1
|
Li Z, Zhu Z, Qian K, Tang B, Han B, Zhong Z, Fu T, Zhou P, Stukenbrock EH, Martin FM, Yuan Z. Intraspecific diploidization of a halophyte root fungus drives heterosis. Nat Commun 2024; 15:5872. [PMID: 38997287 PMCID: PMC11245560 DOI: 10.1038/s41467-024-49468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
How organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations. The data revealed significant genomic plasticity resulting from chromosomal polymorphisms created by fusion and fission events, known as dysploidy. Analyses of genomic features, phylogenomics, and macrosynteny have provided clear evidence for the origin of intraspecific diploid-like hybrids. Notably, one diploid phenotype stood out as an outlier and exhibited a conditional fitness advantage when exposed to a range of abiotic stresses compared with its parents. By comparing the gene expression patterns in each hybrid parent triad under the four growth conditions, the mechanisms underlying growth vigor were corroborated through an analysis of transgressively upregulated genes enriched in membrane glycerolipid biosynthesis and transmembrane transporter activity. In vitro assays suggested increased membrane integrity and lipid accumulation, as well as decreased malondialdehyde production under optimal salt conditions (0.3 M NaCl) in the hybrid. These attributes have been implicated in salinity tolerance. This study supports the notion that hybridization-induced genome doubling leads to the emergence of phenotypic innovations in an extremophilic endophyte.
Collapse
Affiliation(s)
- Zhongfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Zhiyong Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Nanjing Forestry University, Nanjing, 100071, China
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, 224002, China
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Zhenhui Zhong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Tao Fu
- Shenzhen Zhuoyun Haizhi Medical Research Center Co., Ltd, Shenzhen, 518063, China
| | - Peng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Francis M Martin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganisms, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
2
|
Chaoua S, Flahaut S, Cornu B, Hiligsmann S, Chaouche NK. Unlocking the potential of Algerian lignocellulosic biomass: exploring indigenous microbial diversity for enhanced enzyme and sugar production. Arch Microbiol 2024; 206:277. [PMID: 38789671 DOI: 10.1007/s00203-024-04011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 μm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
3
|
Cai Y, Huang S, Xiong J. A New Strategy for the Treatment of Old Corrugated Container Pulping Wastewater by the Ozone-Catalyzed Polyurethane Sponge Biodegradation Process. Polymers (Basel) 2024; 16:1329. [PMID: 38794522 PMCID: PMC11125139 DOI: 10.3390/polym16101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Old Corrugated Container (OCC) pulping wastewater has a complex organic composition and high levels of biotoxicity. The presence of dissolved and colloidal substances (DCSs) is a major limiting factor for pulp and paper companies to achieve closed-water recycling. In order to solve this problem, the coupled ozone-catalyzed oxidation and biodegradation (OCB) method was used to treat OCC pulping wastewater in this study. A polyurethane sponge was used as the basic skeleton, loaded with nano TiO2 and microorganisms, respectively, and then put into a reactor. After an 8-min ozone-catalyzed oxidation reaction, a 10-h biological reaction was carried out. The process was effective in removing organic pollutants such as COD and BOD5 from OCC paper whitewater. The removal rates of COD and BOD5 were 81.5% and 85.1%, respectively. By using the polyurethane sponge to construct a microenvironment suitable for microbial growth and metabolism, this study successfully applied and optimized engineered bacteria-white rut fungi (WRF)-in the system to achieve practical degradation of OCC pulping wastewater. Meanwhile, the biocompatibility of different microbial communities on the polyurethane sponge was analyzed by examining the degradation performance of OCC pulping wastewater. The structure of microbial communities loaded on the polyurethane sponge was analyzed to understand the degradation mechanism and microbial reaction behavior. White-rot fungi (Phanerochaete) contributed more to the degradation of OCC wastewater, and new strains adapted to OCC wastewater degradation were generated.
