw hydrolysate, a possible renewable carbon source for bioconversion, contains a large amount of xylose, inaccessible to the wild-type Yarrowia lipolytica strains. Although these oleaginous yeasts possesses all crucial genes for xylose utilization, it is necessary to induce their metabolic pathway for efficient growth on xylose and mixed sugars from agricultural wastes. Either way, biotechnological production of single cell oils (SCO) from lignocellulosic hydrolysate requires yeast genome modification or adaptation to a suboptimal environment. RESULTS The presented Y. lipolytica strain was developed using minimal genome modification-overexpression of endogenous xylitol dehydrogenase (XDH) and xylulose kinase (XK) genes was sufficient to allow yeast to grow on xylose as a sole carbon source. Diacylglycerol acyltransferase (DGA1) expression remained stable and provided lipid overproduction. Obtained an engineered Y. lipolytica strain produced 5.51 g/L biomass and 2.19 g/L lipids from nitrogen-supplemented rye straw hydrolysate, which represents an increase of 64% and an almost 10 times higher level, respectively, compared to the wild type (WT) strain. Glucose and xylose were depleted after 120 h of fermentation. No increase in byproducts such as xylitol was observed. CONCLUSIONS Xylose-rich rye straw hydrolysate was exploited efficiently for the benefit of production of lipids. This study indicates that it is possible to fine-tune a newly strain with as minimally genetic changes as possible by adjusting to an unfavorable environment, thus limiting multi-level genome modification. It is documented here the use of Y. lipolytica as a microbial cell factory for lipid synthesis from rye straw hydrolysate as a low-cost feedstock.
Collapse
Affiliation(s)
- Katarzyna Drzymała-Kapinos
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland.,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland. .,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
21
|
Liu Y, Zhang J, Li Q, Wang Z, Cui Z, Su T, Lu X, Qi Q, Hou J. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:101. [PMID: 36192797 PMCID: PMC9528160 DOI: 10.1186/s13068-022-02201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND β-Farnesene is a sesquiterpene with versatile industrial applications. The production of β-farnesene from waste lipid feedstock is an attractive method for sustainable production and recycling waste oil. Yarrowia lipolytica is an unconventional oleaginous yeast, which can use lipid feedstock and has great potential to synthesize acetyl-CoA-derived chemicals. RESULTS In this study, we engineered Y. lipolytica to produce β-farnesene from lipid feedstock. To direct the flux of acetyl-CoA, which is generated from lipid β-oxidation, to β-farnesene synthesis, the mevalonate synthesis pathway was compartmentalized into peroxisomes. β-Farnesene production was then engineered by the protein engineering of β-farnesene synthase and pathway engineering. The regulation of lipid metabolism by enhancing β-oxidation and eliminating intracellular lipid synthesis was further performed to improve the β-farnesene synthesis. As a result, the final β-farnesene production with bio-engineering reached 35.2 g/L and 31.9 g/L using oleic acid and waste cooking oil, respectively, which are the highest β-farnesene titers reported in Y. lipolytica. CONCLUSIONS This study demonstrates that engineered Y. lipolytica could realize the sustainable production of value-added acetyl-CoA-derived chemicals from waste lipid feedstock.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
22
|
Chen S, Lu Y, Wang W, Hu Y, Wang J, Tang S, Lin CSK, Yang X. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain. Front Microbiol 2022; 13:960558. [PMID: 36212878 PMCID: PMC9532697 DOI: 10.3389/fmicb.2022.960558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study demonstrates the feasibility of establishing a natural compound supply chain in a biorefinery. The process starts with the biological or chemical hydrolysis of food and agricultural waste into simple and fermentative sugars, followed by their fermentation into more complex molecules. The yeast strain, Yarrowia lipolytica, was modified by introducing high membrane affinity variants of the carotenoid cleavage dioxygenase enzyme, PhCCD1, to increase the production of the aroma compound, β-ionone. The initial hydrolysis process converted food waste or sugarcane bagasse into nutrient-rich hydrolysates containing 78.4 g/L glucose and 8.3 g/L fructose, or 34.7 g/L glucose and 20.1 g/L xylose, respectively. During the next step, engineered Y. lipolytica strains were used to produce β-ionone from these feedstocks. The yeast strain YLBI3120, carrying a modified PhCCD1 gene was able to produce 4 g/L of β-ionone with a productivity of 13.9 mg/L/h from food waste hydrolysate. This is the highest yield reported for the fermentation of this compound to date. The integrated process described in this study could be scaled up to achieve economical large-scale conversion of inedible food and agricultural waste into valuable aroma compounds for a wide range of potential applications.
