1
|
Cuamatzi-Flores J, Nava-Galicia S, Esquivel-Naranjo EU, Lopez Munguia A, Arroyo-Becerra A, Villalobos-López MA, Bibbins-Martínez M. Regulation of dye-decolorizing peroxidase gene expression in Pleurotus ostreatus grown on glycerol as the carbon source. PeerJ 2024; 12:e17467. [PMID: 38827301 PMCID: PMC11144388 DOI: 10.7717/peerj.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (μ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.
Collapse
Affiliation(s)
- Jorge Cuamatzi-Flores
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | - Soley Nava-Galicia
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | | | - Agustin Lopez Munguia
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Morelos, México
| | - Analilia Arroyo-Becerra
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | | | - Martha Bibbins-Martínez
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| |
Collapse
|
2
|
Hernando AV, Sun W, Abitbol T. "You Are What You Eat": How Fungal Adaptation Can Be Leveraged toward Myco-Material Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300140. [PMID: 38486929 PMCID: PMC10935908 DOI: 10.1002/gch2.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/01/2023] [Indexed: 03/17/2024]
Abstract
Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research.
Collapse
Affiliation(s)
- Alicia Vivas Hernando
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Wenjing Sun
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Tiffany Abitbol
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
3
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Sindhu S, Theradimani M, Vellaikumar S, Paramasivam M, Ramamoorthy V. Development of novel rapid-growing and delicious Pleurotus djamor strains through hybridization. Arch Microbiol 2023; 206:13. [PMID: 38070036 DOI: 10.1007/s00203-023-03739-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
The development of fast-growing/short cropping period oyster mushroom (Pleurotus species) having good taste is one of the important needs of mushroom growers. Pleurotus djamor strain woody1, collected recently from the dead wood, has a short cropping period of 30 days but a moderately acceptable taste. One of the cultivated Pleurotus spp., P. djamor strain MDU1, has good taste but a long cropping period of 47 days. Thus, genetic improvement of P. djamor was carried out between these two strains by pairing monokaryons (anastomosis) to develop elite hybrid strains having a short cropping period and good taste. Monokaryons of parental strains showed variation in time required for germination; i.e., basidiospores of P. djamor strain woody1 germinated and developed monokaryotic colonies in 6 days, whereas that of P. djamor strain MDU1 developed monokaryotic colonies in 8 days of incubation. In addition, variation in the growth rate and morphology of the monokaryotic mycelia of both parental strains was noticed, and fast-growing monokaryons were selected for anastomosis. Out of 60 crosses made between mycelia of monokaryotic isolates of both parental strains, 20 crosses showed clamp connection, indicating that they were successful crosses. Out of 20 hybrids, two hybrid strains, viz., W2M4 and W4M4, exhibited higher yields than their parents. They exhibited the short cropping period trait, good taste attribute, and some specific volatile metabolites. This study showed that the developed two hybrid varieties, having desirable agronomic traits, could be used in mushroom farming to increase the mushroom grower's income.
Collapse
Affiliation(s)
- S Sindhu
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Theradimani
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - S Vellaikumar
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Paramasivam
- Pesticide Toxicology Laboratory, Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - V Ramamoorthy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
5
|
Yarden O, Zhang J, Marcus D, Changwal C, Mabjeesh SJ, Lipzen A, Zhang Y, Savage E, Ng V, Grigoriev IV, Hadar Y. Altered Expression of Two Small Secreted Proteins ( ssp4 and ssp6) Affects the Degradation of a Natural Lignocellulosic Substrate by Pleurotus ostreatus. Int J Mol Sci 2023; 24:16828. [PMID: 38069150 PMCID: PMC10705924 DOI: 10.3390/ijms242316828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pleurotus ostreatus is a white-rot fungus that can degrade lignin in a preferential manner using a variety of extracellular enzymes, including manganese and versatile peroxidases (encoded by the vp1-3 and mnp1-6 genes, respectively). This fungus also secretes a family of structurally related small secreted proteins (SSPs) encoded by the ssp1-6 genes. Using RNA sequencing (RNA-seq), we determined that ssp4 and ssp6 are the predominant members of this gene family that were expressed by P. ostreatus during the first three weeks of growth on wheat straw. Downregulation of ssp4 in a strain harboring an ssp RNAi construct (KDssp1) was then confirmed, which, along with an increase in ssp6 transcript levels, coincided with reduced lignin degradation and the downregulation of vp2 and mnp1. In contrast, we observed an increase in the expression of genes related to pectin and side-chain hemicellulose degradation, which was accompanied by an increase in extracellular pectin-degrading capacity. Genome-wide comparisons between the KDssp1 and the wild-type strains demonstrated that ssp silencing conferred accumulated changes in gene expression at the advanced cultivation stages in an adaptive rather than an inductive mode of transcriptional response. Based on co-expression networking, crucial gene modules were identified and linked to the ssp knockdown genotype at different cultivation times. Based on these data, as well as previous studies, we propose that P. ostreatus SSPs have potential roles in modulating the lignocellulolytic and pectinolytic systems, as well as a variety of fundamental biological processes related to fungal growth and development.
Collapse
Affiliation(s)
- Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Dor Marcus
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Chunoti Changwal
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Yu Zhang
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Emily Savage
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Vivian Ng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
| | - Igor V. Grigoriev
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.L.); (Y.Z.); (E.S.); (V.N.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (D.M.); (C.C.); (Y.H.)
| |
Collapse
|
6
|
Kurebayashi K, Nakazawa T, Shivani, Higashitarumizu Y, Kawauchi M, Sakamoto M, Honda Y. Visualizing organelles with recombinant fluorescent proteins in the white-rot fungus Pleurotus ostreatus. Fungal Biol 2023; 127:1336-1344. [PMID: 37993245 DOI: 10.1016/j.funbio.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 11/24/2023]
Abstract
White-rot fungi secrete numerous enzymes involved in lignocellulose degradation. However, the secretory mechanisms or pathways, including protein synthesis, folding, modification, and traffic, have not been well studied. In the first place, few experimental tools for molecular cell biological studies have been developed. As the first step toward investigating the mechanisms underlying protein secretion, this study visualized organelles and transport vesicles involved in secretory mechanisms with fluorescent proteins in living cells of the white-rot fungus Pleurotus ostreatus (agaricomycete). To this end, each plasmid containing the expression cassette for fluorescent protein [enhanced green fluorescent protein (EGFP) or mCherry] fused with each protein that may be localized in the endoplasmic reticulum (ER), Golgi, or secretory vesicles (SVs) was introduced into P. ostreatus strain PC9. Fluorescent microscopic analyses of the obtained hygromycin-resistant transformants suggested that Sec13-EGFP and Sec24-EGFP visualize the ER; Sec24-EGFP, mCherry-Sed5, and mCherry-Rer1 visualize the compartment likely corresponding to early Golgi and/or the ER-Golgi intermediate compartment; EGFP/mCherry-pleckstrin homology (PH) visualizes possible late Golgi; and EGFP-Seg1 and mCherry-Rab11 visualize SVs. This study successfully visualized mitochondria and nuclei, thus providing useful tools for future molecular cell biological studies on lignocellulose degradation by P. ostreatus. Furthermore, some differences in the Golgi compartment or apparatus and the ER-Golgi intermediate of P. ostreatus compared to other fungi were also suggested.
