1
|
Shams S, Ahmed S, Smaje D, Tengsuttiwat T, Lima C, Goodacre R, Muhamadali H. Application of infrared spectroscopy to study carbon-deuterium kinetics and isotopic spectral shifts at the single-cell level. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125374. [PMID: 39522229 DOI: 10.1016/j.saa.2024.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microbial communities play crucial roles in shaping natural ecosystems, impacting human well-being, and driving advancements in industrial biotechnology. However, associating specific metabolic functions with bacteria proves challenging due to the vast diversity of microorganisms within these communities. In the past decades stable isotope probing (SIP) approaches, coupled with vibrational spectroscopy, have emerged as a novel method for revealing microbial metabolic roles and interactions in complex communities. In this study, we employed various combinations of heavy stable isotopes (D, 13C, 15N, and 18O), to evaluate all possible isotopic spectral shifts in the mid-IR region using Fourier-Transform Infrared (FT-IR) and Optical Photothermal Infrared (O-PTIR) spectroscopy, at both community and single-cell levels. Additionally, we conducted a time-course study to explore the kinetics of CD vibration in Escherichia coli bacteria, allowing time-based sampling and assessment of isotopic labeling kinetics. The FT-IR and O-PTIR, along with the second derivative spectra of E. coli cells cultured in minimal medium supplemented with various combinations of heavy isotopes exhibited notable similarities. Several spectral shifts in primary vibrational peaks were observed due to the incorporation of heavy isotopes into various biomolecules. Remarkably, the incorporation of deuterium into amide groups, resulting in the formation of nitrogen-deuterium bonds, caused a shift in amide A and B into the silent region, overlapping with CD signature peaks. The incorporation of 18O into the ester group of lipids and the carbonyl group of proteins resulted in a notable shift to the lower wavenumber region. Additionally, the second derivative of FT-IR spectral data highlighted the integration of 18O into α-helix and β-sheet structures. Furthermore, the spectra, second derivative, and PC-DFA scores and loadings plot of FT-IR data collectively illustrated the practicality of monitoring 13C and D incorporation into E. coli bacterial cells within the first 30-min incubation period. The findings of this study suggest that FT-IR and O-PTIR can serve as efficient tools for monitoring the incorporation of heavy isotopes into bacteria at both the population and single-cell levels. Additionally, the SIP approach allowed us to assign two new deuterium-associated vibrational peaks to their corresponding functional groups, which to the best of our knowledge have not been reported previously.
Collapse
Affiliation(s)
- Sahand Shams
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Kurdistan Region, Iraq
| | - Daniel Smaje
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Thanyaporn Tengsuttiwat
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
2
|
Schäfer KJ, Aras M, Boles E, Kayser O. Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:141. [PMID: 39633477 PMCID: PMC11616333 DOI: 10.1186/s13068-024-02586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Medium chain fatty acids (MCFAs) are valuable platform compounds for the production of biotechnologically relevant chemicals such as biofuels and biochemicals. Two distinct pathways have been implemented in the yeast Saccharomyces cerevisiae for the biosynthetic production of MCFAs: (i) the mutant fatty acid biosynthesis (FAB) pathway in which the fatty acid synthase (FAS) complex is mutated and (ii) a heterologous multispecies-derived reverse β-oxidation (rBOX) pathway. Hexanoic acid has become of great interest as its acyl-CoA ester, hexanoyl-CoA, is required for the biosynthesis of olivetolic acid (OA), a cannabinoid precursor. Due to insufficient endogenous synthesis of hexanoyl-CoA, recombinant microbial systems to date require exogenous supplementation of cultures with hexanoate along with the overexpression of an acyl-CoA ligase to allow cannabinoid biosynthesis. Here, we engineer a recombinant S. cerevisiae strain which was metabolically optimized for the production of hexanoic acid via the FAB and rBOX pathways and we combine both pathways in a single strain to achieve titers of up to 120 mg L-1. Moreover, we demonstrate the biosynthesis of up to 15 mg L-1 OA from glucose using hexanoyl-CoA derived from the rBOX pathway.