Collapse
Affiliation(s)
- Shuyi Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanping Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Technology Research Center, Wuliangye Yibin Company Limited, Yibin, Sichuan, China
- Postdoctoral Research Workstation, Sichuan Yibin Wuliangye Group Company Limited, Yibin, Sichuan, China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Yunzi Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, Boll HO, Nascimento CZSD, Andreou A, Vegh P, Donovan S, Fragkoudis R, Panke S, Wallace E, Elfick A, Rios-Solis L. Standardization of Synthetic Biology Tools and Assembly Methods for Saccharomyces cerevisiae and Emerging Yeast Species. ACS Synth Biol 2022; 11:2527-2547. [PMID: 35939789 PMCID: PMC9396660 DOI: 10.1021/acssynbio.1c00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
As redesigning organisms using engineering principles
is one of
the purposes of synthetic biology (SynBio), the standardization of
experimental methods and DNA parts is becoming increasingly a necessity.
The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this
area, conceiving several well-characterized SynBio toolkits widely
adopted by the community. In this review, the molecular methods and
toolkits developed for S. cerevisiae are discussed
in terms of their contributions to the required standardization efforts.
In addition, the toolkits designed for emerging nonconventional yeast
species including Yarrowia lipolytica, Komagataella
phaffii, and Kluyveromyces marxianus are
also reviewed. Without a doubt, the characterized DNA parts combined
with the standardized assembly strategies highlighted in these toolkits
have greatly contributed to the rapid development of many metabolic
engineering and diagnostics applications among others. Despite the
growing capacity in deploying synthetic biology for common yeast genome
engineering works, the yeast community has a long journey to go to
exploit it in more sophisticated and delicate applications like bioautomation.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Emma Watts
- School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3JW Edinburgh, United Kingdom
| | | | - Jamie Yam Auxillos
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Heloísa Oss Boll
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Federal District 70910-900, Brazil
| | | | - Andreas Andreou
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Peter Vegh
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sophie Donovan
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Edward Wallace
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
24
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
25
|
Bhutada G, Menard G, Bhunia RK, Hapeta PP, Ledesma-Amaro R, Eastmond PJ. Production of human milk fat substitute by engineered strains of Yarrowia lipolytica. Metab Eng Commun 2022; 14:e00192. [PMID: 35036316 PMCID: PMC8752951 DOI: 10.1016/j.mec.2022.e00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
Human milk fat has a distinctive stereoisomeric structure where palmitic acid is esterified to the middle (sn-2) position on the glycerol backbone of the triacylglycerol and unsaturated fatty acids to the outer (sn-1/3) positions. This configuration allows for more efficient nutrient absorption in the infant gut. However, the fat used in most infant formulas originates from plants, which exclude palmitic acid from the sn-2 position. Oleaginous yeasts provide an alternative source of lipids for human nutrition. However, these yeasts also exclude palmitic acid from the sn-2 position of their triacylglycerol. Here we show that Yarrowia lipolytica can be engineered to produce triacylglycerol with more than 60% of the palmitic acid in the sn-2 position, by expression of lysophosphatidic acid acyltransferases with palmitoyl-Coenzyme A specificity. The engineered Y. lipolytica strains can be cultured on glycerol, glucose, palm oil or a mixture of substrates, under nitrogen limited condition, to produce triacylglycerol with a fatty acid composition that resembles human milk fat, in terms of the major molecular species (palmitic, oleic and linoleic acids). Culture on palm oil or a mixture of glucose and palm oil produced the highest lipid titre and a triacylglycerol composition that is most similar with human milk fat. Our data show that an oleaginous yeast can be engineered to produce a human milk fat substitute (β-palmitate), that could be used as an ingredient in infant formulas.
