1
|
Ziliani S, Alekseeva A, Antonini C, Esposito E, Neggiani F, Sansò M, Guerrini M, Bertini S. Synthesis and Physiochemical Properties of Sulphated Tamarind ( Tamarindus indica L.) Seed Polysaccharide. Molecules 2024; 29:5510. [PMID: 39683670 DOI: 10.3390/molecules29235510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Tamarind seed polysaccharide (TSP) is a neutral water-soluble galactoxyloglucan isolated from the seed kernel of Tamarindus indica with average molecular weight (Mw) 600-800 kDa. The high viscosity of TSP slows solubilisation, and the absence of charged substituent hinders the formation of electrostatic interactions with biomolecules. TSP was sulphated in a one-step process using dimethylformamide as a solvent, and sulphur trioxide-pyridine complex as a sulphating reagent. Studies of chemical structure, molecular weight distribution and viscosity were conducted to characterise the synthesised products. The sulphation degree was established by conductimetric titration; the sulphate group distribution was studied by NMR spectroscopy and liquid chromatography-mass spectrometry, and sulphated TSP oligomers were obtained by enzymatic degradation with cellulase and/or xyloglucanase. Sulphated products showed higher solubility than TSP, Mws in the range of 700-1000 kDa, a sulphation degree of two to four per subunit and pseudoplastic behaviour. A preliminary study of mucoadhesion revealed the unexpected interaction of S-TSP with mucin, providing a route by which sulphated TSP interactions with biomolecules may be influenced.
Collapse
Affiliation(s)
- Sabrina Ziliani
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
- Istituto Farmaco Biologico Sperimentale, Via Carducci, 64/D, 56017 San Giuliano Terme, Italy
| | - Anna Alekseeva
- Institute of Chemical and Biochemical Research G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Emiliano Esposito
- Institute of Chemical and Biochemical Research G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy
| | - Fabio Neggiani
- Istituto Farmaco Biologico Sperimentale, Via Carducci, 64/D, 56017 San Giuliano Terme, Italy
| | - Marco Sansò
- Istituto Farmaco Biologico Sperimentale, Via Carducci, 64/D, 56017 San Giuliano Terme, Italy
| | - Marco Guerrini
- Institute of Chemical and Biochemical Research G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy
| | - Sabrina Bertini
- Institute of Chemical and Biochemical Research G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy
| |
Collapse
|
2
|
Schwaiger L, Csarman F, Chang H, Golten O, Eijsink VGH, Ludwig R. Electrochemical Monitoring of Heterogeneous Peroxygenase Reactions Unravels LPMO Kinetics. ACS Catal 2024; 14:1205-1219. [PMID: 38269044 PMCID: PMC10804366 DOI: 10.1021/acscatal.3c05194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Biological conversion of plant biomass depends on peroxygenases and peroxidases acting on insoluble polysaccharides and lignin. Among these are cellulose- and hemicellulose-degrading lytic polysaccharide monooxygenases (LPMOs), which have revolutionized our concept of biomass degradation. Major obstacles limiting mechanistic and functional understanding of these unique peroxygenases are their complex and insoluble substrates and the hard-to-measure H2O2 consumption, resulting in the lack of suitable kinetic assays. We report a versatile and robust electrochemical method for real-time monitoring and kinetic characterization of LPMOs and other H2O2-dependent interfacial enzymes based on a rotating disc electrode for the sensitive and selective quantitation of H2O2 at biologically relevant concentrations. The H2O2 sensor works in suspensions of insoluble substrates as well as in homogeneous solutions. Our characterization of multiple LPMOs provides unprecedented insights into the substrate specificity, kinetics, and stability of these enzymes. High turnover and total turnover numbers demonstrate that LPMOs are fast and durable biocatalysts.
