1
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
2
|
Rønne ME, Dybdahl Andersen C, Teze D, Petersen AB, Fredslund F, Stender EGP, Chaberski EK, Holck J, Aachmann FL, Welner DH, Svensson B. Action and cooperation in alginate degradation by three enzymes from the human gut bacterium Bacteroides eggerthii DSM 20697. J Biol Chem 2024; 300:107596. [PMID: 39032652 PMCID: PMC11381880 DOI: 10.1016/j.jbc.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.
Collapse
Affiliation(s)
- Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Dybdahl Andersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Teze
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Agnes Beenfeldt Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Folmer Fredslund
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil G P Stender
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Evan Kirk Chaberski
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ditte Hededam Welner
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Chen Y, Ci F, Jiang H, Meng D, Hamouda HI, Liu C, Quan Y, Chen S, Bai X, Zhang Z, Gao X, Balah MA, Mao X. Catalytic properties characterization and degradation mode elucidation of a polyG-specific alginate lyase OUC-FaAly7. Carbohydr Polym 2024; 333:121929. [PMID: 38494211 DOI: 10.1016/j.carbpol.2024.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/μmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/μmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.
Collapse
Affiliation(s)
- Yimiao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Fangfang Ci
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Weihai Institute for Food and Drug Control, Chuangxin Road 166-6, Torch Hi-tech Science Park, Weihai 264200, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Di Meng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Yongyi Quan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Suxue Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xinxue Bai
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Zhaohui Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Mohamed A Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
4
|
Zhu B, Li L, Yuan X. Efficient preparation of alginate oligosaccharides by using alginate lyases and evaluation of the development promoting effects on Brassica napus L. in saline-alkali environment. Int J Biol Macromol 2024; 270:131917. [PMID: 38679252 DOI: 10.1016/j.ijbiomac.2024.131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Enzymatic degradation of alginate for the preparation of alginate oligosaccharides (AOS) is currently receiving significant attention in the field. AOS has been shown to promote crop growth and improve plant resistance to abiotic stresses. In this study, two PL6 family alginate lyases, AlyRmA and AlyRmB, were expressed and characterized. These enzymes demonstrate exceptional activity and stable thermophilicity compared to other known alginate lyases. AlyRmA (8855.34 U/mg) and AlyRmB (7879.44 U/mg) exhibited excellent degradation activity towards sodium alginate even at high temperatures (70 °C). The AlyRmA and AlyRmB were characterized and utilized to efficiently produce AOS. The study investigated the promotional effect of AOS on the growth of Brassica napus L. seedlings in a saline-alkaline environment. The results of this study demonstrate the high activity and thermal stability of AlyRmA and AlyRmB, highlighting their potential in the preparation of AOS. Moreover, the application of AOS prepared by AlyRmB could enhance the resistance of Brassica napus L. to saline-alkali environments, thereby broadening the potential applications of AOS.
Collapse
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyu Yuan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Gong Y, Shang DD, Sun CL, Du ZJ, Chen GJ. Direct Degradation of Fresh and Dried Macroalgae by Agarivorans albus B2Z047. Mar Drugs 2024; 22:203. [PMID: 38786594 PMCID: PMC11122777 DOI: 10.3390/md22050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.
Collapse
Affiliation(s)
- Ya Gong
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Dan-Dan Shang
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
| | - Cheng-Lin Sun
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Zhang X, Tang Y, Gao F, Xu X, Chen G, Li Y, Wang L. Low-cost and efficient strategy for brown algal hydrolysis: Combination of alginate lyase and cellulase. BIORESOURCE TECHNOLOGY 2024; 397:130481. [PMID: 38395233 DOI: 10.1016/j.biortech.2024.130481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.
Collapse
Affiliation(s)
- Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongqi Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Feng Gao
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Ning L, Zhu B, Yao Z. Separation, purification and structural characterization of marine oligosaccharides: A comprehensive and systematic review of chromatographic methods. J Chromatogr A 2024; 1719:464755. [PMID: 38394786 DOI: 10.1016/j.chroma.2024.464755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Marine oligosaccharides have now been applied in a wide range of industry due to various kinds of physiological activities. However, the oligosaccharides with different polymeric degrees (Dps) differed in physiological activities and applicable fields. So it is promising and essential to separate, purify and structurally characterize these oligosaccharides for understanding their structure-function relationship. This review will summarize the lasted developments in the separation, purification and structural characterization of marine oligosaccharides, including the alginate oligosaccharides, carrageenan oligosaccharides, agar oligosaccharides, chitin oligosaccharides and chitosan oligosaccharides, emphasizing the successful examples of methods for separation and purification. Furthermore, an outlook for preparation of functional oligosaccharides in food biotechnology and agriculture fields is also included. This comprehensive review could definitely promote the utilization of marine functional polysaccharides for food and agriculture.