Collapse
Affiliation(s)
- Govindprasad Bhutada
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Guillaume Menard
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Rupam Kumar Bhunia
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Piotr P. Hapeta
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Peter J. Eastmond
- Plant Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
26
|
Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. SUSTAINABILITY 2022. [DOI: 10.3390/su14105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Agro-industrial wastes can be used to obtain high-value compounds rich in antioxidant and antimicrobial activity. This study aimed to compare different extraction techniques for the recovery of sugars, antioxidants, and antimicrobial compounds from brewer’s spent grain (BSG), blue agave bagasse (BAB), spoiled blackberries (BB), and raspberries (RB). Aqueous (AQ), enzymatic (E), chemical-enzymatic (CE), and hydroalcoholic (EOH) extractions were assessed, and sugars, phenolics, flavonoids, and anthocyanin contents were quantified. Antioxidant activity of the extracts was evaluated using the ABTS and DPPH assays, and antimicrobial activity was tested against three yeasts and six bacteria. The CE process gave the highest total and reducing sugars content for the four residues tested, and the highest antioxidant activity, phenolics, flavonoids and anthocyanin content for BAB and BSG. Regarding BB and RB, the best treatment to obtain total and reducing sugars and antioxidant activity with ABTS was CE; the highest content of anthocyanins, phenolic, flavonoids and antioxidant activity with DPPH was obtained with EOH treatment. CE extracts of BSG and RB showed the highest inhibition against the strains studied. Results show that BSG, BB, and RB can be a source of antioxidants and antimicrobial compounds for the food and pharmaceutical industries. Depending on the desired application and component of interest, one of the extraction techniques evaluated here could be used.
Collapse
|
27
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
28
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
29
|
Chia SR, Nomanbhay S, Ong MY, Shamsuddin AHB, Chew KW, Show PL. Renewable diesel as fossil fuel substitution in Malaysia: A review. FUEL 2022; 314:123137. [DOI: 10.1016/j.fuel.2022.123137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
31
|
Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation. mSystems 2021; 6:e0044321. [PMID: 34342539 PMCID: PMC8407480 DOI: 10.1128/msystems.00443-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yarrowia lipolytica is an oleaginous yeast exhibiting robust phenotypes beneficial for industrial biotechnology. The phenotypic diversity found within the undomesticated Y. lipolytica clade from various origins illuminates desirable phenotypic traits not found in the conventional laboratory strain CBS7504 (or W29), which include xylose utilization, lipid accumulation, and growth on undetoxified biomass hydrolysates. Currently, the related phenotypes of lipid accumulation and degradation when metabolizing nonpreferred sugars (e.g., xylose) associated with biomass hydrolysates are poorly understood, making it difficult to control and engineer in Y. lipolytica. To fill this knowledge gap, we analyzed the genetic diversity of five undomesticated Y. lipolytica strains and identified singleton genes and genes exclusively shared by strains exhibiting desirable phenotypes. Strain characterizations from controlled bioreactor cultures revealed that the undomesticated strain YB420 used xylose to support cell growth and maintained high lipid levels, while the conventional strain CBS7504 degraded cell biomass and lipids when xylose was the sole remaining carbon source. From proteomic analysis, we identified carbohydrate transporters, xylose metabolic enzymes, and pentose phosphate pathway proteins stimulated during the xylose uptake stage for both strains. Furthermore, we distinguished proteins involved in lipid metabolism (e.g., lipase, NADPH generation, lipid regulators, and β-oxidation) activated by YB420 (lipid maintenance phenotype) or CBS7504 (lipid degradation phenotype) when xylose was the sole remaining carbon source. Overall, the results relate genetic diversity of undomesticated Y. lipolytica strains to complex phenotypes of superior growth, sugar utilization, lipid accumulation, and degradation in biomass hydrolysates. IMPORTANCE Yarrowia lipolytica is an important industrial oleaginous yeast due to its robust phenotypes for effective conversion of inhibitory lignocellulosic biomass hydrolysates into neutral lipids. While lipid accumulation has been well characterized in this organism, its interconnected lipid degradation phenotype is poorly understood during fermentation of biomass hydrolysates. Our investigation into the genetic diversity of undomesticated Y. lipolytica strains, coupled with detailed strain characterization and proteomic analysis, revealed metabolic processes and regulatory elements conferring desirable phenotypes for growth, sugar utilization, and lipid accumulation in undetoxified biomass hydrolysates by these natural variants. This study provides a better understanding of the robust metabolism of Y. lipolytica and suggests potential metabolic engineering strategies to enhance its performance.