Collapse
Affiliation(s)
- Kazuhiro Kurebayashi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shivani
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuta Higashitarumizu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
7
|
Dong CD, Patel AK, Madhavan A, Chen CW, Singhania RR. Significance of glycans in cellulolytic enzymes for lignocellulosic biorefinery - A review. BIORESOURCE TECHNOLOGY 2023; 379:128992. [PMID: 37011847 DOI: 10.1016/j.biortech.2023.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lignocellulosic (LC) biomass is the most abundant renewable resource for mankind gravitating society towards sustainable solution for energy that can reduce the carbon footprint. The economic feasibility of 'biomass biorefinery' depends upon the efficiency cellulolytic enzymes which is the main crux. Its high production cost and low efficiencies are the major limitations, that need to be resolved. As the complexity of the genome increases, so does the complexity of the proteome, further facilitated by protein post-translational modifications (PTMs). Glycosylation is regarded the major PTMs and hardly any recent work is focused on importance of glycosylation in cellulase. By modifying protein side chains and glycans, superior cellulases with improved stability and efficiency can be obtained. Functional proteomics relies heavily on PTMs because they regulate activity, localization, and interactions with protein, lipid, nucleic acid, and cofactor molecules. O- and N- glycosylation in cellulases influences its characteristics adding positive attributes to the enzymes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690 525, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
8
|
Ramamoorthy NK, Vengadesan V, Pallam RB, Sadras SR, Sahadevan R, Sarma VV. A pilot-scale sustainable biorefinery, integrating mushroom cultivation and in-situ pretreatment-cum-saccharification for ethanol production. Prep Biochem Biotechnol 2023; 53:954-967. [PMID: 36633578 DOI: 10.1080/10826068.2022.2162922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biomass pretreatment incurs 40% of the overall cost of biorefinery operations. The usage of mushroom cultivation as a pretreatment/delignification technique, and bio-ethanol production from spent mushroom substrates, after subsequent pretreatment, saccharification and fermentation processes, have been reported earlier. However, the present pilot-scale, entirely-organic demonstration is one of the very first biorefinery models, which efficiently consolidates: biomass pretreatment; in-situ cellulase production and saccharification; mushroom cultivation, thereby improving the overall operational economy. During pretreatment, the oyster mushroom, Pluerotus florida VS-6, matures into distinct substrate mycelia and fruiting bodies. Consequential variations in the kinetics of growth, biomass degradation/substrate utilization, oxygen uptake and transfer rates, and enzyme production, have been analyzed. Signifying the first-time usage of a biomass mixture, comprising vegetative waste and e-commerce packaging waste, the 30 day-long, bio-economical, non-inhibitor-generating, catabolite repression-limited, solid-state in-situ pretreatment-cum-saccharification, resulted in: 78% lignin degradation; 13.25% soluble-sugar release; 18.25% mushroom yield; 0.88 FPU/g.ds cellulase secretion. The in-situ saccharified biomass, when sequentially subjected to ex-situ enzymatic hydrolysis and fermentation, showed 37.35% saccharification, and a bio-ethanol yield of 0.425 g per g of glucose, respectively. Apart from yielding engine-ready bio-ethanol, the model doubles as an agripreneurial proposition, and encourages mushroom cultivation and consumption.
Collapse
Affiliation(s)
- Navnit Kumar Ramamoorthy
- Department of Biotechnology, Fungal Biotechnology Laboratory, Pondicherry University, Kalapet, Pondicherry, India
| | - Vinoth Vengadesan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - Revanth Babu Pallam
- Department of Biotechnology, Fungal Biotechnology Laboratory, Pondicherry University, Kalapet, Pondicherry, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | | | - Vemuri Venkateswara Sarma
- Department of Biotechnology, Fungal Biotechnology Laboratory, Pondicherry University, Kalapet, Pondicherry, India
| |
Collapse
|
9
|
Gupta A, Tiwari A, Ghosh P, Arora K, Sharma S. Enhanced lignin degradation of paddy straw and pine needle biomass by combinatorial approach of chemical treatment and fungal enzymes for pulp making. BIORESOURCE TECHNOLOGY 2023; 368:128314. [PMID: 36375698 DOI: 10.1016/j.biortech.2022.128314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Paddy straw (PS) and pine needles (PN) are one of the challenging biomasses in terms of disposal and compost making due to their high silica and tannin contents. Particulate air pollution, loss of biodiversity and respiratory impairments are some of disastrous outcomes caused by burning. However, high percentage of cellulose and hemicellulose makes them potential substrate for paper and pulp industries. The main aim of work was to study and utilize a combinatorial approach of weak chemical treatment and lignin degrading fungal species as agents of effective production of lignin modifying enzymes (LME's) for lignin depolymerisation from the biomasses. Phanerochaete chrysosporium was found to be the best degrader of lignin (47.11 % in PS + PN in 28 days) with maximum LME's production between 10th-17th days. Efficient lignin degradation in the PS and PN biomass will aid further application in pulp production supporting the transition to a circular economy in a greener way.