Collapse
Affiliation(s)
- Lorenz Schwaiger
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Csarman
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Hucheng Chang
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Ole Golten
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432 Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432 Ås, Norway
| | - Roland Ludwig
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
3
|
Østby H, Christensen IA, Hennum K, Várnai A, Buchinger E, Grandal S, Courtade G, Hegnar OA, Aachmann FL, Eijsink VGH. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates. Sci Rep 2023; 13:17373. [PMID: 37833388 PMCID: PMC10575960 DOI: 10.1038/s41598-023-44278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that use O2 or H2O2 to oxidatively cleave glycosidic bonds. LPMOs are prevalent in nature, and the functional variation among these enzymes is a topic of great interest. We present the functional characterization of one of the 22 putative AA9-type LPMOs from the fungus Schizophyllum commune, ScLPMO9A. The enzyme, expressed in Escherichia coli, showed C4-oxidative cleavage of amorphous cellulose and soluble cello-oligosaccharides. Activity on xyloglucan, mixed-linkage β-glucan, and glucomannan was also observed, and product profiles differed compared to the well-studied C4-oxidizing NcLPMO9C from Neurospora crassa. While NcLPMO9C is also active on more crystalline forms of cellulose, ScLPMO9A is not. Differences between the two enzymes were also revealed by nuclear magnetic resonance (NMR) titration studies showing that, in contrast to NcLPMO9C, ScLPMO9A has higher affinity for linear substrates compared to branched substrates. Studies of H2O2-fueled degradation of amorphous cellulose showed that ScLPMO9A catalyzes a fast and specific peroxygenase reaction that is at least two orders of magnitude faster than the apparent monooxygenase reaction. Together, these results show that ScLPMO9A is an efficient LPMO with a broad substrate range, which, rather than acting on cellulose, has evolved to act on amorphous and soluble glucans.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Idd A Christensen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Karen Hennum
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Edith Buchinger
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Siri Grandal
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Gaston Courtade
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
4
|
Sun XB, Gao DY, Cao JW, Liu Y, Rong ZT, Wang JK, Wang Q. BsLPMO10A from Bacillus subtilis boosts the depolymerization of diverse polysaccharides linked via β-1,4-glycosidic bonds. Int J Biol Macromol 2023; 230:123133. [PMID: 36621733 DOI: 10.1016/j.ijbiomac.2023.123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is known as an oxidatively cleaving enzyme in recalcitrant polysaccharide deconstruction. Herein, we report a novel AA10 LPMO derived from Bacillus subtilis (BsLPMO10A). A substrate specificity study revealed that the enzyme exhibited an extensive active-substrate spectrum, particularly for polysaccharides linked via β-1,4 glycosidic bonds, such as β-(Man1 → 4Man), β-(Glc1 → 4Glc) and β-(Xyl1 → 4Xyl). HPAEC-PAD and MALDI-TOF-MS analyses indicated that BsLPMO10A dominantly liberated native oligosaccharides with a degree of polymerization (DP) of 3-6 and C1-oxidized oligosaccharides ranging from DP3ox to DP6ox from mixed linkage glucans and beechwood xylan. Due to its synergistic action with a variety of glycoside hydrolases, including glucanase IDSGLUC5-38, xylanase TfXYN11-1, cellulase IDSGLUC5-11 and chitinase BtCHI18-1, BsLPMO10A dramatically accelerated glucan, xylan, cellulose and chitin saccharification. After co-reaction for 72 h, the reducing sugars in Icelandic moss lichenan, beechwood xylan, phosphoric acid swollen cellulose and chitin yielded 3176 ± 97, 7436 ± 165, 649 ± 44, and 2604 ± 130 μmol/L, which were 1.47-, 1.56-, 1.44- and 1.25-fold higher than those in the GHs alone groups, respectively (P < 0.001). In addition, the synergy of BsLPMO10A and GHs was further validated by the degradation of natural feedstuffs, the co-operation of BsLPMO10A and GHs released 3266 ± 182 and 1725 ± 107 μmol/L of reducing sugars from Oryza sativa L. and Arachis hypogaea L. straws, respectively, which were significantly higher than those produced by GHs alone (P < 0.001). Furthermore, BsLPMO10A also accelerated the liberation of reducing sugars from Celluclast® 1.5 L, a commercial cellulase cocktail, on filter paper, A. hypogaea L. and O. sativa L. straws by 49.58 % (P < 0.05), 72.19 % (P < 0.001) and 54.36 % (P < 0.05), respectively. This work has characterized BsLPMO10A with a broad active-substrate scope, providing a promising candidate for lignocellulosic biomass biorefinery.