Collapse
Affiliation(s)
- Kilan J Schäfer
- Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany
- Institute of Molecular Biosciences, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Marco Aras
- Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Oliver Kayser
- Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Pan H, Wei L, Zhao H, Xiao Y, Li Z, Ding H. Perception of the Biocontrol Potential and Palmitic Acid Biosynthesis Pathway of Bacillus subtilis H2 through Merging Genome Mining with Chemical Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4834-4848. [PMID: 38401001 DOI: 10.1021/acs.jafc.3c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Bacillus has been widely studied for its potential to protect plants from pathogens. Here, we report the whole genome sequence of Bacillus subtilis H2, which was isolated from the tea garden soil of Guiyang Forest Park. Strain H2 showed a broad spectrum of antagonistic activities against many plant fungal pathogens and bacteria pathogens, including the rice blast fungus Magnaporthe oryzae, and showed a good field control effect against rice blast. The complete genome of B. subtilis H2 contained a 4,160,635-bp circular chromosome, with an average G + C content of 43.78%. Through the genome mining of strain H2, we identified 7 known antimicrobial compound biosynthetic gene clusters (BGCs) including sporulation killing factor, surfactin, bacillaene, fengycin, bacillibactin, subtilosin A, and bacilysin. Palmitic acid (PA), a secondary metabolite, was detected and identified in the H2 strain through genome mining analysis and gas chromatography-mass spectrometry (GC-MS). Additionally, we propose, for the first time, that the type II fatty acid synthesis (FAS) pathway in Bacillus is responsible for PA biosynthesis. This finding was confirmed by studying the antimicrobial activity of PA and conducting reverse transcription-quantitative polymerase chain reaction (RT-qPCR) experiments. We also identified numerous genes associated with plant-bacteria interactions in the H2 genome, including more than 94 colonization-related genes, more than 34 antimicrobial genes, and more than 13 plant growth-promoting genes. These findings contribute to our understanding of the biocontrol mechanisms of B. subtilis H2 and have potential applications in crop disease control.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang 550004, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Rajendran S, Silcock P, Bremer P. Flavour Volatiles of Fermented Vegetable and Fruit Substrates: A Review. Molecules 2023; 28:3236. [PMID: 37049998 PMCID: PMC10096934 DOI: 10.3390/molecules28073236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Health, environmental and ethical concerns have resulted in a dramatic increase in demand for plant-based dairy analogues. While the volatile organic compounds (VOCs) responsible for the characteristic flavours of dairy-based products have been extensively studied, little is known about how to reproduce such flavours using only plant-based substrates. As a first step in their development, this review provides an overview of the VOCs associated with fermented (bacteria and/or fungi/yeast) vegetable and fruit substrates. Following PRISMA guidelines and using two English databases (Web of Science and Scopus), thirty-five suitable research papers were identified. The number of fermentation-derived VOCs detected ranged from 32 to 118 (across 30 papers), while 5 papers detected fewer (10 to 25). Bacteria, including lactic acid bacteria (LAB), fungi, and yeast were the micro-organisms used, with LAB being the most commonly reported. Ten studies used a single species, 21 studies used a single type (bacteria, fungi or yeast) of micro-organisms and four studies used mixed fermentation. The nature of the fermentation-derived VOCs detected (alcohols, aldehydes, esters, ketones, acids, terpenes and norisoprenoids, phenols, furans, sulphur compounds, alkenes, alkanes, and benzene derivatives) was dependent on the composition of the vegetable/fruit matrix, the micro-organisms involved, and the fermentation conditions.
Collapse
Affiliation(s)
- Sarathadevi Rajendran
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 42400, Sri Lanka
| | - Patrick Silcock
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Mains K, Peoples J, Fox JM. Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metab Eng 2021; 69:209-220. [PMID: 34826644 DOI: 10.1016/j.ymben.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes-a promiscuous thioesterase and a ketoacyl synthase-can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jackson Peoples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
6
|
Sawant N, Singh H, Appukuttan D. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Mol Biotechnol 2021; 64:373-387. [PMID: 34796451 DOI: 10.1007/s12033-021-00426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic view of various stresses caused due to fatty acid overproduction in E. coli. It also addresses how certain stresses like high temperature and nitrogen limitation can boost fatty acid production. This review paper also highlights the interconnections that exist between these stresses.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.