Collapse
Affiliation(s)
- Akansha Gupta
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhay Tiwari
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Kalpana Arora
- Centre for Technology, Society of Economics and Social Science, India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Pareek M, Hegedüs B, Hou Z, Csernetics Á, Wu H, Virágh M, Sahu N, Liu XB, Nagy L. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon Catabolite Repressor and Its Target Genes in Coprinopsis cinerea. Appl Environ Microbiol 2022; 88:e0094022. [PMID: 36374019 PMCID: PMC9746306 DOI: 10.1128/aem.00940-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cre1 is an important transcription factor that regulates carbon catabolite repression (CCR) and is widely conserved across fungi. The cre1 gene has been extensively studied in several Ascomycota species, whereas its role in gene expression regulation in the Basidiomycota species remains poorly understood. Here, we identified and investigated the role of cre1 in Coprinopsis cinerea, a basidiomycete model mushroom that can efficiently degrade lignocellulosic plant wastes. We used a rapid and efficient gene deletion approach based on PCR-amplified split-marker DNA cassettes together with in vitro assembled Cas9-guide RNA ribonucleoproteins (Cas9 RNPs) to generate C. cinerea cre1 gene deletion strains. Gene expression profiling of two independent C. cinerea cre1 mutants showed significant deregulation of carbohydrate metabolism, plant cell wall degrading enzymes (PCWDEs), plasma membrane transporter-related and several transcription factor-encoding genes, among others. Our results support the notion that, like reports in the ascomycetes, Cre1 of C. cinerea orchestrates CCR through a combined regulation of diverse genes, including PCWDEs, transcription factors that positively regulate PCWDEs, and membrane transporters which could import simple sugars that can induce the expression of PWCDEs. Somewhat paradoxically, though in accordance with other Agaricomycetes, genes related to lignin degradation were mostly downregulated in cre1 mutants, indicating they fall under different regulation than other PCWDEs. The gene deletion approach and the data presented here will expand our knowledge of CCR in the Basidiomycota and provide functional hypotheses on genes related to plant biomass degradation. IMPORTANCE Mushroom-forming fungi include some of the most efficient lignocellulosic plant biomass degraders. They degrade dead plant materials by a battery of lignin-, cellulose-, hemicellulose-, and pectin-degrading enzymes, the encoding genes of which are under tight transcriptional control. One of the highest-level regulations of these metabolic enzymes is known as carbon catabolite repression, which is orchestrated by the transcription factor Cre1, and ensures that costly lignocellulose-degrading enzyme genes are expressed only when simple carbon sources (e.g., glucose) are not available. Here, we identified the Cre1 ortholog in a litter decomposer Agaricomycete, Coprinopsis cinerea, knocked it out, and characterized transcriptional changes in the mutants. We identified several dozen lignocellulolytic enzyme genes as well as membrane transporters and other transcription factors as putative target genes of C. cinerea cre1. These results extend knowledge on carbon catabolite repression to litter decomposer Basidiomycota.
Collapse
Affiliation(s)
- Manish Pareek
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Botond Hegedüs
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zhihao Hou
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Árpád Csernetics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hongli Wu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Máté Virágh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Neha Sahu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
11
|
Xu H, Nakazawa T, Zhang Y, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Introducing multiple-gene mutations in Pleurotus ostreatus using a polycistronic tRNA and CRISPR guide RNA strategy. FEMS Microbiol Lett 2022; 369:6776014. [PMID: 36302144 DOI: 10.1093/femsle/fnac102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
The white-rot fungus Pleurotus ostreatus is an agaricomycete that is frequently used in molecular genetics studies as many useful tools are applicable to the fungus. In particular, efficient gene targeting using homologous recombination and CRISPR/Cas9 enables the introduction of a mutation in the gene of interest for functional analysis. Multiple genes encoding various lignocellulose-degrading enzymes are predicted to be present in the genome; therefore, analyses of multiple-gene mutants are required to elucidate the mechanisms underlying lignocellulose degradation by P. ostreatus. Conventional tools for generating multiple-gene mutations in P. ostreatus are laborious and time-consuming. Therefore, more efficient and practical methods are needed. In this study, we introduced CRISPR/Cas9-assisted multiple-gene mutations using a polycistronic tRNA and CRISPR guide RNA approach. The frequency (triple-gene mutation in fcy1, vp2, and 62347) was only 3.3% when a tetracistronic tRNA-sgRNA containing four different sgRNAs targeting fcy1, vp2, vp3, or 62347 was expressed. It increased to 20% (triple-gene mutation in vp1, vp2, and vp3) after a tricistronic tRNA-sgRNA was expressed with replaced/modulated promoter and tRNA sequences. This study demonstrated, for the first time, the applicability of a strategy to induce multiple-gene mutations in P. ostreatus in a transformation experiment.
Collapse
Affiliation(s)
- Haibo Xu
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yufan Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do 22709, Republic of Korea
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Effect of Different Inducer Sources on Cellulase Enzyme Production by White-Rot Basidiomycetes Pleurotus ostreatus and Phanerochaete chrysosporium under Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellulase enzymes attract a lot of research due to their industrial application. Diverse cellulase-producing organisms and substances that induce cellulase are highly sought after. This study aimed to evaluate the effect of different inducer sources on cellulase production by white rot fungi P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212 under submerged fermentation employing a completely randomized experimental design. The different inducer sources tested were nitrogen (yeast, potassium nitrate, sodium nitrate, ammonium sulphate, aqueous ammonia and urea), carbon (malt extract, glucose, fructose, carboxymethylcellulose, starch and xylose) and agro-biomass (stevia straw, wheat straw, oat straw, alfalfa straw, corn cobs and corn stover). These inducer sources strongly impacted enzyme activities by P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212. The suitable nitrogen and carbon inducer sources for cellulase activity by P. ostreatus and P. chrysosporium were yeast (1.354 U/mL and 1.154 U/mL) and carboxymethylcellulose (0.976 U/mL and 0.776 U/mL) while the suitable agro-biomass were wheat straw (6.880 U/mL) and corn stover (6.525 U/mL), respectively. The least inducer sources in terms of nitrogen, carbon and agro-biomass for cellulase activity by P. ostreatus and P. chrysosporium were urea (0.213 U/mL and 0.081 U/mL), glucose (0.042 U/mL and 0.035), xylose (0.042 U/mL and 0.035 U/mL) and stevia straw (1.555 U/mL and 0.960 U/mL). In submerged fermentation, the cellulase enzyme activity of P. ostreatus in response to various inducer sources was relatively higher than P. chrysosporium.