Collapse
|
32
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
33
|
Wernig F, Baumann L, Boles E, Oreb M. Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnol Bioeng 2021; 118:3046-3057. [PMID: 34003487 DOI: 10.1002/bit.27814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 11/12/2022]
Abstract
The eight-carbon fatty acid octanoic acid (OA) is an important platform chemical and precursor of many industrially relevant products. Its microbial biosynthesis is regarded as a promising alternative to current unsustainable production methods. In Saccharomyces cerevisiae, the production of OA had been previously achieved by rational engineering of the fatty acid synthase. For the supply of the precursor molecule acetyl-CoA and of the redox cofactor NADPH, the native pyruvate dehydrogenase bypass had been harnessed, or the cells had been additionally provided with a pathway involving a heterologous ATP-citrate lyase. Here, we redirected the flux of glucose towards the oxidative branch of the pentose phosphate pathway and overexpressed a heterologous phosphoketolase/phosphotransacetylase shunt to improve the supply of NADPH and acetyl-CoA in a strain background with abolished OA degradation. We show that these modifications lead to an increased yield of OA during the consumption of glucose by more than 60% compared to the parental strain. Furthermore, we investigated different genetic engineering targets to identify potential factors that limit the OA production in yeast. Toxicity assays performed with the engineered strains suggest that the inhibitory effects of OA on cell growth likely impose an upper limit to attainable OA yields.
Collapse
Affiliation(s)
- Florian Wernig
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Leonie Baumann
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eckhard Boles
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mislav Oreb
- Department of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Kamineni A, Consiglio AL, MacEwen K, Chen S, Chifamba G, Shaw AJ, Tsakraklides V. Increasing lipid yield in Yarrowia lipolytica through phosphoketolase and phosphotransacetylase expression in a phosphofructokinase deletion strain. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:113. [PMID: 33947437 PMCID: PMC8094482 DOI: 10.1186/s13068-021-01962-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/21/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lipids are important precursors in the biofuel and oleochemical industries. Yarrowia lipolytica is among the most extensively studied oleaginous microorganisms and has been a focus of metabolic engineering to improve lipid production. Yield improvement, through rewiring of the central carbon metabolism of Y. lipolytica from glucose to the lipid precursor acetyl-CoA, is a key strategy for achieving commercial success in this organism. RESULTS Building on YB-392, a Y. lipolytica isolate known for stable non-hyphal growth and low citrate production with demonstrated potential for high lipid accumulation, we assembled a heterologous pathway that redirects carbon flux from glucose through the pentose phosphate pathway (PPP) to acetyl-CoA. We used phosphofructokinase (Pfk) deletion to block glycolysis and expressed two non-native enzymes, phosphoketolase (Xpk) and phosphotransacetylase (Pta), to convert PPP-produced xylulose-5-P to acetyl-CoA. Introduction of the pathway in a pfk deletion strain that is unable to grow and accumulate lipid from glucose in defined media ensured maximal redirection of carbon flux through Xpk/Pta. Expression of Xpk and Pta restored growth and lipid production from glucose. In 1-L bioreactors, the engineered strains recorded improved lipid yield and cell-specific productivity by up to 19 and 78%, respectively. CONCLUSIONS Yields and cell-specific productivities are important bioprocess parameters for large-scale lipid fermentations. Improving these parameters by engineering the Xpk/Pta pathway is an important step towards developing Y. lipolytica as an industrially preferred microbial biocatalyst for lipid production.