Collapse
Affiliation(s)
- Yuxuan Cai
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shaozhe Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530004, China
| |
Collapse
|
4
|
Porter R, Černoša A, Fernández-Sanmartín P, Cortizas AM, Aranda E, Luo Y, Zalar P, Podlogar M, Gunde-Cimerman N, Gostinčar C. Degradation of polypropylene by fungi Coniochaeta hoffmannii and Pleurostoma richardsiae. Microbiol Res 2023; 277:127507. [PMID: 37793281 DOI: 10.1016/j.micres.2023.127507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
The urgent need for better disposal and recycling of plastics has motivated a search for microbes with the ability to degrade synthetic polymers. While microbes capable of metabolizing polyurethane and polyethylene terephthalate have been discovered and even leveraged in enzymatic recycling approaches, microbial degradation of additive-free polypropylene (PP) remains elusive. Here we report the isolation and characterization of two fungal strains with the potential to degrade pure PP. Twenty-seven fungal strains, many isolated from hydrocarbon contaminated sites, were screened for degradation of commercially used textile plastic. Of the candidate strains, two identified as Coniochaeta hoffmannii and Pleurostoma richardsiae were found to colonize the plastic fibers using scanning electron microscopy (SEM). Further experiments probing degradation of pure PP films were performed using C. hoffmannii and P. richardsiae and analyzed using SEM, Raman spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The results showed that the selected fungi were active against pure PP, with distinct differences in the bonds targeted and the degree to which each was altered. Whole genome and transcriptome sequencing was conducted for both strains and the abundance of carbohydrate active enzymes, GC content, and codon usage bias were analyzed in predicted proteomes for each. Enzymatic assays were conducted to assess each strain's ability to degrade naturally occurring compounds as well as synthetic polymers. These investigations revealed potential adaptations to hydrocarbon-rich environments and provide a foundation for further investigation of PP degrading activity in C. hoffmannii and P. richardsiae.
Collapse
Affiliation(s)
- Rachel Porter
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Černoša
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Paola Fernández-Sanmartín
- CRETUS, EcoPast Research Group (GI-1553), Departamento de Edafoloxía e Química Agrícola, Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Antonio Martínez Cortizas
- CRETUS, EcoPast Research Group (GI-1553), Departamento de Edafoloxía e Química Agrícola, Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Elisabet Aranda
- University of Granada, Institute of Water Research, Environmental Microbiology Group, Ramón y Cajal n4, 18071 Granada, Spain
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China
| | - Polona Zalar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Matejka Podlogar
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Cene Gostinčar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Jia SL, Zhang M, Liu GL, Chi ZM, Chi Z. Novel chromosomes and genomes provide new insights into evolution and adaptation of the whole genome duplicated yeast-like fungus TN3-1 isolated from natural honey. Funct Integr Genomics 2023; 23:206. [PMID: 37335429 DOI: 10.1007/s10142-023-01127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Aureobasidium melanogenum TN3-1 strain and A. melanogenum P16 strain were isolated from the natural honey and the mangrove ecosystem, respectively. The former can produce much higher pullulan from high concentration of glucose than the latter. In order to know what happened to their genomes, the PacBio sequencing and Hi-C technologies were used to create the first high-quality chromosome-level reference genome assembly of A. melanogenum TN3-1 (51.61 Mb) and A. melanogenum P16 (25.82 Mb) with the contig N50 of 2.19 Mb and 2.26 Mb, respectively. Based on the Hi-C results, a total of 93.33% contigs in the TN3-1 strain and 92.31% contigs in the P16 strain were