Collapse
|
13
|
Yamasaki F, Nakazawa T, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system. FEMS Microbiol Lett 2022; 369:6674758. [PMID: 36001999 DOI: 10.1093/femsle/fnac083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene targeting is a promising method used in molecular breeding. We recently reported the successful introduction of this method in the monokaryotic Pleurotus ostreatus (oyster mushroom), PC9. However, considering their application in mushroom breeding, dikaryotic strains (with targeted gene mutations in both nuclei) need to be generated. This is laborious and time-consuming because a classical crossing technique is used. Herein, we report a technique that targets both nuclei of dikaryotic P. ostreatus, PC9×#64 in a transformation experiment using plasmid-based CRISPR/Cas9, with the aim of developing a method for efficient and rapid molecular breeding. As an example, we targeted strains with low basidiospore production ability through the meiosis-related genes mer3 or msh4. Four different plasmids containing expression cassettes for Cas9 and two different gRNAs targeting mer3 or msh4 were constructed and separately introduced into PC9×#64. Eight of the 38 dikaryotic transformants analyzed produced no basidiospores. Genomic PCR suggested that msh4 or mer3 mutations were introduced into both nuclei of seven out of eight strains. Thus, in this study, we demonstrated simultaneous gene targeting using our CRISPR/Cas9 system, which may be useful for the molecular breeding of cultivated agaricomycetes.
Collapse
Affiliation(s)
- Fuga Yamasaki
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do, 22709, Republic of Korea
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora. Appl Microbiol Biotechnol 2022; 106:5575-5585. [PMID: 35902408 DOI: 10.1007/s00253-022-12095-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Ceriporiopsis subvermispora is a white-rot fungus with great potential for industrial and biotechnological applications, such as the pretreatment of lignocellulose in biorefineries, as it decomposes the lignin in the plant cell wall without causing severe cellulose degradation. A genetic transformation system was recently developed; however, gene-targeting experiments to disrupt or modify the gene(s) of interest remain challenging, and this is a bottleneck for further molecular genetic studies and breeding of C. subvermispora. Herein, we report efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene mutagenesis in this fungus. Two plasmids expressing Cas9 together with a different pyrG-targeting single-guide RNA were separately introduced into the monokaryotic C. subvermispora strain FP-90031-Sp/1, which frequently generated strains that exhibited resistance to 5-fluoroorotic acid and uridine/uracil auxotrophy. Southern blot analyses and genomic polymerase chain reaction followed by DNA sequencing of some mutants revealed that they were pyrG mutants. We also observed that hygromycin resistance of the pyrG mutants was frequently lost after repeated subcultivations, indicating that a maker-free genome editing occurred successfully. It is also suggested that a gene mutation(s) can be introduced via a transient expression of Cas9 and a single-guide RNA; this feature, together with high-frequency gene targeting using the CRISPR/Cas9 system, would be helpful for studies on lignocellulose-degrading systems in C. subvermispora. KEY POINTS: • Efficient plasmid-based CRISPR/Cas9 was established in C. subvermispora. • The mutations can be introduced via a transient expression of Cas9 and sgRNA. • A maker-free CRISPR/Cas9 is established in this fungus.
Collapse
|
15
|
Abstract
Plant-derived biomass is the most abundant biogenic carbon source on Earth. Despite this, only a small clade of organisms known as white-rot fungi (WRF) can efficiently break down both the polysaccharide and lignin components of plant cell walls. This unique ability imparts a key role for WRF in global carbon cycling and highlights their potential utilization in diverse biotechnological applications. To date, research on WRF has primarily focused on their extracellular ‘digestive enzymes’ whereas knowledge of their intracellular metabolism remains underexplored. Systems biology is a powerful approach to elucidate biological processes in numerous organisms, including WRF. Thus, here we review systems biology methods applied to WRF to date, highlight observations related to their intracellular metabolism, and conduct comparative extracellular proteomic analyses to establish further correlations between WRF species, enzymes, and cultivation conditions. Lastly, we discuss biotechnological opportunities of WRF as well as challenges and future research directions.
Collapse
|
16
|
The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom
Schizophyllum commune. mBio 2022; 13:e0062822. [PMID: 35604096 PMCID: PMC9239231 DOI: 10.1128/mbio.00628-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wood-degrading fungi in the phylum Basidiomycota play a crucial role in nutrient recycling by breaking down all components of wood. Fungi have evolved transcriptional networks that regulate expression of wood-degrading enzymes, allowing them to prioritize one nutrient source over another.
Collapse
|
17
|
Effect of Ammoniated and/or Basidiomycete White-Rot Fungi Treatment on Rice Straw Proximate Composition, Cell Wall Component, and In Vitro Rumen Fermentation Characteristics. FERMENTATION 2022. [DOI: 10.3390/fermentation8050228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Various pretreatments are employed to increase the utilization of rice straw as a ruminant feed ingredient to minimize its negative environmental impact. However, an efficient alternative is still needed. The purpose of this study was to evaluate the ability of ammonia and/or white-rot fungi (Pleurotus ostreatus) to degrade lignin, increase the nutritional value, and enhance the rumen fermentability of rice straw. Rice straw was treated with ammonia and/or basidiomycete white-rot fungi (P. ostreatus) with untreated straw as control under solid-state fermentation employing a completely randomized design. The crude protein increased from 2.05% in the control to 3.47% in ammoniated rice straw, 5.24% in basidiomycete white-rot fungi (P. ostreatus), and 6.58% in ammoniated-basidiomycete white-rot fungi-treated (P. ostreatus) rice straw. The ammoniated-basidiomycete white-rot fungi-treated (P. ostreatus) rice straw had the least lignin content (3.76%). Ammoniated-basidiomycete white-rot fungi-treated (P. ostreatus) rice straw had improved in vitro dry matter digestibility (65.52%), total volatile fatty acid (76.56 mM), and total gas production (56.78 mL/g) compared to ammoniated rice straw (56.16%, 67.71 mM, 44.30 mL/g) or basidiomycete white-rot fungi-treated (P. ostreatus) rice straw (61.12%, 75.36 mM, 49.31 mL/g), respectively. The ammoniated-basidiomycete white-rot fungi (P. ostreatus) treatment improved rice straw’s nutritional value, in vitro dry matter digestibility, volatile fatty acids, and gas production.