Collapse
Affiliation(s)
- Xiao-Bao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - De-Ying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Wen Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhou-Ting Rong
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol 2022; 219:68-83. [PMID: 35931294 DOI: 10.1016/j.ijbiomac.2022.07.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O2. Although scientific understanding of these enzymes remains somewhat unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
Collapse
Affiliation(s)
- Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| |
Collapse
|
7
|
Sun P, de Munnik M, van Berkel WJH, Kabel MA. Extending the diversity of Myceliophthora thermophila LPMOs: Two different xyloglucan cleavage profiles. Carbohydr Polym 2022; 288:119373. [PMID: 35450635 DOI: 10.1016/j.carbpol.2022.119373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) play a key role in enzymatic conversion of plant cell wall polysaccharides. Continuous discovery and functional characterization of LPMOs highly contribute to the tailor-made design and improvement of hydrolytic-activity based enzyme cocktails. In this context, a new MtLPMO9F was characterized for its substrate (xyloglucan) specificity, and MtLPMO9H was further delineated. Aided by sodium borodeuteride reduction and hydrophilic interaction chromatography coupled to mass spectrometric analysis, we found that both MtLPMOs released predominately C4-oxidized, and C4/C6-double oxidized xylogluco-oligosaccharides. Further characterization showed that MtLPMO9F, having a short active site segment 1 and a long active site segment 2 (-Seg1+Seg2), followed a "substitution-intolerant" xyloglucan cleavage profile, while for MtLPMO9H (+Seg1-Seg2) a "substitution-tolerant" profile was found. The here characterized xyloglucan specificity and substitution (in)tolerance of MtLPMO9F and MtLPMO9H were as predicted according to our previously published phylogenetic grouping of AA9 LPMOs based on structural active site segment configurations.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Melanie de Munnik
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Comparison of six lytic polysaccharide monooxygenases from Thermothielavioides terrestris shows that functional variation underlies the multiplicity of LPMO genes in filamentous fungi. Appl Environ Microbiol 2022; 88:e0009622. [PMID: 35080911 PMCID: PMC8939357 DOI: 10.1128/aem.00096-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus Thermothielavioides terrestris LPH172 (syn. Thielavia terrestris). These six LPMOs were shown to be upregulated during growth on different lignocellulosic substrates in our previous study. Here, we produced them heterologously in Pichia pastoris and tested their activity on various model and native plant cell wall substrates. All six T. terrestris AA9 (TtAA9) LPMOs produced hydrogen peroxide in the absence of polysaccharide substrate and displayed peroxidase-like activity on a model substrate, yet only five of them were active on selected cellulosic substrates. TtLPMO9A and TtLPMO9E were also active on birch acetylated glucuronoxylan, but only when the xylan was combined with phosphoric acid-swollen cellulose (PASC). Another of the six AA9s, TtLPMO9G, was active on spruce arabinoglucuronoxylan mixed with PASC. TtLPMO9A, TtLPMO9E, TtLPMO9G, and TtLPMO9T could degrade tamarind xyloglucan and, with the exception of TtLPMO9T, beechwood xylan when combined with PASC. Interestingly, none of the tested enzymes were active on wheat arabinoxylan, konjac glucomannan, acetylated spruce galactoglucomannan, or cellopentaose. Overall, these functional analyses support the hypothesis that the multiplicity of the fungal LPMO genes assessed in this study relates to the complex and recalcitrant structure of lignocellulosic biomass. Our study also highlights the importance of using native substrates in functional characterization of LPMOs, as we were able to demonstrate distinct, previously unreported xylan-degrading activities of AA9 LPMOs using such substrates. IMPORTANCE The discovery of LPMOs in 2010 has revolutionized the industrial biotechnology field, mainly by increasing the efficiency of cellulolytic enzyme cocktails. Nonetheless, the biological purpose of the multiplicity of LPMO-encoding genes in filamentous fungi has remained an open question. Here, we address this point by showing that six AA9 LPMOs from a single fungal strain have various substrate preferences and activities on tested cellulosic and hemicellulosic substrates, including several native xylan substrates. Importantly, several of these activities could only be detected when using copolymeric substrates that likely resemble plant cell walls more than single fractionated polysaccharides do. Our results suggest that LPMOs have evolved to contribute to the degradation of different complex structures in plant cell walls where different biomass polymers are closely associated. This knowledge together with the elucidated novel xylanolytic activities could aid in further optimization of enzymatic cocktails for efficient degradation of lignocellulosic substrates and more.