Collapse
Affiliation(s)
| | | | - Kyle MacEwen
- Ginkgo Bioworks, 27 Drydock Ave, Boston, Massachusetts, United States
| | - Shuyan Chen
- Ginkgo Bioworks, 27 Drydock Ave, Boston, Massachusetts, United States
| | | | | | | |
Collapse
|
35
|
Konzock O, Zaghen S, Norbeck J. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates. BMC Microbiol 2021; 21:77. [PMID: 33685391 PMCID: PMC7938539 DOI: 10.1186/s12866-021-02126-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lignocellulosic material is a suitable renewable carbon and energy source for microbial cell factories, such as Yarrowia lipolytica. To be accessible for microorganisms, the constituent sugars need to be released in a hydrolysis step, which as a side effect leads to the formation of various inhibitory compounds. However, the effects of these inhibitory compounds on the growth of Y. lipolytica have not been thoroughly investigated. RESULTS Here we show the individual and combined effect of six inhibitors from three major inhibitor groups on the growth of Y. lipolytica. We engineered a xylose consuming strain by overexpressing the three native genes XR, XDH, and XK and found that the inhibitor tolerance of Y. lipolytica is similar in glucose and in xylose. Aromatic compounds could be tolerated at high concentrations, while furfural linearly increased the lag phase of the cultivation, and hydroxymethylfurfural only inhibited growth partially. The furfural induced increase in lag phase can be overcome by an increased volume of inoculum. Formic acid only affected growth at concentrations above 25 mM. In a synthetic hydrolysate, formic acid, furfural, and coniferyl aldehyde were identified as the major growth inhibitors. CONCLUSION We showed the individual and combined effect of inhibitors found in hydrolysate on the growth of Y. lipolytica. Our study improves understanding of the growth limiting inhibitors found in hydrolysate and enables a more targeted engineering approach to increase the inhibitor tolerance of Y. lipolytica. This will help to improve the usage of Y. lipolytica as a sustainable microbial cell factory.
Collapse
Affiliation(s)
- Oliver Konzock
- Department of Biology and Biological Engineering, division of Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden
| | - Simone Zaghen
- Department of Biology and Biological Engineering, division of Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden
| | - Joakim Norbeck
- Department of Biology and Biological Engineering, division of Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
36
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: Outlook and challenges. BIORESOURCE TECHNOLOGY 2021; 323:124612. [PMID: 33418352 DOI: 10.1016/j.biortech.2020.124612] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial lipids have recently drawn a lot of attention as renewable sources for biochemicals production. Strong research efforts have been addressed to efficiently use organic wastes as carbon source for microbial lipids, which would definitively increase the profitability of the production process and boost a bio-based economy. This review compiles interesting traits of oleaginous microorganisms and highlights current trends on microbial- and process-oriented approaches to maximize microbial oil production from inexpensive substrates like lignocellulosic sugars, volatile fatty acids and glycerol. Furthermore, downstream processes such as cell harvesting or lipid extraction, that are decisive for the cost-effectiveness of the process, are discussed. To underpin microbial oils within the so demanded circular economy, associated challenges, recent advances and possible industrial applications that are also identified in this review.
Collapse
Affiliation(s)
- E Tomás-Pejó
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain.
| | - S Morales-Palomo
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| | - C González-Fernández
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| |
Collapse
|
38
|
Wei LJ, Zhong YT, Nie MY, Liu SC, Hua Q. Biosynthesis of α-Pinene by Genetically Engineered Yarrowia lipolytica from Low-Cost Renewable Feedstocks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:275-285. [PMID: 33356235 DOI: 10.1021/acs.jafc.0c06504] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
α-Pinene, an important biologically active natural monoterpene, has been widely used in fragrances, medicines, and fine chemicals, especially, in high-density renewable fuels such as jet fuel. The development of an α-pinene production platform in a highly modifiable microbe from renewable substitute feedstocks could lead to a green, economical avenue, and sustainable biotechnological process for the biosynthesis of α-pinene. Here, we report engineering of an orthogonal biosynthetic pathway for efficient production of α-pinene in oleaginous yeast Yarrowia lipolytica that resulted in an α-pinene titer of 19.6 mg/L when using glucose as the sole carbon source, a significant 218-fold improvement than the initial titer. In addition, the potential of using waste cooking oil and lignocellulosic hydrolysate as carbon sources for α-pinene production from the engineered Y. lipolytica strains was analyzed. The results indicated that α-pinene titers of 33.8 and 36.1 mg/L were successfully obtained in waste cooking oil and lignocellulosic hydrolysate medium, thereby representing the highest titer reported to date in yeast. To our knowledge, this is also the first report related to microbial production of α-pinene from waste cooking oil and lignocellulosic hydrolysate.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yu-Tao Zhong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ming-Yue Nie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
39
|
Zhang Y, Nielsen J, Liu Z. Yeast based biorefineries for oleochemical production. Curr Opin Biotechnol 2020; 67:26-34. [PMID: 33360103 DOI: 10.1016/j.copbio.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Biosynthesis of oleochemicals enables sustainable production of natural and unnatural alternatives from renewable feedstocks. Yeast cell factories have been extensively studied and engineered to produce a variety of oleochemicals, focusing on both central carbon metabolism and lipid metabolism. Here, we review recent progress towards oleochemical synthesis in yeast based biorefineries, as well as utilization of alternative renewable feedstocks, such as xylose and l-arabinose. We also review recent studies of C1 compound utilization or co-utilization and discuss how these studies can lead to third generation yeast based biorefineries for oleochemical production.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark.