Collapse
|
18
|
Chmelová D, Legerská B, Kunstová J, Ondrejovič M, Miertuš S. The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 2022; 38:21. [PMID: 34989891 DOI: 10.1007/s11274-021-03207-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Laccases (E.C. 1.10.3.2) produced by white-rot fungi (WRF) can be widely used, but the high cost prevents their use in large-scale industrial processes. Finding a solution to the problem could involve laccase production by solid-state fermentation (SSF) simulating the natural growth conditions for WRF. SSF offers several advantages over conventional submerged fermentation (SmF), such as higher efficiency and productivity of the process and pollution reduction. The aim of this review is therefore to provide an overview of the current state of knowledge about the laccase production by WRF under SSF conditions. The focus is on variations in the up-stream process, fermentation and down-stream process and their impact on laccase activity. The variations of up-stream processing involve inoculum preparation, inoculation of the medium and formulation of the propagation and production media. According to the studies, the production process can be shortened to 5-7 days by the selection of a suitable combination of lignocellulosic material and laccase producer without the need for any additional components of the culture medium. Efficient laccase production was achieved by valorisation of wastes as agro-food, municipal wastes or waste generated from wood processing industries. This leads to a reduction of costs and an increase in competitiveness compared to other commonly used methods and/or procedures. There will be significant challenges and opportunities in the future, where SSF could become more efficient and bring the enzyme production to a higher level, especially in new biorefineries, bioreactors and biomolecular/genetic engineering.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Jana Kunstová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| |
Collapse
|
19
|
Guo H, He T, Lee DJ. Contemporary proteomic research on lignocellulosic enzymes and enzymolysis: A review. BIORESOURCE TECHNOLOGY 2022; 344:126263. [PMID: 34728359 DOI: 10.1016/j.biortech.2021.126263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This review overviewed the current researches on the isolation of novel strains, the development of novel identification protocols, the key enzymes and their synergistic interactions with other functional enzyme systems, and the strategies for enhancing enzymolysis efficiencies. The main obstacle for realizing biorefinery of lignocellulosic biomass to biofuels or biochemicals is the high cost of enzymolysis stage. Therefore, research prospects to reduce the costs for lignocellulose hydrolysis were outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Tongyuan He
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong.
| |
Collapse
|
20
|
Pang AP, Zhang F, Hu X, Luo Y, Wang H, Durrani S, Wu FG, Li BZ, Zhou Z, Lu Z, Lin F. Glutamine involvement in nitrogen regulation of cellulase production in fungi. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:199. [PMID: 34645509 PMCID: PMC8513308 DOI: 10.1186/s13068-021-02046-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cellulase synthesized by fungi can environment-friendly and sustainably degrades cellulose to fermentable sugars for producing cellulosic biofuels, biobased medicine and fine chemicals. Great efforts have been made to study the regulation mechanism of cellulase biosynthesis in fungi with the focus on the carbon sources, while little attention has been paid to the impact and regulation mechanism of nitrogen sources on cellulase production. RESULTS Glutamine displayed the strongest inhibition effect on cellulase biosynthesis in Trichoderma reesei, followed by yeast extract, urea, tryptone, ammonium sulfate and L-glutamate. Cellulase production, cell growth and sporulation in T. reesei RUT-C30 grown on cellulose were all inhibited with the addition of glutamine (a preferred nitrogen source) with no change for mycelium morphology. This inhibition effect was attributed to both L-glutamine itself and the nitrogen excess induced by its presence. In agreement with the reduced cellulase production, the mRNA levels of 44 genes related to the cellulase production were decreased severely in the presence of glutamine. The transcriptional levels of genes involved in other nitrogen transport, ribosomal biogenesis and glutamine biosynthesis were decreased notably by glutamine, while the expression of genes relevant to glutamate biosynthesis, amino acid catabolism, and glutamine catabolism were increased noticeably. Moreover, the transcriptional level of cellulose signaling related proteins ooc1 and ooc2, and the cellular receptor of rapamycin trFKBP12 was increased remarkably, whose deletion exacerbated the cellulase depression influence of glutamine. CONCLUSION Glutamine may well be the metabolite effector in nitrogen repression of cellulase synthesis, like the role of glucose plays in carbon catabolite repression. Glutamine under excess nitrogen condition repressed cellulase biosynthesis significantly as well as cell growth and sporulation in T. reesei RUT-C30. More importantly, the presence of glutamine notably impacted the transport and metabolism of nitrogen. Genes ooc1, ooc2, and trFKBP12 are associated with the cellulase repression impact of glutamine. These findings advance our understanding of nitrogen regulation of cellulase production in filamentous fungi, which would aid in the rational design of strains and fermentation strategies for cellulase production in industry.
Collapse
Affiliation(s)
- Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Funing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Okuda N, Nakazawa T, Horii M, Wu H, Kawauchi M, Sakamoto M, Honda Y. Overexpressing Pleurotus ostreatus rho1b results in transcriptional upregulation of the putative cellulolytic enzyme-encoding genes observed in ccl1 disruptants. Environ Microbiol 2021; 23:7009-7027. [PMID: 34622510 DOI: 10.1111/1462-2920.15786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
The transcriptional expression pattern of lignocellulolytic enzyme-encoding genes in white-rot fungi differs depending on the culture conditions. Recently, it was shown that 13 putative cellulolytic enzyme-encoding genes were significantly upregulated in most Pleurotus ostreatus ligninolysis-deficient mutant strains on beech wood sawdust medium. However, the mechanisms by which this transcriptional shift is triggered remain unknown. In this study, we identified one mechanism. Our previous study implied that histone H3 N-dimethylation at lysine 4 level possibly affects the shift; therefore, we analysed the expression pattern in the disruptants of P. ostreatus ccl1, which encodes a putative component of the COMPASS complex mediating the methylation. The results showed upregulation of 5 of the 13 cellulolytic enzyme-encoding genes. We also found that rho1b, encoding a putative GTPase regulating signal transduction pathways, was upregulated in the ccl1 disruptants and ligninolysis-deficient strains. Upregulation of at least three of the five cellulolytic enzyme-encoding genes was observed in rho1b-overexpressing strains but not in ccl1/rho1b double-gene disruptants, during the 20-day culture period. These results suggest that Rho1b may be involved in the upregulation of cellulolytic enzyme-encoding genes observed in the ccl1 disruptants. Furthermore, we suggest that Mpk1b, a putative Agaricomycetes-specific mitogen-activated protein kinase, functions downstream of Rho1b.