Collapse
|
9
|
Sun P, Li X, Dilokpimol A, Henrissat B, de Vries RP, Kabel MA, Mäkelä MR. Fungal glycoside hydrolase family 44 xyloglucanases are restricted to the phylum Basidiomycota and show a distinct xyloglucan cleavage pattern. iScience 2022; 25:103666. [PMID: 35028537 PMCID: PMC8741620 DOI: 10.1016/j.isci.2021.103666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
Xyloglucan is a prominent matrix heteropolysaccharide binding to cellulose microfibrils in primary plant cell walls. Hence, the hydrolysis of xyloglucan facilitates the overall lignocellulosic biomass degradation. Xyloglucanases (XEGs) are key enzymes classified in several glycoside hydrolase (GH) families. So far, family GH44 has been shown to contain bacterial XEGs only. Detailed genome analysis revealed GH44 members in fungal species from the phylum Basidiomycota, but not in other fungi, which we hypothesized to also be XEGs. Two GH44 enzymes from Dichomitus squalens and Pleurotus ostreatus were heterologously produced and characterized. They exhibited XEG activity and displayed a hydrolytic cleavage pattern different from that observed in fungal XEGs from other GH families. Specifically, the fungal GH44 XEGs were not hindered by substitution of neighboring glucosyl units and generated various "XXXG-type," "GXXX(G)-type," and "XXX-type" oligosaccharides. Overall, these fungal GH44 XEGs represent a novel class of enzymes for plant biomass conversion and valorization.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
10
|
Sun P, Laurent CVFP, Boerkamp VJP, van Erven G, Ludwig R, van Berkel WJH, Kabel MA. Regioselective C4 and C6 Double Oxidation of Cellulose by Lytic Polysaccharide Monooxygenases. CHEMSUSCHEM 2022; 15:e202102203. [PMID: 34859958 PMCID: PMC9299857 DOI: 10.1002/cssc.202102203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Indexed: 06/01/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) play a key role in enzymatic degradation of hard-to-convert polysaccharides, such as chitin and cellulose. It is widely accepted that LPMOs catalyze a single regioselective oxidation of the C1 or C4 carbon of a glycosidic linkage, after which the destabilized linkage breaks. Here, a series of novel C4/C6 double oxidized cello-oligosaccharides was discovered. Products were characterized, aided by sodium borodeuteride reduction and hydrophilic interaction chromatography coupled to mass spectrometric analysis. The C4/C6 double oxidized products were generated by C4 and C1/C4 oxidizing LPMOs, but not by C1 oxidizing ones. By performing incubation and reduction in H2 18 O, it was confirmed that the C6 gem-diol structure resulted from oxygenation, although oxidation to a C6 aldehyde, followed by hydration to the C6 gem-diol, could not be excluded. These findings can be extended to how the reactive LPMO-cosubstrate complex is positioned towards the substrate.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 96708 WGWageningen (TheNetherlands
| | - Christophe V. F. P. Laurent
- Biocatalysis and Biosensing LaboratoryDepartment of Food Science and TechnologyBOKU-University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
- Institute of Molecular Modeling and SimulationDepartment of Material Sciences and Process EngineeringBOKU-University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| | - Vincent J. P. Boerkamp
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 96708 WGWageningen (TheNetherlands
| | - Gijs van Erven
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 96708 WGWageningen (TheNetherlands
| | - Roland Ludwig
- Biocatalysis and Biosensing LaboratoryDepartment of Food Science and TechnologyBOKU-University of Natural Resources and Life SciencesMuthgasse 181190ViennaAustria
| | - Willem J. H. van Berkel
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 96708 WGWageningen (TheNetherlands
| | - Mirjam A. Kabel
- Laboratory of Food ChemistryWageningen University & ResearchBornse Weilanden 96708 WGWageningen (TheNetherlands
| |
Collapse
|
11
|
Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Appl Environ Microbiol 2021; 87:e0165221. [PMID: 34613755 PMCID: PMC8612270 DOI: 10.1128/aem.01652-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Family AA9 lytic polysaccharide monooxygenases (LPMOs) are abundant in fungi, where they catalyze oxidative depolymerization of recalcitrant plant biomass. These AA9 LPMOs cleave cellulose and some also act on hemicelluloses, primarily other (substituted) β-(1→4)-glucans. Oxidative cleavage of xylan has been shown for only a few AA9 LPMOs, and it remains unclear whether this activity is a minor side reaction or primary function. Here, we show that Neurospora crassa LPMO9F (NcLPMO9F) and the phylogenetically related, hitherto uncharacterized NcLPMO9L from N. crassa are active on both cellulose and cellulose-associated glucuronoxylan but not on glucuronoxylan alone. A