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
40
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
41
|
Lee JW, Yook S, Koh H, Rao CV, Jin YS. Engineering xylose metabolism in yeasts to produce biofuels and chemicals. Curr Opin Biotechnol 2020; 67:15-25. [PMID: 33246131 DOI: 10.1016/j.copbio.2020.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Abstract
Xylose is the second most abundant sugar in lignocellulosic biomass. Efficient and rapid xylose utilization is essential for the economic bioconversion of lignocellulosic biomass into value-added products. Building on previous pathway engineering efforts to enable xylose fermentation in Saccharomyces cerevisiae, recent work has focused on reprogramming regulatory networks to enhance xylose utilization by engineered S. cerevisiae. Also, potential benefits of using xylose for the production of various value-added products have been demonstrated. With increasing needs of lipid-derived bioproducts, activation and enhancement of xylose metabolism in oleaginous yeasts have been attempted. This review highlights recent progress of metabolic engineering to achieve efficient and rapid xylose utilization by S. cerevisiae and oleaginous yeasts, such as Yarrowia lipolytica, Rhodosporidium toruloides, and Lipomyces starkeyi.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangdo Yook
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyungi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
42
|
Lacerda MP, Oh EJ, Eckert C. The Model System Saccharomyces cerevisiae Versus Emerging Non-Model Yeasts for the Production of Biofuels. Life (Basel) 2020; 10:E299. [PMID: 33233378 PMCID: PMC7700301 DOI: 10.3390/life10110299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganisms are effective platforms for the production of a variety of chemicals including biofuels, commodity chemicals, polymers and other natural products. However, deep cellular understanding is required for improvement of current biofuel cell factories to truly transform the Bioeconomy. Modifications in microbial metabolic pathways and increased resistance to various types of stress caused by the production of these chemicals are crucial in the generation of robust and efficient production hosts. Recent advances in systems and synthetic biology provide new tools for metabolic engineering to design strategies and construct optimal biocatalysts for the sustainable production of desired chemicals, especially in the case of ethanol and fatty acid production. Yeast is an efficient producer of bioethanol and most of the available synthetic biology tools have been developed for the industrial yeast Saccharomyces cerevisiae. Non-conventional yeast systems have several advantageous characteristics that are not easily engineered such as ethanol tolerance, low pH tolerance, thermotolerance, inhibitor tolerance, genetic diversity and so forth. Currently, synthetic biology is still in its initial steps for studies in non-conventional yeasts such as Yarrowia lipolytica, Kluyveromyces marxianus, Issatchenkia orientalis and Pichia pastoris. Therefore, the development and application of advanced synthetic engineering tools must also focus on these underexploited, non-conventional yeast species. Herein, we review the basic synthetic biology tools that can be applied to the standard S. cerevisiae model strain, as well as those that have been developed for non-conventional yeasts. In addition, we will discuss the recent advances employed to develop non-conventional yeast strains that are efficient for the production of a variety of chemicals through the use of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Maria Priscila Lacerda
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Carrie Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
- National Renewable Energy Laboratory (NREL), Biosciences Center, Golden, CO 80401, USA
| |
Collapse
|
43
|
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A Review. BIORESOURCE TECHNOLOGY 2020; 313:123707. [PMID: 32595069 DOI: 10.1016/j.biortech.2020.123707] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
44
|
Cho IJ, Choi KR, Lee SY. Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol 2020; 65:129-141. [DOI: 10.1016/j.copbio.2020.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
45
|
de Lorenzo V, Krasnogor N, Schmidt M. For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! N Biotechnol 2020; 60:44-51. [PMID: 32889152 DOI: 10.1016/j.nbt.2020.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
At the onset of the 4th Industrial Revolution, the role of synthetic biology (SynBio) as a fuel for the bioeconomy requires clarification of the terms typically adopted by this growing scientific-technical field. The concept of the chassis as a defined, reusable biological frame where non-native components can be plugged in and out to create new functionalities lies at the boundary between frontline bioengineering and more traditional recombinant DNA technology. As synthetic biology leaves academic laboratories and starts penetrating industrial and environmental realms regulatory agencies demand clear definitions and descriptions of SynBio constituents, processes and products. In this article, the state of the ongoing discussion on what is a chassis is reviewed, a non-equivocal nomenclature for the jargon used is proposed and objective criteria are recommended for distinguishing SynBio agents from traditional GMOs. The use of genomic barcodes as unique identifiers is strongly advocated. Finally the soil bacterium Pseudomonas putida is shown as an example of the roadmap that one environmental isolate may go through to become a bona fide SynBio chassis.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC) Madrid 28049, Spain.