Collapse
Affiliation(s)
- Nozomi Okuda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masato Horii
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
22
|
Lee YY, Vidal-Diez de Ulzurrun G, Schwarz EM, Stajich JE, Hsueh YP. Genome sequence of the oyster mushroom Pleurotus ostreatus strain PC9. G3-GENES GENOMES GENETICS 2021; 11:6044136. [PMID: 33585864 PMCID: PMC8022983 DOI: 10.1093/g3journal/jkaa008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
Abstract
The oyster mushroom Pleurotus ostreatus is a basidiomycete commonly found in the rotten wood and it is one of the most cultivated edible mushrooms globally. Pleurotus ostreatus is also a carnivorous fungus, which can paralyze and kill nematodes within minutes. However, the molecular mechanisms of the predator-prey interactions between P. ostreatus and nematodes remain unclear. PC9 and PC15 are two model strains of P. ostreatus and the genomes of both strains have been sequenced and deposited at the Joint Genome Institute (JGI). These two monokaryotic strains exhibit dramatic differences in growth, but because PC9 grows more robustly in laboratory conditions, it has become the strain of choice for many studies. Despite the fact that PC9 is the common strain for investigation, its genome is fragmentary and incomplete relative to that of PC15. To overcome this problem, we used PacBio long reads and Illumina sequencing to assemble and polish a more integrated genome for PC9. Our PC9 genome assembly, distributed across 17 scaffolds, is highly contiguous and includes five telomere-to-telomere scaffolds, dramatically improving the genome quality. We believe that our PC9 genome resource will be useful to the fungal research community investigating various aspects of P. ostreatus biology.
Collapse
Affiliation(s)
- Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academic Sinica, Taipei, Taiwan
| | | | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academic Sinica, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
23
|
Li F, Zhang J, Ma F, Chen Q, Xiao Q, Zhang X, Xie S, Yu H. Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose. Environ Microbiol 2021; 23:4547-4560. [PMID: 34169632 DOI: 10.1111/1462-2920.15648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin-carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialong Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
24
|
Evolution of Fungal Carbohydrate-Active Enzyme Portfolios and Adaptation to Plant Cell-Wall Polymers. J Fungi (Basel) 2021; 7:jof7030185. [PMID: 33807546 PMCID: PMC7998857 DOI: 10.3390/jof7030185] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
The postindustrial era is currently facing two ecological challenges. First, the rise in global temperature, mostly caused by the accumulation of carbon dioxide (CO2) in the atmosphere, and second, the inability of the environment to absorb the waste of human activities. Fungi are valuable levers for both a reduction in CO2 emissions, and the improvement of a circular economy with the optimized valorization of plant waste and biomass. Soil fungi may promote plant growth and thereby increase CO2 assimilation via photosynthesis or, conversely, they may prompt the decomposition of dead organic matter, and thereby contribute to CO2 emissions. The strategies that fungi use to cope with plant-cell-wall polymers and access the saccharides that they use as a carbon source largely rely on the secretion of carbohydrate-active enzymes (CAZymes). In the past few years, comparative genomics and phylogenomics coupled with the functional characterization of CAZymes significantly improved the understanding of their evolution in fungal genomes, providing a framework for the design of nature-inspired enzymatic catalysts. Here, we provide an overview of the diversity of CAZyme enzymatic systems employed by fungi that exhibit different substrate preferences, different ecologies, or belong to different taxonomical groups for lignocellulose degradation.
Collapse
|
25
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
26
|
Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, Sakamoto M, Honda Y. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus. AMB Express 2021; 11:30. [PMID: 33609205 PMCID: PMC7897337 DOI: 10.1186/s13568-021-01193-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Pleurotus ostreatus is one of the most commercially produced edible mushrooms worldwide. Improved cultivated strains with more useful traits have been obtained using classical breeding, which is laborious and time-consuming. Here, we attempted efficient gene mutagenesis using plasmid-based CRISPR/Cas9 as the first step for non-genetically modified (non-GM) P. ostreatus generation. Plasmids harboring expression cassettes of Cas9 and different single guide RNAs targeting fcy1 and pyrG were individually transferred into fungal protoplasts of the PC9 strain, which generated some strains exhibiting resistance to 5-fluorocytosine and 5-fluoroorotic acid, respectively. Genomic PCR followed by sequencing revealed small insertions/deletions or insertion of a fragment from the plasmid at the target site in some of the drug-resistant strains. The results demonstrated efficient CRISPR/Cas9-assisted genome editing in P. ostreatus, which could contribute to the molecular breeding of non-GM cultivated strains in the future. Furthermore, a mutation in fcy1 via homology-directed repair using this CRISPR/Cas9 system was also efficiently introduced, which could be applied not only for precise gene disruption, but also for insertions leading to heterologous gene expression in this fungus.
Collapse
|
27
|
Wu H, Nakazawa T, Xu H, Yang R, Bao D, Kawauchi M, Sakamoto M, Honda Y. Comparative transcriptional analyses of Pleurotus ostreatus mutants on beech wood and rice straw shed light on substrate-biased gene regulation. Appl Microbiol Biotechnol 2021; 105:1175-1190. [PMID: 33415371 DOI: 10.1007/s00253-020-11087-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
Distinct wood degraders occupying their preferred habitats have biased enzyme repertoires that are well fitted to their colonized substrates. Pleurotus ostreatus, commonly found on wood, has evolved its own enzyme-producing traits. In our previous study, transcriptional shifts in several P. ostreatus delignification-defective mutants, including Δhir1 and Δgat1 strains, were analyzed, which revealed the downregulation of ligninolytic genes and the upregulation of cellulolytic and xylanolytic genes when compared to their parental strain 20b on beech wood sawdust medium (BWS). In this study, rice straw (RS) was used as an alternative substrate to examine the transcriptional responses of P. ostreatus to distinct substrates. The vp1 gene and a cupredoxin-encoding gene were significantly upregulated in the 20b strain on RS compared with that on BWS, reflecting their distinct regulation patterns. The overall expression level of genes encoding glucuronidases was also higher on RS than on BWS, showing a good correlation with the substrate composition. Transcriptional alterations in the mutants (Δhir1 or Δgat1 versus 20b strain) on RS were similar to those on BWS, and the extracellular lignocellulose-degrading enzyme activities and lignin-degrading ability of the mutants on RS were consistent with the transcriptional alterations of the corresponding enzyme-encoding genes. However, transcripts of specific genes encoding enzymes belonging to the same CAZyme family exhibited distinct alteration patterns in the mutant strains grown on RS compared to those grown on BWS. These findings provide new insights into the molecular mechanisms underlying the transcriptional regulation of lignocellulolytic genes in P. ostreatus.Key Points• P. ostreatus expressed variable enzymatic repertoire-related genes in response to distinct substrates.• A demand to upregulate the cellulolytic genes seems to be present in ligninolysis-deficient mutants.• The regulation of some specific genes probably driven by the demand is dependent on the substrate.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Haibo Xu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ruiheng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