Collapse
Affiliation(s)
- Limin Ning
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Zhang A, Cao Z, Zhao L, Zhang Q, Fu L, Li J, Liu T. Characterization of bifunctional alginate lyase Aly644 and antimicrobial activity of enzymatic hydrolysates. Appl Microbiol Biotechnol 2023; 107:6845-6857. [PMID: 37698609 DOI: 10.1007/s00253-023-12745-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
An alginate lyase gene aly644 encoding a member of polysaccharide lyase family 6 was obtained from a metagenome of Antarctic macroalgae-associated microbes. The gene was expressed heterologously in Escherichia coli, and the recombinant protein was purified using a Ni-NTA His Tag Kit. With sodium alginate as the substrate, recombinant Aly644 exhibited an optimum reaction temperature of 50°C and an optimum reaction pH of 7.0. The Vmax and Km values of Aly644 toward sodium alginate were 112.36 mg/mL·min and 16.75 mg/mL, respectively. Substrate specificity analysis showed that Aly644 was a bifunctional alginate lyase that hydrolyzed both polyguluronic acid and polymannuronic acid. The hydrolysis products of Aly644 with sodium alginate as the substrate were detected by thin-layer chromatography, and were mainly di- and trisaccharides. The oligosaccharides produced by degradation of sodium alginate by Aly644 inhibited the mycelial growth of the plant pathogens Phytophthora capsici and Fulvia fulva; the 50% maximal effective concentration (EC50) values were 297.45 and 452.89 mg/L, and the 90% maximal effective concentration (EC90) values were 1341.45 and 2693.83 mg/L, respectively. This highlights that Aly644 is a potential candidate enzyme for the industrial production of alginate oligosaccharides with low degree of polymerization. Enzyme-hydrolyzed alginate oligosaccharides could support the development of green agriculture as natural antimicrobial agents. KEY POINTS: • An alginate lyase was obtained from a metagenome of Antarctic macroalgae-associated microbes. • Aly644 is a bifunctional alginate lyase with excellent thermostability and pH stability. • The enzymatic hydrolysates of Aly644 directly inhibited Phytophthora capsici and Fulvia fulva.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
9
|
Li L, Zhu B, Yao Z, Jiang J. Directed preparation, structure-activity relationship and applications of alginate oligosaccharides with specific structures: A systematic review. Food Res Int 2023; 170:112990. [PMID: 37316063 DOI: 10.1016/j.foodres.2023.112990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
The alginate oligosaccharides (AOS) possess versatile activities (such as antioxidant, anti-inflammatory, antitumor, and immune-regulatory activities) and have been the research topic in marine bioresource utilization fields. The degree of polymerization (DP) and the β-D-mannuronic acid (M)/α-L-guluronic acid (G)-units ratio strongly affect the functionality of AOS. Therefore, directed preparation of AOS with specific structures is essential for expanding the applications of alginate polysaccharides and has been the research topic in the marine bioresource field. Alginate lyases could efficiently degrade alginate and specifically produce AOS with specific structures. Therefore, enzymatic preparation of AOS with specific structures has drawn increasing attention. Herein, we systematically summarized the current research progress on the structure-function relation of AOS and focuses on the application of the enzymatic properties of alginate lyase to the specific preparation of various types of AOS. At the same time, current challenges and opportunities for AOS applications are presented to guide and improve the preparation and application of AOS in the future.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao 266400, China
| |
Collapse
|
10
|
Khamassi A, Dumon C. Enzyme synergy for plant cell wall polysaccharide degradation. Essays Biochem 2023; 67:521-531. [PMID: 37067158 DOI: 10.1042/ebc20220166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023]
Abstract
Valorizing plant cell wall, marine and algal polysaccharides is of utmost importance for the development of the circular bioeconomy. This is because polysaccharides are by far the most abundant organic molecules found in nature with complex chemical structures that require a large set of enzymes for their degradation. Microorganisms produce polysaccharide-specific enzymes that act in synergy when performing hydrolysis. Although discovered since decades enzyme synergy is still poorly understood at the molecular level and thus it is difficult to harness and optimize. In the last few years, more attention has been given to improve and characterize enzyme synergy for polysaccharide valorization. In this review, we summarize literature to provide an overview of the different type of synergy involving carbohydrate modifying enzymes and the recent advances in the field exemplified by plant cell-wall degradation.