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) research group, Newcastle University, Newcastle Upon Tyne NE4 5TG UK
| | | |
Collapse
|
46
|
Pinheiro MJ, Bonturi N, Belouah I, Miranda EA, Lahtvee PJ. Xylose Metabolism and the Effect of Oxidative Stress on Lipid and Carotenoid Production in Rhodotorula toruloides: Insights for Future Biorefinery. Front Bioeng Biotechnol 2020; 8:1008. [PMID: 32974324 PMCID: PMC7466555 DOI: 10.3389/fbioe.2020.01008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 12/04/2022] Open
Abstract
The use of cell factories to convert sugars from lignocellulosic biomass into chemicals in which oleochemicals and food additives, such as carotenoids, is essential for the shift toward sustainable processes. Rhodotorula toruloides is a yeast that naturally metabolises a wide range of substrates, including lignocellulosic hydrolysates, and converts them into lipids and carotenoids. In this study, xylose, the main component of hemicellulose, was used as the sole substrate for R. toruloides, and a detailed physiology characterisation combined with absolute proteomics and genome-scale metabolic models was carried out to understand the regulation of lipid and carotenoid production. To improve these productions, oxidative stress was induced by hydrogen peroxide and light irradiation and further enhanced by adaptive laboratory evolution. Based on the online measurements of growth and CO2 excretion, three distinct growth phases were identified during batch cultivations. Majority of the intracellular flux estimations showed similar trends with the measured protein levels and demonstrated improved NADPH regeneration, phosphoketolase activity and reduced β-oxidation, correlating with increasing lipid yields. Light irradiation resulted in 70% higher carotenoid and 40% higher lipid content compared to the optimal growth conditions. The presence of hydrogen peroxide did not affect the carotenoid production but culminated in the highest lipid content of 0.65 g/gDCW. The adapted strain showed improved fitness and 2.3-fold higher carotenoid content than the parental strain. This work presents a holistic view of xylose conversion into microbial oil and carotenoids by R. toruloides, in a process toward renewable and cost-effective production of these molecules.
Collapse
Affiliation(s)
- Marina Julio Pinheiro
- Institute of Technology, University of Tartu, Tartu, Estonia
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | | - Isma Belouah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Everson Alves Miranda
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
47
|
Patterns of Lignocellulosic Sugar Assimilation and Lipid Production by Newly Isolated Yeast Strains From Chilean Valdivian Forest. Appl Biochem Biotechnol 2020; 192:1124-1146. [PMID: 32700200 DOI: 10.1007/s12010-020-03398-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Three yeast strains were isolated from decaying wood of Chilean Valdivian forest and identified as Meyerozyma guilliermondii, Scheffersomyces coipomensis, and Sugiyamaella paludigena. These strains were able to efficiently grow on the major monomers contained in Pinus spp. and Eucalyptus spp. wood that includes glucose (Glc), xylose (Xyl), and mannose (Man), showing at 28 °C higher uptake rates for Man, and in some cases for Glc, than for Xyl, used as single carbon sources. Nevertheless, in cultures performed on sugar mixtures, the strains displayed a notable preference for Glc. Additionally, in sugar mixtures, the absence of regulatory mechanisms in sugar assimilation (e.g., catabolic repression) was observed and documented when the activities of several enzymes involved in sugar assimilation (i.e., phosphoglucose isomerase, phosphomannose isomerase, and xylulokinase) were determined. The activity of the key enzymes involved in the onset of lipid accumulation (i.e., NAD+-ICDH) and in fatty acid (FA) biosynthesis (i.e., ATP:CL) indicated a significant accumulation of storage lipids (i.e., up to 24%, w/w) containing oleic and palmitic acids as the major components. The present paper is the first report on the potential of M. guilliermondii, S. coipomensis, and S. paludigena as oleaginous yeasts. We conclude that the new isolates, being able to simultaneously assimilate the major lignocellulosic sugars and efficiently convert them into oily biomass, present a biotechnological potential which deserve further investigation.