28
|
Wu H, Nakazawa T, Morimoto R, Sakamoto M, Honda Y. Targeted disruption of hir1 alters the transcriptional expression pattern of putative lignocellulolytic genes in the white-rot fungus Pleurotus ostreatus. Fungal Genet Biol 2021; 147:103507. [PMID: 33383191 DOI: 10.1016/j.fgb.2020.103507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Pleurotus ostreatus is frequently used in molecular genetics and genomic studies on white-rot fungi because various molecular genetic tools and relatively well-annotated genome databases are available. To explore the molecular mechanisms underlying wood lignin degradation by P. ostreatus, we performed mutational analysis of a newly isolated mutant UVRM28 that exhibits decreased lignin-degrading ability on the beech wood sawdust medium. We identified that a mutation in the hir1 gene encoding a putative histone chaperone, which probably plays an important role in DNA replication-independent nucleosome assembly, is responsible for the mutant phenotype. The expression pattern of ligninolytic genes was altered in hir1 disruptants. The most highly expressed gene vp2 was significantly inactivated, whereas the expression of vp1 was remarkably upregulated (300-400 fold) at the transcription level. Conversely, many cellulolytic and xylanolytic genes were upregulated in hir1 disruptants. Chromatin immunoprecipitation analysis suggested that the histone modification status was altered in the 5'-upstream regions of some of the up- and down-regulated lignocellulolytic genes in hir1 disruptants compared with that in the 20b strain. Hence, our data provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Wu H, Nakazawa T, Takenaka A, Kodera R, Morimoto R, Sakamoto M, Honda Y. Transcriptional shifts in delignification-defective mutants of the white-rot fungus Pleurotus ostreatus. FEBS Lett 2020; 594:3182-3199. [PMID: 32697375 DOI: 10.1002/1873-3468.13890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
White-rot fungi efficiently degrade lignin and, thus, play a pivotal role in the global carbon cycle. However, the mechanisms of lignin degradation are largely unknown. Recently, mutations in four genes, namely wtr1, chd1, pex1, and gat1, were shown to abrogate the wood lignin-degrading ability of Pleurotus ostreatus. In this study, we conducted a comparative transcriptome analysis to identify genes that are differentially expressed in ligninolysis-deficient mutant strains. Putative ligninolytic genes that are highly expressed in parental strains are significantly downregulated in the mutant strains. On the contrary, many putative cellulolytic and xylanolytic genes are upregulated in the chd1-1, Δpex1, and Δgat1 strains. Identifying transcriptional alterations in mutant strains could provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Atsuki Takenaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Alfaro M, Majcherczyk A, Kües U, Ramírez L, Pisabarro AG. Glucose counteracts wood-dependent induction of lignocellulolytic enzyme secretion in monokaryon and dikaryon submerged cultures of the white-rot basidiomycete Pleurotus ostreatus. Sci Rep 2020; 10:12421. [PMID: 32709970 PMCID: PMC7381666 DOI: 10.1038/s41598-020-68969-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
The secretome complexity and lignocellulose degrading capacity of Pleurotus ostreatus monokaryons mkPC9 and mkPC15 and mated dikaryon dkN001 were studied in submerged liquid cultures containing wood, glucose, and wood plus glucose as carbon sources. The study revealed that this white-rot basidiomycete attacks all the components of the plant cell wall. P. ostreatus secretes a variety of glycoside hydrolases, carbohydrate esterases, and polysaccharide lyases, especially when wood is the only carbon source. The presence of wood increased the secretome complexity, whereas glucose diminished the secretion of enzymes involved in cellulose, hemicellulose and pectin degradation. In contrast, the presence of glucose did not influence the secretion of redox enzymes or proteases, which shows the specificity of glucose on the secretion of cellulolytic enzymes. The comparison of the secretomes of monokaryons and dikaryons reveals that secretome complexity is unrelated to the nuclear composition of the strain.
Collapse
Affiliation(s)
- Manuel Alfaro
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNa), Public University of Navarre, 31006, Pamplona, Spain
| | - Andrzej Majcherczyk
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Lucía Ramírez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNa), Public University of Navarre, 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNa), Public University of Navarre, 31006, Pamplona, Spain.
| |
Collapse
|
31
|
Okal EJ, Aslam MM, Karanja JK, Nyimbo WJ. Mini review: Advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microb Pathog 2020; 147:104410. [PMID: 32707312 DOI: 10.1016/j.micpath.2020.104410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
White-rot basidiomycetic fungi have gained a lot of scientific attention in recent years owing to their ability to produce cellulase enzymes that are of great importance in numerous industrial applications. This has seen a rise in number of studies seeking to comprehend both physical and molecular mechanisms that regulate the production of cellulase enzymes in these fungi. Cellulase has several applications in production of food and beverages, biofuel, biological detergents, pharmaceuticals, and deinking in paper and pulp industry. Enhanced understanding of genetic mechanisms that regulate cellulase production would have utility for optimal cellulase production in white-rot basidiomycetes using biotechnology approaches. Carbon catabolite repression and various transcriptional factors such as XlnR, Cre, Clr, Ace, and gna1 control expression of genes encoding cellobiohydrolase (CBH), endoglucanase (EGL) and β-glucosidase (BGL). In this review, we have consolidated and summarised some of recent findings on genetic regulation of cellulase with an aim of highlighting the general regulatory mechanisms that underlie cellulase expressions in white-rot fungi. This review further outlines some of important transcription factors that regulate cellulase genes, and key research gaps that may need to be addressed by future research.