| | - Deepti Appukuttan
- Biosystems Engineering Lab, Department of Chemical Engineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
7
|
Wu Q, Jiang Y, Chen Y, Liu M, Bao X, Guo W. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. BIORESOURCE TECHNOLOGY 2021; 340:125633. [PMID: 34315125 DOI: 10.1016/j.biortech.2021.125633] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Medium chain fatty acids (MCFAs) that produced from affordable waste biomass via chain elongation (CE) technology are recognized as the potential alternatives to part fossil-derived chemicals, contributing to the sustainable development of economy and environment. The purpose of this review is to provide comprehensive analyses on the opportunities and challenges of MCFAs production and application. First, both two microbial MCFAs synthesis pathways of reverse β-oxidation and fatty acid biosynthesis were introduced/compared in detail to give readers a thorough understanding of the CE process, with the expectation of further boosting MCFAs production by well distinguishing them. Furthermore, the six key MCFAs production bottlenecks, corresponding research progresses, and possible solutions were analyzed. Five major MCFAs production strategies with their production mechanism, performances, and characteristics were also critically assessed. Additionally, the commercial production status was introduced, and future alternative production mode and research priorities were also recommended.
Collapse
Affiliation(s)
- Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Fermentation of Organic Residues to Beneficial Chemicals: A Review of Medium-Chain Fatty Acid Production. Processes (Basel) 2020. [DOI: 10.3390/pr8121571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medium-chain fatty acids (MCFAs) have a variety of uses in the production of industrial chemicals, food, and personal care products. These compounds are often produced through palm refining, but recent work has demonstrated that MCFAs can also be produced through the fermentation of complex organic substrates, including organic waste streams. While “chain elongation” offers a renewable platform for producing MCFAs, there are several limitations that need to be addressed before full-scale implementation becomes widespread. Here, we review the history of work on MCFA production by both pure and mixed cultures of fermenting organisms, and the unique metabolic features that lead to MCFA production. We also offer approaches to address the remaining challenges and increase MCFA production from renewable feedstocks.
Collapse
|
9
|
Antonakoudis A, Barbosa R, Kotidis P, Kontoravdi C. The era of big data: Genome-scale modelling meets machine learning. Comput Struct Biotechnol J 2020; 18:3287-3300. [PMID: 33240470 PMCID: PMC7663219 DOI: 10.1016/j.csbj.2020.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
With omics data being generated at an unprecedented rate, genome-scale modelling has become pivotal in its organisation and analysis. However, machine learning methods have been gaining ground in cases where knowledge is insufficient to represent the mechanisms underlying such data or as a means for data curation prior to attempting mechanistic modelling. We discuss the latest advances in genome-scale modelling and the development of optimisation algorithms for network and error reduction, intracellular constraining and applications to strain design. We further review applications of supervised and unsupervised machine learning methods to omics datasets from microbial and mammalian cell systems and present efforts to harness the potential of both modelling approaches through hybrid modelling.