Collapse
|
48
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
49
|
Prabhu AA, Ledesma-Amaro R, Lin CSK, Coulon F, Thakur VK, Kumar V. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:113. [PMID: 32607128 PMCID: PMC7321536 DOI: 10.1186/s13068-020-01747-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Xylose is the most prevalent sugar available in hemicellulose fraction of lignocellulosic biomass (LCB) and of great interest for the green economy. Unfortunately, most of the cell factories cannot inherently metabolize xylose as sole carbon source. Yarrowia lipolytica is a non-conventional yeast that produces industrially important metabolites. The yeast is able to metabolize a large variety of substrates including both hydrophilic and hydrophobic carbon sources. However, Y. lipolytica lacks effective metabolic pathway for xylose uptake and only scarce information is available on utilization of xylose. For the economica feasibility of LCB-based biorefineries, effective utilization of both pentose and hexose sugars is obligatory. RESULTS In the present study, succinic acid (SA) production from xylose by Y. lipolytica was examined. To this end, Y. lipolytica PSA02004 strain was engineered by overexpressing pentose pathway cassette comprising xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulose kinase (XK) gene. The recombinant strain exhibited a robust growth on xylose as sole carbon source and produced substantial amount of SA. The inhibition of cell growth and SA formation was observed above 60 g/L xylose concentration. The batch cultivation of the recombinant strain in a bioreactor resulted in a maximum biomass concentration of 7.3 g/L and SA titer of 11.2 g/L with the yield of 0.19 g/g. Similar results in terms of cell growth and SA production were obtained with xylose-rich hydrolysate derived from sugarcane bagasse. The fed-batch fermentation yielded biomass concentration of 11.8 g/L (OD600: 56.1) and SA titer of 22.3 g/L with a gradual decrease in pH below 4.0. Acetic acid was obtained as a main by-product in all the fermentations. CONCLUSION The recombinant strain displayed potential for bioconversion of xylose to SA. Further, this study provided a new insight on conversion of lignocellulosic biomass into value-added products. To the best of our knowledge, this is the first study on SA production by Y. lipolytica using xylose as a sole carbon source.
Collapse
Affiliation(s)
- Ashish A. Prabhu
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Edinburgh, UK
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL UK
| |
Collapse
|
50
|
Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica. Microb Cell Fact 2020; 19:121. [PMID: 32493445 PMCID: PMC7271524 DOI: 10.1186/s12934-020-01378-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022] Open
Abstract
Background Xylitol is a commercially important chemical with multiple applications in the food and pharmaceutical industries. According to the US Department of Energy, xylitol is one of the top twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however, expensive and energy intensive. In contrast, the biological route using microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts and biomass which can be sourced from renewable carbon originating from a variety of cheap waste feedstocks. Result In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica, an oleaginous yeast which was firstly grown on a glycerol/glucose for screening of co-substrate, followed by media optimisation in shake flask, scale up in bioreactor and downstream processing of xylitol. A two-step medium optimization was employed using central composite design and artificial neural network coupled with genetic algorithm. The yeast amassed a concentration of 53.2 g/L xylitol using pure glycerol (PG) and xylose with a bioconversion yield of 0.97 g/g. Similar results were obtained when PG was substituted with crude glycerol (CG) from the biodiesel industry (titer: 50.5 g/L; yield: 0.92 g/g). Even when xylose from sugarcane bagasse hydrolysate was used as opposed to pure xylose, a xylitol yield of 0.54 g/g was achieved. Xylitol was successfully crystallized from PG/xylose and CG/xylose fermentation broths with a recovery of 39.5 and 35.3%, respectively. Conclusion To the best of the author’s knowledge, this study demonstrates for the first time the potential of using Y. lipolytica as a microbial cell factory for xylitol synthesis from inexpensive feedstocks. The results obtained are competitive with other xylitol producing organisms.![]()
Collapse
|