Collapse
Affiliation(s)
- Eyalira J Okal
- Juncao Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Mehtab Muhammad Aslam
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Joseph K Karanja
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Witness J Nyimbo
- Juncao Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
32
|
Feldman D, Yarden O, Hadar Y. Seeking the Roles for Fungal Small-Secreted Proteins in Affecting Saprophytic Lifestyles. Front Microbiol 2020; 11:455. [PMID: 32265881 PMCID: PMC7105643 DOI: 10.3389/fmicb.2020.00455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Small secreted proteins (SSPs) comprise 40–60% of the total fungal secretome and are present in fungi of all phylogenetic groups, representing the entire spectrum of lifestyles. They are characteristically shorter than 300 amino acids in length and have a signal peptide. The majority of SSPs are coded by orphan genes, which lack known domains or similarities to known protein sequences. Effectors are a group of SSPs that have been investigated extensively in fungi that interact with living hosts, either pathogens or mutualistic systems. They are involved in suppressing the host defense response and altering its physiology. Here, we aim to delineate some of the potential roles of SSPs in saprotrophic fungi, that have been bioinformatically predicted as effectors, and termed in this mini-review as “effector-like” proteins. The effector-like Ssp1 from the white-rot fungus Pleurotus ostreatus is presented as a case study, and its potential role in regulating the ligninolytic system, secondary metabolism, development, and fruiting body initiation are discussed. We propose that deciphering the nature of effector-like SSPs will contribute to our understanding of development and communication in saprophytic fungi, as well as help, to elucidate the origin, regulation, and mechanisms of fungal-host, fungal-fungal, and fungal-bacterial interactions.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
de Vries RP, Mäkelä MR. Genomic and Postgenomic Diversity of Fungal Plant Biomass Degradation Approaches. Trends Microbiol 2020; 28:487-499. [PMID: 32396827 DOI: 10.1016/j.tim.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Plant biomass degradation by fungi is a widely studied and applied field of science, due to its relevance for the global carbon cycle and many biotechnological applications. Before the genome era, many of the in-depth studies focused on a relatively small number of species, whereas now, many species can be addressed in detail, revealing the large variety in the approach used by fungi to degrade plant biomass. This variation is found at many levels and includes genomic adaptation to the preferred biomass component, but also different approaches to degrade this component by diverse sets of activities encoded in the genome. Even larger differences have been observed using transcriptome and proteome studies, even between closely related species, suggesting a high level of adaptation in individual species. A better understanding of the drivers of this diversity could be highly valuable in developing more efficient biotechnology approaches for the enzymatic conversion of plant biomass.
Collapse
Affiliation(s)
- Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Mäkelä MR, Hildén K, Kowalczyk JE, Hatakka A. Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus Dichomitus squalens. Appl Environ Microbiol 2019; 85:AEM.01828-19. [PMID: 31585998 DOI: 10.1128/aem.01828-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
The extent of carbon catabolite repression (CCR) at a global level is unknown in wood-rotting fungi, which are critical to the carbon cycle and are a source of biotechnological enzymes. CCR occurs in the presence of sufficient concentrations of easily metabolizable carbon sources (e.g., glucose) and involves downregulation of the expression of genes encoding enzymes involved in the breakdown of complex carbon sources. We investigated this phenomenon in the white-rot fungus Dichomitus squalens using transcriptomics and exoproteomics. In D. squalens cultures, approximately 7% of genes were repressed in the presence of glucose compared to Avicel or xylan alone. The glucose-repressed genes included the essential components for utilization of plant biomass-carbohydrate-active enzyme (CAZyme) and carbon catabolic genes. The majority of polysaccharide-degrading CAZyme genes were repressed and included activities toward all major carbohydrate polymers present in plant cell walls, while repression of ligninolytic genes also occurred. The transcriptome-level repression of the CAZyme genes observed on the Avicel cultures was strongly supported by exoproteomics. Protease-encoding genes were generally not glucose repressed, indicating their likely dominant role in scavenging for nitrogen rather than carbon. The extent of CCR is surprising, given that D. squalens rarely experiences high free sugar concentrations in its woody environment, and it indicates that biotechnological use of D. squalens for modification of plant biomass would benefit from derepressed or constitutively CAZyme-expressing strains.IMPORTANCE White-rot fungi are critical to the carbon cycle because they can mineralize all wood components using enzymes that also have biotechnological potential. The occurrence of carbon catabolite repression (CCR) in white-rot fungi is poorly understood. Previously, CCR in wood-rotting fungi has only been demonstrated for a small number of genes. We demonstrated widespread glucose-mediated CCR of plant biomass utilization in the white-rot fungus Dichomitus squalens This indicates that the CCR mechanism has been largely retained even though wood-rotting fungi rarely experience commonly considered CCR conditions in their woody environment. The general lack of repression of genes encoding proteases along with the reduction in secreted CAZymes during CCR suggested that the retention of CCR may be connected with the need to conserve nitrogen use during growth on nitrogen-scarce wood. The widespread repression indicates that derepressed strains could be beneficial for enzyme production.
Collapse
|
36
|
Manipulating the Expression of Small Secreted Protein 1 (Ssp1) Alters Patterns of Development and Metabolism in the White-Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol 2019; 85:AEM.00761-19. [PMID: 31101610 DOI: 10.1128/aem.00761-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023] Open
Abstract
The function of small secreted proteins (SSPs) in saprotrophic fungi is, for the most part, unknown. The white-rot mushroom Pleurotus ostreatus produces considerable amounts of SSPs at the onset of secondary metabolism, during colony development, and in response to chemical compounds such as 5-hydroxymethylfurfural and aryl alcohols. Genetic manipulation of Ssp1, by knockdown (KDssp1) or overexpression (OEssp1), indicated that they are, in fact, involved in the regulation of the ligninolytic system. To elucidate their potential involvement in fungal development, quantitative secretome analysis was performed during the trophophase and the idiophase and at a transition point between the two growth phases. The mutations conferred a time shift in the secretion and expression patterns: OEssp1 preceded the entrance to idiophase and secondary metabolism, while KDssp1 was delayed. This was also correlated with expression patterns of selected genes. The KDssp1 colony aged at a slower pace, accompanied by a slower decline in biomass over time. In contrast, the OEssp1 strain exhibited severe lysis and aging of the colony at the same time point. These phenomena were accompanied by variations in yellow pigment production, characteristic of entrance of the wild type into idiophase. The pigment was produced earlier and in a larger amount in the OEssp1 strain and was absent from the KDssp1 strain. Furthermore, the dikaryon harboring OEssp1 exhibited a delay in the initiation of fruiting body formation as well as earlier aging. We propose that Ssp1 might function as a part of the fungal communication network and regulate the pattern of fungal development and metabolism in P. ostreatus IMPORTANCE Small secreted proteins (SSPs) are common in fungal saprotrophs, but their roles remain elusive. As such, they comprise part of a gene pool which may be involved in governing fungal lifestyles not limited to symbiosis and pathogenicity, in which they are commonly referred to as "effectors." We propose that Ssp1 in the white-rot fungus Pleurotus ostreatus regulates the transition from primary to secondary metabolism, development, aging, and fruiting body initiation. Our observations uncover a novel regulatory role of effector-like SSPs in a saprotroph, suggesting that they may act in fungal communication as well as in response to environmental cues. The presence of Ssp1 homologues in other fungal species supports a common potential role in environmental sensing and fungal development.
Collapse
|