Collapse
Affiliation(s)
- Ahmed Khamassi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
11
|
Wang X, Xu W, Dai Q, Liu X, Guang C, Zhang W, Mu W. Characterization of a thermostable PL-31 family alginate lyase from Paenibacillus ehimensis and its application for alginate oligosaccharides bioproduction. Enzyme Microb Technol 2023; 166:110221. [PMID: 36906979 DOI: 10.1016/j.enzmictec.2023.110221] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Currently, people pay more attention to marine sugars, because of their unique physiological effects. Alginate oligosaccharides (AOS) are the degradation products of alginate and have been used in food, cosmetic, and medicine fields. AOS display good physical characteristics (low relative molecular weight, good solubility, high safety, and high stability) and excellent physiological functions (immunomodulatory, antioxidant, antidiabetic, and prebiotic activities). Alginate lyase plays a key role in the AOS bioproduction. In this study, a novel PL-31 family alginate lyase from Paenibacillus ehimensis (paeh-aly) was identified and characterized. It was extracellularly secreted in E. coli and exhibited a preference for the substrate poly β-D-mannuronate. Using sodium alginate as the substrate, it showed the maximum catalytic activity (125.7 U/mg) at pH 7.5 and 55 °C with 50 mM NaCl. Compared with other alginate lyases, paeh-aly exhibited good stability. About 86.6% and 61.0% residual activity could be maintained after 5 h incubation at 50 and 55 °C respectively, and its Tm value was 61.5 °C. The degradation products were AOS with DP 2-4. Paeh-aly demonstrated strong promise for AOS industrial production because of its excellent thermostability and efficiency.
Collapse
Affiliation(s)
- Xinxiu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Quanyu Dai
- China Rural Technology Development Center, Beijing 100045, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Chen C, Cao S, Zhu B, Jiang L, Yao Z. Biochemical characterization and elucidation the degradation pattern of a new cold-adapted and Ca2+ activated alginate lyase for efficient preparation of alginate oligosaccharides. Enzyme Microb Technol 2023; 162:110146. [DOI: 10.1016/j.enzmictec.2022.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
|
13
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2023; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Synergy of the Two Alginate Lyase Domains of a Novel Alginate Lyase from Vibrio sp. NC2 in Alginate Degradation. Appl Environ Microbiol 2022; 88:e0155922. [PMID: 36394323 PMCID: PMC9746311 DOI: 10.1128/aem.01559-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alginate lyases play a vital role in the degradation of alginate, an important marine carbon source. Alginate is a complex macromolecular substrate, and the synergy of alginate lyases is important for the alginate utilization by microbes and the application of alginate lyases in biotechnology. Although many studies have focused on the synergy between different alginate lyases, the synergy between two alginate lyase domains of one alginate lyase has not been reported. Here, we report the synergism between the two catalytic domains of a novel alginate lyase, AlyC6', from the marine alginate-degrading bacterium Vibrio sp. NC2. AlyC6' contains two PL7 catalytic domains (CD1 and CD2) that have no sequence similarity. While both CD1 and CD2 are endo-lyases with the highest activity at 30°C, pH 8.0, and 1.0 M NaCl, they also displayed some different properties. CD1 was PM-specific, but CD2 was PG-specific. Compared with CD2, CD1 had higher catalytic efficiency, but lower substrate affinity. In addition, CD1 had a smaller minimal substrate than CD2, and the products from CD2 could be further degraded by CD1. These distinctions between the two domains enable them to synergize intramolecularly in alginate degradation, resulting in efficient and complete degradation of various alginate substrates. The bioinformatics analysis revealed that diverse alginate lyases have multiple catalytic domains, which are widespread, especially abundant in Flavobacteriaceae and Alteromonadales, which may secret multimodular alginate lyases for alginate degradation. This study provides new insight into bacterial alginate lyases and alginate degradation and is helpful for designing multimodular enzymes for efficient alginate depolymerization. IMPORTANCE Alginate is a major component in the cell walls of brown algae. Alginate degradation is carried out by alginate lyases. Until now, while most characterized alginate lyases contain one single catalytic domain, only a few have been shown to contain two catalytic domains. Furthermore, the synergy of alginate lyases has attracted increasing attention since it plays important roles in microbial alginate utilization and biotechnological applications. Although many studies have focused on the synergy between different alginate lyases, the synergy between two catalytic domains of one alginate lyase has not been reported. Here, a novel alginate lyase, AlyC6', with two functional alginate lyase domains was biochemically characterized. Moreover, the synergism between the two domains of AlyC6' was revealed. Additionally, the distribution of the alginate lyases with multiple alginate lyase domains was investigated based on the bioinformatics analysis. This study provides new insight into bacterial alginate lyases and alginate degradation.