Collapse
Affiliation(s)
| | | | | | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Luo J, Efimova E, Losoi P, Santala V, Santala S. Wax ester production in nitrogen-rich conditions by metabolically engineered Acinetobacter baylyi ADP1. Metab Eng Commun 2020; 10:e00128. [PMID: 32477866 PMCID: PMC7251950 DOI: 10.1016/j.mec.2020.e00128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering can be used as a powerful tool to redirect cell resources towards product synthesis, also in conditions that are not optimal for the production. An example of synthesis strongly dependent on external conditions is the production of storage lipids, which typically requires a high carbon/nitrogen ratio. This requirement also limits the use of abundant nitrogen-rich materials, such as industrial protein by-products, as substrates for lipid production. Acinetobacter baylyi ADP1 is known for its ability to produce industrially interesting storage lipids, namely wax esters (WEs). Here, we engineered A. baylyi ADP1 by deleting the gene aceA encoding for isocitrate lyase and overexpressing fatty acyl-CoA reductase Acr1 in the wax ester production pathway to allow redirection of carbon towards WEs. This strategy led to 3-fold improvement in yield (0.075 g/g glucose) and 3.15-fold improvement in titer (1.82 g/L) and productivity (0.038 g/L/h) by a simple one-stage batch cultivation with glucose as carbon source. The engineered strain accumulated up to 27% WEs of cell dry weight. The titer and cellular WE content are the highest reported to date among microbes. We further showed that the engineering strategy alleviated the inherent requirement for high carbon/nitrogen ratio and demonstrated the production of wax esters using nitrogen-rich substrates including casamino acids, yeast extract, and baker's yeast hydrolysate, which support biomass production but not WE production in wild-type cells. The study demonstrates the power of metabolic engineering in overcoming natural limitations in the production of storage lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Pauli Losoi
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Hervanta Campus, Tampere University, Korkeakoulunkatu 8, Tampere, 33720, Finland
| |
Collapse
|
12
|
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:5385-5393. [DOI: 10.1007/s00253-020-10610-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
13
|
Kühlborn J, Groß J, Opatz T. Making natural products from renewable feedstocks: back to the roots? Nat Prod Rep 2020; 37:380-424. [DOI: 10.1039/c9np00040b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the utilization of biomass-derived building blocks in the total synthesis of natural products.
Collapse
Affiliation(s)
- Jonas Kühlborn
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Jonathan Groß
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
14
|
Kassab E, Fuchs M, Haack M, Mehlmer N, Brueck TB. Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microb Cell Fact 2019; 18:163. [PMID: 31581944 PMCID: PMC6777021 DOI: 10.1186/s12934-019-1217-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. Results In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. Conclusion The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.
Collapse
Affiliation(s)
- Elias Kassab
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas B Brueck
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
15
|
Chacón MG, Kendrick EG, Leak DJ. Engineering Escherichia coli for the production of butyl octanoate from endogenous octanoyl-CoA. PeerJ 2019; 7:e6971. [PMID: 31304053 PMCID: PMC6610577 DOI: 10.7717/peerj.6971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022] Open
Abstract
Medium chain esters produced from fruits and flowering plants have a number of commercial applications including use as flavour and fragrance ingredients, biofuels, and in pharmaceutical formulations. These esters are typically made via the activity of an alcohol acyl transferase (AAT) enzyme which catalyses the condensation of an alcohol and an acyl-CoA. Developing a microbial platform for medium chain ester production using AAT activity presents several obstacles, including the low product specificity of these enzymes for the desired ester and/or low endogenous substrate availability. In this study, we engineered Escherichia coli for the production of butyl octanoate from endogenously produced octanoyl-CoA. This was achieved through rational protein engineering of an AAT enzyme from Actinidia chinensis for improved octanoyl-CoA substrate specificity and metabolic engineering of E. coli fatty acid metabolism for increased endogenous octanoyl-CoA availability. This resulted in accumulation of 3.3 + 0.1 mg/L butyl octanoate as the sole product from E. coli after 48 h. This study represents a preliminary examination of the feasibility of developing E. coli platforms for the synthesis single medium chain esters from endogenous fatty acids.
Collapse
Affiliation(s)
- Micaela G Chacón
- Department of Biology and Biochemistry, University of Bath, Bath, England
| | | | - David J Leak
- Department of Biology and Biochemistry, University of Bath, Bath, England
| |
Collapse
|
16
|
Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory. J Ind Microbiol Biotechnol 2019; 46:783-790. [PMID: 30810844 DOI: 10.1007/s10295-019-02156-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Massive emission of CO2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria, which have great potential to be engineered into microbial cell factories for CO2 fixation and the production of chemicals, independent of fossil resources. In this work, several pathways of Ralstonia eutropha H16 were modulated by manipulation of heterologous and endogenous genes related to fatty acid synthesis. The resulting strain B2(pCT, pFP) was able to produce 124.48 mg/g (cell dry weight) free fatty acids with fructose as carbon source, a fourfold increase over the parent strain H16. To develop a truly autotrophic fermentation technique with H2, CO2 and O2 as substrates, we assembled a relatively safe, continuous, lab-scale gas fermentation system using micro-fermentation tanks, H2 supplied by a hydrogen generator, and keeping the H2 to O2 ratio at 7:1. The system was equipped with a H2 gas alarm, rid of heat sources and placed into a fume hood to further improve the safety. With this system, the best strain B2(pCT, pFP) produced 60.64 mg free fatty acids per g biomass within 48 h, growing in minimal medium supplemented with 9 × 103 mL/L/h hydrogen gas. Thus, an autotrophic fermentation technique to produce fatty acids was successfully established, which might inspire further research on autotrophic gas fermentation with a safe, lab-scale setup, and provides an alternative solution for environmental and energy problems.