newly developed method for simultaneous quantification of xylan-derived and cellulose-derived oxidized products showed that NcLPMO9F preferentially cleaves xylan when acting on a cellulose–beechwood glucuronoxylan mixture, yielding about three times more xylan-derived than cellulose-derived oxidized products. Interestingly, under similar conditions, NcLPMO9L and the previously characterized McLPMO9H, from Malbranchea cinnamomea, showed different xylan-to-cellulose preferences, giving oxidized product ratios of about 0.5:1 and 1:1, respectively, indicative of functional variation among xylan-active LPMOs. Phylogenetic and structural analysis of xylan-active AA9 LPMOs led to the identification of characteristic structural features, including unique features that do not occur in phylogenetically remote AA9 LPMOs, such as four AA9 LPMOs whose lack of activity toward glucuronoxylan was demonstrated in the present study. Taken together, the results provide a path toward discovery of additional xylan-active LPMOs and show that the huge family of AA9 LPMOs has members that preferentially act on xylan. These findings shed new light on the biological role and industrial potential of these fascinating enzymes. IMPORTANCE Plant cell wall polysaccharides are highly resilient to depolymerization by hydrolytic enzymes, partly due to cellulose chains being tightly packed in microfibrils that are covered by hemicelluloses. Lytic polysaccharide monooxygenases (LPMOs) seem well suited to attack these resilient copolymeric structures, but the occurrence and importance of hemicellulolytic activity among LPMOs remain unclear. Here, we show that certain AA9 LPMOs preferentially cleave xylan when acting on a cellulose–glucuronoxylan mixture, and that this ability is the result of protein evolution that has resulted in a clade of AA9 LPMOs with specific structural features. Our findings strengthen the notion that the vast arsenal of AA9 LPMOs in certain fungal species provides functional versatility and that AA9 LPMOs may have evolved to promote oxidative depolymerization of a wide variety of recalcitrant, copolymeric plant polysaccharide structures. These findings have implications for understanding the biological roles and industrial potential of LPMOs.
Collapse
|
12
|
Zhang X, Chen K, Long L, Ding S. Two C1-oxidizing AA9 lytic polysaccharide monooxygenases from Sordaria brevicollis differ in thermostability, activity, and synergy with cellulase. Appl Microbiol Biotechnol 2021; 105:8739-8759. [PMID: 34748039 DOI: 10.1007/s00253-021-11677-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Cellulolytic fungi usually have multiple genes for C1-oxidizing auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) in their genomes, but their potential functional differences are less understood. In this study, two C1-oxidizing AA9 LPMOs, SbLPMO9A and SbLPMO9B, were identified from Sordaria brevicollis, and their differences, particularly in terms of thermostability, reducing agent specificity, and synergy with cellulase, were explored. The two enzymes exhibited weak binding to cellulose and intolerance to hydrogen peroxide. Their oxidative activity was influenced by cellulose crystallinity and surface morphology, and both enzymes tended to oxidize celluloses of lower crystallinity and high surface area. Comparably, SbLPMO9A had much better thermostability than SbLPMO9B, which may be attributed to the presence of a carbohydrate binding module 1 (CBM1)-like sequence at its C-terminus. In addition, the two enzymes exhibited different specificities and responsivities toward electron donors. SbLPMO9A and SbLPMO9B were able to boost the catalytic efficiency of endoglucanase I (EGI) on physically and chemically pretreated substrates but with different degrees of synergy. Substrate- and enzyme-specific synergism was observed by comparing the synergistic action of SbLPMO9A or SbLPMO9B with commercial Celluclast 1.5L on three kinds of cellulosic substrates. On regenerated amorphous cellulose and PFI (Papirindustriens Forskningsinstitut)-fibrillated bleached eucalyptus pulp, SbLPMO9B showed a higher synergistic effect than SbLPMO9A, while on delignified wheat straw, the synergistic effect of SbLPMO9A was higher than that of SbLPMO9B. On account of its excellent thermostability and boosting effect on the enzymatic hydrolysis of delignified wheat straw, SbLPMO9A may have high application potential in biorefineries for lignocellulosic biomass. KEY POINTS: • C1-oxidizing SbLPMO9A displayed higher thermostability than SbLPMO9B, probably due to the presence of a CBM1-like module. • The oxidative activity of the two SbLPMO9s on celluloses increased with decreasing cellulose crystallinity or increasing beating degree. • The two SbLPMO9s boosted the catalytic efficiency of cellulase, but the synergistic effect was substrate- and enzyme-specific.