Collapse
|
15
|
Sun XM, Xue Z, Sun ML, Zhang Y, Zhang YZ, Fu HH, Zhang YQ, Wang P. Characterization of a Novel Alginate Lyase with Two Alginate Lyase Domains from the Marine Bacterium Vibrio sp. C42. Mar Drugs 2022; 20:md20120746. [PMID: 36547893 PMCID: PMC9781882 DOI: 10.3390/md20120746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Alginate is abundant in the cell walls of brown algae. Alginate lyases can degrade alginate, and thus play an important role in the marine carbon cycle and industrial production. Currently, most reported alginate lyases contain only one functional alginate lyase domain. AlyC8 is a putative alginate lyase with two alginate lyase domains (CD1 and CD2) from the marine alginate-degrading strain Vibrio sp. C42. To characterize AlyC8 and its two catalytic domains, AlyC8 and its two catalytic domain-deleted mutants, AlyC8-CD1 and AlyC8-CD2, were expressed in Escherichia coli. All three proteins have noticeable activity toward sodium alginate and exhibit optimal activities at pH 8.0-9.0 and at 30-40 °C, demonstrating that both CD1 and CD2 are functional. However, CD1 and CD2 showed opposite substrate specificity. The differences in substrate specificity and degradation products of alginate between the mutants and AlyC8 demonstrate that CD1 and CD2 can act synergistically to enable AlyC8 to degrade various alginate substrates into smaller oligomeric products. Moreover, kinetic analysis indicated that AlyC8-CD1 plays a major role in the degradation of alginate by AlyC8. These results demonstrate that AlyC8 is a novel alginate lyase with two functional catalytic domains that are synergistic in alginate degradation, which is helpful for a better understanding of alginate lyases and alginate degradation.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Center, Shandong University, Qingdao 266237, China
- Life Science College, Shandong Normal University, Jinan 250014, China
| | - Zhao Xue
- Life Science College, Shandong Normal University, Jinan 250014, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yi Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Center, Shandong University, Qingdao 266237, China
- Correspondence: (Y.-Q.Z.); (P.W.)
| | - Peng Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- Correspondence: (Y.-Q.Z.); (P.W.)
| |
Collapse
|
16
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
17
|
Yan F, Chen J, Cai T, Zhong J, Zhang S. Cloning, expression, and characterization of a novel endo-type alginate lyase from Microbulbifer sp. BY17. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4522-4531. [PMID: 35137421 DOI: 10.1002/jsfa.11807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alginate oligosaccharides (AOS), with various physiological effects, have been widely used in the food, agricultural, and pharmaceutical industries. The biological enzymatic method of preparing AOS, using alginate lyase, has more advantages compared with physical and chemical methods. Cloning and heterologously expressing alginate lyase are therefore very important. RESULTS A novel alginate lyase, BY17PV7, from Microbulbifer sp. BY17, isolated from Gracilaria, was cloned and expressed in Escherichia coli BL21(DE3). BY17PV7 was about 27 KDa. BY17PV7 showed the greatest activity (150.42 ± 3.32 U/mg) at 43 °C and pH 8.9. It could be activated by Ca2+ , Mn2+ , Co2+ , Fe3+ , Na+ , and inhibited by Mg2+ , Zn2+ , Ba2+ , Cu2+ , sodium dodecyl sulfate (SDS), ethylene diamine tetraacetic acid (EDTA). BY17PV7 had a wide range of substrate specificity and good degradation effects for poly β-D-mannuronate (polyM) and poly α-L-guluronate (polyG), demonstrating that it is a bifunctional alginate lyase. The kinetic parameters showed that BY17PV7 had a greater affinity for polyG. BY17PV7 released AOS with a degree of polymerization (DP) of 3-4 in an endolytic manner from sodium alginate. Alginate oligosaccharides showed strong antioxidant ability of reducing Fe3+ and scavenging radicals such as hydroxyl, 2,2-azion-bia (3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). CONCLUSION A novel bifunctional alginate lyase, BY17PV7, was expressed and characterized in Escherichia coli BL21(DE3). The results were helpful for the analysis of the molecular mechanisms of degrading patterns in the polysaccharide lyase (PL) family. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Junying Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Ting Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jinfu Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Shaolong Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Long L, Hu Q, Wang X, Li H, Li Z, Jiang Z, Ni H, Li Q, Zhu Y. A bifunctional exolytic alginate lyase from Microbulbifer sp. ALW1 with salt activation and calcium-dependent catalysis. Enzyme Microb Technol 2022; 161:110109. [PMID: 35939899 DOI: 10.1016/j.enzmictec.2022.110109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Alginate lyases can depolymerize alginate to oligomers with potential applications in many fields. Here a new alginate lyase, namely AlgL6, was characterized from Microbulbifer sp. ALW1, phylogenetically classified into the polysaccharide lyase family 6 (PL6). The recombinant alginate lyase AlgL6 exerted enzymatic activities towards polymannuronate, polyguluronate, and sodium alginate in an exolytic manner. AlgL6 had an optimum temperature of 35 °C and good stability at 30 °C or