Collapse
|
17
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Bai W, Geng W, Wang S, Zhang F. Biosynthesis, regulation, and engineering of microbially produced branched biofuels. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:84. [PMID: 31011367 PMCID: PMC6461809 DOI: 10.1186/s13068-019-1424-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 05/13/2023]
Abstract
The steadily increasing demand on transportation fuels calls for renewable fuel replacements. This has attracted a growing amount of research to develop advanced biofuels that have similar physical, chemical, and combustion properties with petroleum-derived fossil fuels. Early generations of biofuels, such as ethanol, butanol, and straight-chain fatty acid-derived esters or hydrocarbons suffer from various undesirable properties and can only be blended in limited amounts. Recent research has shifted to the production of branched-chain biofuels that, compared to straight-chain fuels, have higher octane values, better cold flow, and lower cloud points, making them more suitable for existing engines, particularly for diesel and jet engines. This review focuses on several types of branched-chain biofuels and their immediate precursors, including branched short-chain (C4-C8) and long-chain (C15-C19)-alcohols, alkanes, and esters. We discuss their biosynthesis, regulation, and recent efforts in their overproduction by engineered microbes.
Collapse
Affiliation(s)
- Wenqin Bai
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Weitao Geng
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
19
|
Lessons in Membrane Engineering for Octanoic Acid Production from Environmental Escherichia coli Isolates. Appl Environ Microbiol 2018; 84:AEM.01285-18. [PMID: 30030228 DOI: 10.1128/aem.01285-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Fermentative production of many attractive biorenewable fuels and chemicals is limited by product toxicity in the form of damage to the microbial cell membrane. Metabolic engineering of the production organism can help mitigate this problem, but there is a need for identification and prioritization of the most effective engineering targets. Here, we use a set of previously characterized environmental Escherichia coli isolates with high tolerance and production of octanoic acid, a model membrane-damaging biorenewable product, as a case study for identifying and prioritizing membrane engineering strategies. This characterization identified differences in the membrane lipid composition, fluidity, integrity, and cell surface hydrophobicity from those of the lab strain MG1655. Consistent with previous publications, decreased membrane fluidity was associated with increased fatty acid production ability. Maintenance of high membrane integrity or longer membrane lipids seemed to be of less importance than fluidity. Cell surface hydrophobicity was also directly associated with fatty acid production titers, with the strength of this association demonstrated by plasmid-based expression of the multiple stress resistance outer membrane protein BhsA. This expression of bhsA was effective in altering hydrophobicity, but the direction and magnitude of the change differed between strains. Thus, additional strategies are needed to reliably engineer cell surface hydrophobicity. This work demonstrates the ability of environmental microbiological studies to impact the metabolic engineering design-build-test-learn cycle and possibly increase the economic viability of fermentative bioprocesses.IMPORTANCE The production of bulk fuels and chemicals in a bio-based fermentation process requires high product titers. This is often difficult to achieve, because many of the target molecules damage the membrane of the microbial cell factory. Engineering the composition of the membrane in order to decrease its vulnerability to this damage has proven to be an effective strategy for improving bioproduction, but additional strategies and engineering targets are needed. Here, we studied a small set of environmental Escherichia coli isolates that have higher production titers of octanoic acid, a model biorenewable chemical, than those of the lab strain MG1655. We found that membrane fluidity and cell surface hydrophobicity are strongly associated with improved octanoic acid production. Fewer genetic modification strategies have been demonstrated for tuning hydrophobicity relative to fluidity, leading to the conclusion that there is a need for expanding hydrophobicity engineering strategies in E. coli.
Collapse
|