Collapse
Affiliation(s)
- Xi Zhang
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kaixiang Chen
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Liangkun Long
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
13
|
Sun P, Valenzuela SV, Chunkrua P, Javier Pastor FI, Laurent CVF, Ludwig R, van Berkel WJH, Kabel MA. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:14124-14133. [PMID: 34722005 PMCID: PMC8549066 DOI: 10.1021/acssuschemeng.1c04100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are essential for enzymatic conversion of lignocellulose-rich biomass in the context of biofuels and platform chemicals production. Considerable insight into the mode of action of LPMOs has been obtained, but research on the cellulose specificity of these enzymes is still limited. Hence, we studied the product profiles of four fungal Auxiliary Activity family 9 (AA9) LPMOs during their oxidative cleavage of three types of cellulose: bacterial cellulose (BC), Avicel PH-101 (AVI), and regenerated amorphous cellulose (RAC). We observed that attachment of a carbohydrate-binding module 1 (CBM1) did not change the substrate specificity of LPMO9B from Myceliophthora thermophila C1 (MtLPMO9B) but stimulated the degradation of all three types of cellulose. A detailed quantification of oxidized ends in both soluble and insoluble fractions, as well as characterization of oxidized cello-oligosaccharide patterns, suggested that MtLPMO9B generates mainly oxidized cellobiose from BC, while producing oxidized cello-oligosaccharides from AVI and RAC ranged more randomly from DP2-8. Comparable product profiles, resulting from BC, AVI, and RAC oxidation, were found for three other AA9 LPMOs. These distinct cleavage profiles highlight cellulose specificity rather than an LPMO-dependent mechanism and may further reflect that the product profiles of AA9 LPMOs are modulated by different cellulose types.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Susana V. Valenzuela
- Department
of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Pimvisuth Chunkrua
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Francisco I. Javier Pastor
- Department
of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Christophe V. F.
P. Laurent
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, BOKU−University
of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
14
|
Sethupathy S, Morales GM, Li Y, Wang Y, Jiang J, Sun J, Zhu D. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:154. [PMID: 34225772 PMCID: PMC8256616 DOI: 10.1186/s13068-021-02006-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
The recalcitrance of lignocellulosic biomass is a major constraint to its high-value use at industrial scale. In nature, microbes play a crucial role in biomass degradation, nutrient recycling and ecosystem functioning. Therefore, the use of microbes is an attractive way to transform biomass to produce clean energy and high-value compounds. The microbial degradation of lignocelluloses is a complex process which is dependent upon multiple secreted enzymes and their synergistic activities. The availability of the cutting edge proteomics and highly sensitive mass spectrometry tools make possible for researchers to probe the secretome of microbes and microbial consortia grown on different lignocelluloses for the identification of hydrolytic enzymes of industrial interest and their substrate-dependent expression. This review summarizes the role of secretomics in identifying enzymes involved in lignocelluloses deconstruction, the development of enzyme cocktails and the construction of synthetic microbial consortia for biomass valorization, providing our perspectives to address the current challenges.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Gabriel Murillo Morales
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixuan Li
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yongli Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
15
|
Chen K, Zhang X, Long L, Ding S. Comparison of C4-oxidizing and C1/C4-oxidizing AA9 LPMOs in substrate adsorption, H 2O 2-driven activity and synergy with cellulase on celluloses of different crystallinity. Carbohydr Polym 2021; 269:118305. [PMID: 34294322 DOI: 10.1016/j.carbpol.2021.118305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/15/2022]
Abstract
Two C1/C4-oxidizing AA9 lytic polysaccharide monooxygenases (AA9 LPMOs), AoLPMO9A and AoLPMO9B, and one C4-oxidizing AoLPMO9C from Aspergillus oryzae, were characterized and compared with the well-studied C4-oxidizing NcLPMO9C. NcLPMO9C and AoLPMO9C harboring carbohydrate-binding module 1 (CBM1) exhibited much stronger adsorption capacity than AoLPMO9A and B without CBM1. The binding affinity is crucial for the efficacy of H2O2 as cosubstrate and oxidative activity of AA9 LPMOs on crystalline cellulose. C4-oxidizing AA9 LPMOs had a striking boosting effect on cellobiohydrolase I (CBHI), while C1/C4-oxidizing AA9 LPMOs boosted CBHII and endoglucanase I (EGI) activity. Our results indicated that two types of AA9 LPMOs with different modularities and regioselectivities varied in cellulose adsorption, H2O2-driven activity and synergy with cellulase on celluloses of different crystallinity which could complement each other in lignocellulose degradation. C4-oxidizing AA9 LPMOs with CBM1 were particularly essential in cellulase cocktail due to high H2O2-driven activity and a striking boosting effect on CBHI.