below. Its optimum pH was 8.0, and it had good stability over the pH range of 5.0-9.0. AlgL6 exhibited excellent halo-stability against Na+, and its activity can be increased up to about 1.8 times by 0.5 M NaCl. AlgL6 also showed strong stability in the presence of some nonionic detergents such as Tween 20 and Tween 80. The degradation products of sodium alginate by AlgL6 exhibited more effective antioxidant activities than the undigested polysaccharides. Structure analysis illustrated the catalytic mechanism defined by the coordination of the acid/base residues Arg269 and Lys248 of AlgL6. The replacement of Ca2+-interacting amino acid residues in AlgL6 and depletion of Ca2+ suggested the involvement of Ca2+ in the enzyme's catalytic activity. These properties of AlgL6 supply support to its industrial application for development of alginate bioresource.
Collapse
Affiliation(s)
- Liufei Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingsong Hu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xinxia Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Xiamen Medical College, Xiamen 361023, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
19
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
20
|
Zeng L, Li J, Cheng Y, Wang D, Gu J, Li F, Han W. Comparison of Biochemical Characteristics, Action Models, and Enzymatic Mechanisms of a Novel Exolytic and Two Endolytic Lyases with Mannuronate Preference. Mar Drugs 2021; 19:md19120706. [PMID: 34940705 PMCID: PMC8705907 DOI: 10.3390/md19120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the β-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.
Collapse
Affiliation(s)
- Lianghuan Zeng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Junge Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Yuanyuan Cheng
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
- Department of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Dandan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
| | - Jingyan Gu
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (J.L.); (D.W.); (F.L.)
- United Post-Graduate Education Base of Shandong University and Jinan Enlighten Biotechnology Co., Ltd., Jinan 250100, China; (Y.C.); (J.G.)
- Activity Biotechnology Co., Ltd., Jinan 250100, China
- Correspondence: ; Tel.: +86-15763908639
| |
Collapse
|
21
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
22
|
Li Q, Zheng L, Guo Z, Tang T, Zhu B. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Crit Rev Biotechnol 2021; 41:953-968. [PMID: 34015998 DOI: 10.1080/07388551.2021.1898330] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alginate, a kind of linear acidic polysaccharide, consists of α-L-guluronate (G) and β-D-mannuronate (M). Both alginate and its degradation products (alginate oligosaccharides) possess abundant biological activities such as antioxidant activity, antitumor activity, and antimicrobial activity. Therefore, alginate and alginate oligosaccharides have great value in food, pharmaceutical, and agricultural fields. Alginate lyase can degrade alginate into alginate oligosaccharides via the β-elimination reaction. It plays an important role in marine carbon recycling and the deep utilization of brown algae. Elucidating the structural features of alginate lyase can improve our knowledge of its catalytic mechanisms. With the development of structural analysis techniques, increasing numbers of alginate lyases have been characterized at the structural level. Hence, it is essential and helpful to summarize and discuss the up-to-date findings. In this review, we have summarized progress on the structural features and the catalytic mechanisms of alginate lyases. Furthermore, the molecular modification strategies and the applications of alginate lyases have also been discussed. This comprehensive information should be helpful to expand the applications of alginate lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
23
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
24
|
Zhang Q, Cao HY, Wei L, Lu D, Du M, Yuan M, Shi D, Chen X, Wang P, Chen XL, Chi L, Zhang YZ, Li F. Discovery of exolytic heparinases and their catalytic mechanism and potential application. Nat Commun 2021; 12:1263. [PMID: 33627653 PMCID: PMC7904915 DOI: 10.1038/s41467-021-21441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Heparinases (Hepases) are critical tools for the studies of highly heterogeneous heparin (HP)/heparan sulfate (HS). However, exolytic heparinases urgently needed for the sequencing of HP/HS chains remain undiscovered. Herein, a type of exolytic heparinases (exoHepases) is identified from the genomes of different bacteria. These exoHepases share almost no homology with known Hepases and prefer to digest HP rather than HS chains by sequentially releasing unsaturated disaccharides from their reducing ends. The structural study of an exoHepase (BIexoHep) shows that an N-terminal conserved DUF4962 superfamily domain is essential to the enzyme activities of these exoHepases, which is involved in the formation of a unique L-shaped catalytic cavity controlling the sequential digestion of substrates through electrostatic interactions. Further, several HP octasaccharides have been preliminarily sequenced by using BIexoHep. Overall, this study fills the research gap of exoHepases and provides urgently needed tools for the structural and functional studies of HP/HS chains.