anchored onto 24 and 12 haploid chromosomes, respectively. The genomes of the TN3-1 strain had two subgenomes A and B. Synteny analysis showed that the genomic contents of the two subgenomes were asymmetric with many structural variations. Intriguingly, the TN3-1 strain was revealed as a recent hybrid/fusion between the ancestor of A. melanogenum CBS105.22/CBS110374 and the ancestor of another unidentified strain of A. melanogenum similar to P16 strain. We estimated that the two ancient progenitors diverged around 18.38 Mya and merged around 10.66-9.98 Mya. It was found that in the TN3-1 strain, telomeres of each chromosome contained high level of long interspersed nuclear elements (LINEs), but had low level of the telomerase encoding gene. Meanwhile, there were high level of transposable elements (TEs) inserted in the chromosomes of the TN3-1 strain. In addition, the positively selected genes of the TN3-1 strain were mainly enriched in the metabolic processes related to harsh environmental adaptability. Most of the stress-related genes were found to be related to the adjacent LTRs, and the glucose derepression was caused by the mutation of the Glc7-2 in the Snf-Mig1 system. All of these could contribute to its genetic instability, genome evolution, high stress resistance, and high pullulan production from glucose.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Mei Zhang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
6
|
Wang Y, Jiménez DJ, Zhang Z, van Elsas JD. Functioning of a tripartite lignocellulolytic microbial consortium cultivated under two shaking conditions: a metatranscriptomic study. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:54. [PMID: 36991472 DOI: 10.1186/s13068-023-02289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023]
Abstract
Abstract
Background
In a previous study, shaking speed was found to be an important factor affecting the population dynamics and lignocellulose-degrading activities of a synthetic lignocellulolytic microbial consortium composed of the bacteria Sphingobacterium paramultivorum w15, Citrobacter freundii so4, and the fungus Coniochaeta sp. 2T2.1. Here, the gene expression profiles of each strain in this consortium were examined after growth at two shaking speeds (180 and 60 rpm) at three time points (1, 5 and 13 days).
Results
The results indicated that, at 60 rpm, C. freundii so4 switched, to a large extent, from aerobic to flexible (aerobic/microaerophilic/anaerobic) metabolism, resulting in continued slow growth till late stage. In addition, Coniochaeta sp. 2T2.1 tended to occur to a larger extent in the hyphal form, with genes encoding adhesion proteins being highly expressed. Much like at 180 rpm, at 60 rpm, S. paramultivorum w15 and Coniochaeta sp. 2T2.1 were key players in hemicellulose degradation processes, as evidenced from the respective CAZy-specific transcripts. Coniochaeta sp. 2T2.1 exhibited expression of genes encoding arabinoxylan-degrading enzymes (i.e., of CAZy groups GH10, GH11, CE1, CE5 and GH43), whereas, at 180 rpm, some of these genes were suppressed at early stages of growth. Moreover, C. freundii so4 stably expressed genes that were predicted to encode proteins with (1) β-xylosidase/β-glucosidase and (2) peptidoglycan/chitinase activities, (3) stress response- and detoxification-related proteins. Finally, S. paramultivorum w15 showed involvement in vitamin B2 generation in the early stages across the two shaking speeds, while this role was taken over by C. freundii so4 at late stage at 60 rpm.
Conclusions
We provide evidence that S. paramultivorum w15 is involved in the degradation of mainly hemicellulose and in vitamin B2 production, and C. freundii so4 in the degradation of oligosaccharides or sugar dimers, next to detoxification processes. Coniochaeta sp. 2T2.1 was held to be strongly involved in cellulose and xylan (at early stages), next to lignin modification processes (at later stages). The synergism and alternative functional roles presented in this study enhance the eco-enzymological understanding of the degradation of lignocellulose in this tripartite microbial consortium.