Collapse
Affiliation(s)
- Kaixiang Chen
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xi Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
16
|
Hedison TM, Breslmayr E, Shanmugam M, Karnpakdee K, Heyes DJ, Green AP, Ludwig R, Scrutton NS, Kracher D. Insights into the H 2 O 2 -driven catalytic mechanism of fungal lytic polysaccharide monooxygenases. FEBS J 2021; 288:4115-4128. [PMID: 33411405 PMCID: PMC8359147 DOI: 10.1111/febs.15704] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) depolymerise crystalline cellulose and hemicellulose, supporting the utilisation of lignocellulosic biomass as a feedstock for biorefinery and biomanufacturing processes. Recent investigations have shown that H2O2 is the most efficient cosubstrate for LPMOs. Understanding the reaction mechanism of LPMOs with H2O2 is therefore of importance for their use in biotechnological settings. Here, we have employed a variety of spectroscopic and biochemical approaches to probe the reaction of the fungal LPMO9C from N. crassa using H2O2 as a cosubstrate and xyloglucan as a polysaccharide substrate. We show that a single ‘priming’ electron transfer reaction from the cellobiose dehydrogenase partner protein supports up to 20 H2O2‐driven catalytic cycles of a fungal LPMO. Using rapid mixing stopped‐flow spectroscopy, alongside electron paramagnetic resonance and UV‐Vis spectroscopy, we reveal how H2O2 and xyloglucan interact with the enzyme and investigate transient species that form uncoupled pathways of NcLPMO9C. Our study shows how the H2O2 cosubstrate supports fungal LPMO catalysis and leaves the enzyme in the reduced Cu+ state following a single enzyme turnover, thus preventing the need for external protons and electrons from reducing agents or cellobiose dehydrogenase and supporting the binding of H2O2 for further catalytic steps. We observe that the presence of the substrate xyloglucan stabilises the Cu+ state of LPMOs, which may prevent the formation of uncoupled side reactions.
Collapse
Affiliation(s)
- Tobias M Hedison
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Erik Breslmayr
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Photon Science Institute, The University of Manchester, UK
| | - Kwankao Karnpakdee
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Derren J Heyes
- Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Daniel Kracher
- Manchester Institute of Biotechnology, The University of Manchester, UK.,Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
17
|
Shi Y, Chen K, Long L, Ding S. A highly xyloglucan active lytic polysaccharide monooxygenase EpLPMO9A from Eupenicillium parvum 4-14 shows boosting effect on hydrolysis of complex lignocellulosic substrates. Int J Biol Macromol 2020; 167:202-213. [PMID: 33271180 DOI: 10.1016/j.ijbiomac.2020.11.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The recently identified lytic polysaccharide monooxygenases (LPMOs) are important auxiliary proteins which contribute to lignocellulose biodegradation by oxidatively cleaving the glycosidic bonds in cellulose and other polysaccharides. The vast differences in terms of substrate specificity and regioselectivity within LPMOs provide us new possibilities to find promising candidates for the use in enzyme cocktails in biorefinery applications. In this study, a highly xyloglucan active family AA9 lytic polysaccharide monooxygenase EpLPMO9A was identified from Eupenicillium parvum 4-14. EpLPMO9A exhibited a mixed C1/C4 oxidative cleavage activity on cellulose and xyloglucan with a broad range of pH stability and good thermal stability at 40 °C. It showed a higher boosting effect on the enzymatic saccharification of complex lignocellulosic substrates associated with xyloglucan than on the lignocellulosic substrates without xyloglucan particularly in low commercial cellulase dosage cases. The oxidative cleavage of xyloglucan by EpLPMO9A may facilitate to open up the sterical hindrance of cellulose by xyloglucan and thereby increase accessibility for cellulase to lignocellulosic substrates. The discovery of more and more hemicellulose-active LPMOs and their contribution to breaking down the barriers by oxidatively acting on hemicellulose may expand our knowledge for their functions of LPMOs in lignocellulose biodegradation.