Collapse
Affiliation(s)
- Qingdong Zhang
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Hai-Yan Cao
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China ,grid.4422.00000 0001 2152 3263College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lin Wei
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Danrong Lu
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Du
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Yuan
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Deling Shi
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | | | - Peng Wang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiu-Lan Chen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lianli Chi
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Fuchuan Li
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
25
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
26
|
Zhang Q, Lu D, Wang S, Wei L, Wang W, Li F. Identification and biochemical characterization of a novel chondroitin sulfate/dermantan sulfate lyase from Photobacterium sp. Int J Biol Macromol 2020; 165:2314-2325. [PMID: 33132124 DOI: 10.1016/j.ijbiomac.2020.10.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.
Collapse
Affiliation(s)
- Qingdong Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Danrong Lu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, China
| | - Shumin Wang
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), 619 Changcheng Road, Taian 271016, China
| | - Lin Wei
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
27
|
Tang L, Wang Y, Gao S, Wu H, Wang D, Yu W, Han F. Biochemical characteristics and molecular mechanism of an exo-type alginate lyase VxAly7D and its use for the preparation of unsaturated monosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:99. [PMID: 32514311 PMCID: PMC7268478 DOI: 10.1186/s13068-020-01738-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/22/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND As the most abundant polysaccharide in brown algae, alginate has become a promising economical material for bioethanol production. Recently, exo-type alginate lyases have received extensive attention because the unsaturated monosaccharides produced by their degradation of alginate can be easily converted into 4-deoxy-l-erythro-5-hexoseulose uronate (DEH), a promising material for bioethanol production and biorefinery systems. RESULTS In this study, we cloned and characterized an exo-type polysaccharide lyase family 7 (PL7) alginate lyase VxAly7D from the marine bacterium Vibrio xiamenensis QY104. Recombinant VxAly7D was most active at 30 °C and exhibited 21%, 46% and 90% of its highest activity at 0, 10 and 20 °C, respectively. Compared with other exo-type alginate lyases, recombinant VxAly7D was shown to be a bifunctional alginate lyase with higher specific activity towards sodium alginate, polyG and polyM (462.4 ± 0.64, 357.37 ± 0.53 and 441.94 ± 2.46 U/mg, respectively). A total of 13 μg recombinant VxAly7D could convert 3 mg sodium alginate to unsaturated monosaccharides in 1 min with a yield of 37.6%, and the yield reached 95% in 1 h. In addition, the three-dimensional structure of VxAly7D was modelled using the crystal structure of AlyA5 from Zobellia galactanivorans DsijT as the template. The action mode and the end products of the W295A mutant revealed that Trp295 is a key amino acid residue responsible for the exolytic action mode of VxAly7D. CONCLUSION Overall, our results show that VxAly7D is a PL7 exo-type alginate lyase with high activity and a high conversion rate at low/moderate temperatures, which provides a useful enzymatic tool for the development of biofuel production from brown algae and enriches the understanding of the structure and functional relationships of polysaccharide lyases.
Collapse
Affiliation(s)
- Luyao Tang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Ying Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong China
| | - Shan Gao
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Hao Wu
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Danni Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Feng Han
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|