Collapse
|
7
|
Kimeklis AK, Gladkov GV, Orlova OV, Afonin AM, Gribchenko ES, Aksenova TS, Kichko AA, Pinaev AG, Andronov EE. The Succession of the Cellulolytic Microbial Community from the Soil during Oat Straw Decomposition. Int J Mol Sci 2023; 24:ijms24076342. [PMID: 37047311 PMCID: PMC10094526 DOI: 10.3390/ijms24076342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The process of straw decomposition is dynamic and is accompanied by the succession of the microbial decomposing community, which is driven by poorly understood interactions between microorganisms. Soil is a complex ecological niche, and the soil microbiome can serve as a source of potentially active cellulolytic microorganisms. Here, we performed an experiment on the de novo colonization of oat straw by the soil microbial community by placing nylon bags with sterilized oat straw in the pots filled with chernozem soil and incubating them for 6 months. The aim was to investigate the changes in decomposer microbiota during this process using conventional sequencing techniques. The bacterial succession during straw decomposition occurred in three phases: the early phase (first month) was characterized by high microbial activity and low diversity, the middle phase (second to third month) was characterized by low activity and low diversity, and the late phase (fourth to sixth months) was characterized by low activity and high diversity. Analysis of amplicon sequencing data revealed three groups of co-changing phylotypes corresponding to these phases. The early active phase was abundant in the cellulolytic members from Pseudomonadota, Bacteroidota, Bacillota, and Actinobacteriota for bacteria and Ascomycota for fungi, and most of the primary phylotypes were gone by the end of the phase. The second intermediate phase was marked by the set of phylotypes from the same phyla persisting in the community. In the mature community of the late phase, apart from the core phylotypes, non-cellulolytic members from Bdellovibrionota, Myxococcota, Chloroflexota, and Thermoproteota appeared. Full metagenome sequencing of the microbial community from the end of the middle phase confirmed that major bacterial and fungal members of this consortium had genes of glycoside hydrolases (GH) connected to cellulose and chitin degradation. The real-time analysis of the selection of these genes showed that their representation varied between phases, and this occurred under the influence of the host, and not the GH family factor. Our findings demonstrate that soil microbial community may act as an efficient source of cellulolytic microorganisms and that colonization of the cellulolytic substrate occurs in several phases, each characterized by its own taxonomic and functional profile.
Collapse
Affiliation(s)
- Anastasiia K. Kimeklis
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence: (A.K.K.); (E.E.A.)
| | - Grigory V. Gladkov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Olga V. Orlova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Emma S. Gribchenko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana S. Aksenova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Arina A. Kichko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexander G. Pinaev
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Evgeny E. Andronov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
- Correspondence: (A.K.K.); (E.E.A.)
| |
Collapse
|
8
|
Cheng M, Wijayawardene NN, Promputtha I, de Vries RP, Lan Y, Luo G, Wang M, Li Q, Guo X, Wang F, Liu Y, Kang Y. Potential Fungi Isolated From Anti-biodegradable Chinese Medicine Residue to Degrade Lignocellulose. Front Microbiol 2022; 13:877884. [PMID: 35620098 PMCID: PMC9127797 DOI: 10.3389/fmicb.2022.877884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Traditional Chinese medicine is one of the ancient medicines which is popular in Asian countries, among which the residue produced by the use of anti-biodegradables is endless, and causes significant adverse impacts on the environment. However, the high acidity of anti-biodegradable residues and some special biological activities make it difficult for microorganisms to survive, resulting in a very low degradation rate of lignocellulose in naturally stacked residues, which directly impedes the degradation of residues. We aimed to identify the fungal strains that efficiently biodegrade anti-biodegradable residue and see the possibility to improve the biodegradation of it and other agricultural wastes by co-cultivating these fungi. We isolated 302 fungal strains from anti-biodegradable residue to test hydrolysis ability. Finally, we found Coniochaeta sp., Fomitopsis sp., Nemania sp., Talaromyces sp., Phaeophlebiopsis sp. which inhabit the anti-biodegradable residues are capable of producing higher concentrations of extracellular enzymes. Synergistic fungal combinations (viz., Fomitopsis sp. + Phaeophlebiopsis sp.; Talaromyces sp. + Coniochaeta sp. + Fomitopsis sp.; Talaromyces sp. + Fomitopsis sp. + Piloderma sp. and Talaromyces sp. + Nemania sp. + Piloderma sp.) have better overall degradation effect on lignocellulose. Therefore, these fungi and their combinations have strong potential to be further developed for bioremediation and biological enzyme industrial production.