Collapse
Affiliation(s)
- Yuexin Shi
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaixiang Chen
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
18
|
Srivastava S, Dafale NA, Purohit HJ. Functional genomics assessment of lytic polysaccharide mono-oxygenase with glycoside hydrolases in Paenibacillus dendritiformis CRN18. Int J Biol Macromol 2020; 164:3729-3738. [PMID: 32835796 DOI: 10.1016/j.ijbiomac.2020.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022]
Abstract
Recently discovered Lytic Polysaccharide Mono-Oxygenase (LPMO) enhances the enzymatic deconstruction of complex polysaccharide by oxidation. The present study demonstrates the agricultural waste hydrolyzing capabilities of Paenibacillus dendritiformis CRN18, which exhibits the enzyme activity of exo-glucanase, β-glucosidase, β-glucuronidase, endo-1, 4 β-xylanases, arabinosidase, and α-galactosidase as 0.1U/ml, 0.3U/ml, 0.09U/ml, 0.1U/ml, 0.05U/ml, and 0.41U/ml, respectively. The genome analysis of strain reveals the presence of four LPMO genes, along with lignocellulolytic genes. The gene structure of LPMO and its phylogenetic analysis shows the evolutionary relatedness with the Bacillus LPMO gene. Gene position of LPMOs in the genome of strains shows the close association of two LPMOs with chitin active enzyme GH18, and the other two are associated with hemicellulases (GH39, GH23). Protein-protein interaction and gene networking of LPMO sheds light on the co-occurrence, neighborhood, and interaction of LPMOs with chitinase and xylanase enzymes. Structural prediction of LPMOs unravels the information of the LPMO's binding site. Although the LPMO has been explored for its oxidative mechanism, a little light has been shed on its gene structure. This study provides insights into the LPMO gene structure in P. dendritiformis CRN18 and its potential in lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India; AcSIR-Academy for Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India; AcSIR-Academy for Scientific and Innovative Research, Ghaziabad 201 002, India.
| | - Hemant J Purohit
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
| |
Collapse
|
19
|
Monclaro AV, Petrović DM, Alves GSC, Costa MMC, Midorikawa GEO, Miller RNG, Filho EXF, Eijsink VGH, Várnai A. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLoS One 2020; 15:e0235642. [PMID: 32640001 PMCID: PMC7343150 DOI: 10.1371/journal.pone.0235642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/19/2020] [Indexed: 11/23/2022] Open
Abstract
Aspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes. Here, we analyzed the catalytic potential of two of the seven AA9-type LPMOs that were detected in recently published transcriptome data for A. tamarii, namely AtAA9A and AtAA9B. Analysis of products generated from cellulose revealed that AtAA9A is a C4-oxidizing enzyme, whereas AtAA9B yielded a mixture of C1- and C4-oxidized products. AtAA9A was also active on cellopentaose and cellohexaose. Both enzymes also cleaved the β-(1→4)-glucan backbone of tamarind xyloglucan, but with different cleavage patterns. AtAA9A cleaved the xyloglucan backbone only next to unsubstituted glucosyl units, whereas AtAA9B yielded product profiles indicating that it can cleave the xyloglucan backbone irrespective of substitutions. Building on these new results and on the expanding catalog of xyloglucan- and oligosaccharide-active AA9 LPMOs, we discuss possible structural properties that could underlie the observed functional differences. The results corroborate evidence that filamentous fungi have evolved AA9 LPMOs with distinct substrate specificities and regioselectivities, which likely have complementary functions during biomass degradation.
Collapse
Affiliation(s)
- Antonielle V. Monclaro
- Laboratory of Enzymology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dejan M. Petrović
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gabriel S. C. Alves
- Laboratory of Microbiology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Marcos M. C. Costa
- Brazilian Agricultural Research Corporation, Embrapa CENARGEN, Brasília, Brazil
| | - Glaucia E. O. Midorikawa
- Laboratory of Microbiology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Robert N. G. Miller
- Laboratory of Microbiology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Edivaldo X. F. Filho
- Laboratory of Enzymology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|