Collapse
Affiliation(s)
- Min Cheng
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Nalin N Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China.,Section of Genetics, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Science, Environmental Science Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Yongzhe Lan
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Meizhu Wang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Qirui Li
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xinyao Guo
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yanxia Liu
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yingqian Kang
- Key Laboratory of Medical Microbiology and Parasitology and Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
9
|
Effect of culture conditions on the performance of lignocellulose-degrading synthetic microbial consortia. Appl Microbiol Biotechnol 2021; 105:7981-7995. [PMID: 34596724 PMCID: PMC8502130 DOI: 10.1007/s00253-021-11591-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/05/2022]
Abstract
In this study, we examined a synthetic microbial consortium, composed of two selected bacteria, i.e., Citrobacter freundii so4 and Sphingobacterium multivorum w15, next to the fungus Coniochaeta sp. 2T2.1, with respect to their fate and roles in the degradation of wheat straw (WS). A special focus was placed on the effects of pH (7.2, 6.2, or 5.2), temperature (25 versus 28 °C), and shaking speed (60 versus 180 rpm). Coniochaeta sp. 2T2.1 consistently had a key role in the degradation process, with the two bacteria having additional roles. Whereas temperature exerted only minor effects on the degradation, pH and shaking speed were key determinants of both organismal growth and WS degradation levels. In detail, the three-partner degrader consortium showed significantly higher WS degradation values at pH 6.2 and 5.2 than at pH 7.2. Moreover, the two bacteria revealed up to tenfold enhanced final cell densities (ranging from log8.0 to log9.0 colony forming unit (CFU)/mL) in the presence of Coniochaeta sp. 2T2.1 than when growing alone or in a bacterial bi-culture, regardless of pH range or shaking speed. Conversely, at 180 rpm, fungal growth was clearly suppressed by the presence of the bacteria at pH 5.2 and pH 6.2, but not at pH 7.2. In contrast, at 60 rpm, the presence of the bacteria fostered fungal growth. In these latter cultures, oxygen levels were significantly lowered as compared to the maximal levels found at 180 rpm (about 5.67 mg/L, ~ 62% of saturation). Conspicuous effects on biomass appearance pointed to a fungal biofilm–modulating role of the bacteria. Key points • Coniochaeta sp. 2T2.1 has a key role in wheat straw (WS) degradation. • Bacterial impact shifts when conditions change. • pH and shaking speed are key drivers of the growth dynamics and WS degradation.
Collapse
|
10
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
11
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|
12
|
Zhang R. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation. Appl Microbiol Biotechnol 2020; 104:3229-3243. [PMID: 32076777 DOI: 10.1007/s00253-020-10467-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 12/25/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023]
Abstract
Cellulose-degrading auxiliary activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) are known to be widely distributed among filamentous fungi and participate in the degradation of lignocellulose via the oxidative cleavage of celluloses, cello-oligosaccharides, or hemicelluloses. AA9 LPMOs have been reported to have extensive interactions with not only cellulases but also oxidases. The addition of AA9 LPMOs can greatly reduce the amount of cellulase needed for saccharification and increase the yield of glucose. The discovery of AA9 LPMOs has greatly changed our understanding of how fungi degrade cellulose. In this review, apart from summarizing the recent discoveries related to their catalytic reaction, functional diversity, and practical applications, the stability, expression system, and protein engineering of AA9 LPMOs are reviewed for the first time. This review may provide a reference value to further broaden the substrate range of AA9 LPMOs, expand the scope of their practical applications, and realize their customization for industrial utilization.Key Points• The stability and expression system of AA9 LPMOs are reviewed for the first time.• The protein engineering of AA9 LPMOs is systematically summarized for the first time.• The latest research results on the catalytic mechanism of AA9 LPMOs are summarized.• The application of AA9 LPMOs and their relationship with other enzymes are reviewed.
Collapse
Affiliation(s)
- Ruiqin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
- Department of Bioengineering, Huainan Normal University, No. 278 Xueyuannan Road, Huainan, 232038, China.
| |
Collapse
|