1
|
Musa M, Bale BI, Suleman A, Aluyi-Osa G, Chukwuyem E, D’Esposito F, Gagliano C, Longo A, Russo A, Zeppieri M. Possible viral agents to consider in the differential diagnosis of blepharoconjunctivitis. World J Virol 2024; 13:97867. [DOI: 10.5501/wjv.v13.i4.97867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Blepharoconjunctivitis poses a diagnostic challenge due to its diverse etiology, including viral infections. Blepharoconjunctivits can be acute or chronic, self-limiting, or needing medical therapy.
AIM To review possible viral agents crucial for accurate differential diagnosis in cases of blepharoconjunctivitis.
METHODS The PubMed database was searched for records relating to viral blepharoconjunctivitis. The search string generated was “("virally"[All Fields] OR "virals"[All Fields] OR "virology"[MeSH Terms] OR "virology"[All Fields] OR "viral"[All Fields]) AND "Blepharoconjunctivitis"[All Fields]".
RESULTS A total of 24 publications were generated from the search string. Reference lists from each relevant article were also searched for more information and included in this review. Viral etiologies such as adenovirus, herpes simplex virus (HSV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV) are frequently implicated. Adenoviral infections manifest with follicular conjunctivitis and preauricular lymphadenopathy, often presenting as epidemic keratoconjunctivitis. HSV and VZV infections can result in herpetic keratitis and may exhibit characteristic dendritic corneal ulcers. EBV, although less common, can cause unilateral or bilateral follicular conjunctivitis, particularly in immunocompromised individuals. Other potential viral agents, such as enteroviruses and molluscum contagiosum virus, should also be considered, especially in pediatric cases.
CONCLUSION Prompt recognition of these viral etiologies is essential for appropriate management and prevention of complications. Thus, a thorough understanding of the clinical presentation, epidemiology, and diagnostic modalities is crucial for accurate identification and management of viral blepharoconjunctivitis.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | | | - Ayuba Suleman
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group Unit, Imperial College, London NW1 5QH, United Kingdom
- GENOFTA srl, Via A. Balsamo, 93, Naples 80065, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Catania 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Antonio Longo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Andrea Russo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
2
|
Hendrick GC, Nicholson MD, Pagan JA, Artim JM, Dolan MC, Sikkel PC. Blood meal identification reveals extremely broad host range and host-bias in a temporary ectoparasite of coral reef fishes. Oecologia 2023; 203:349-360. [PMID: 37951847 DOI: 10.1007/s00442-023-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Appreciation for the role of cryptofauna in ecological systems has increased dramatically over the past decade. The impacts blood-feeding arthropods, such as ticks and mosquitos, have on terrestrial communities are the subject of hundreds of papers annually. However, blood-feeding arthropods have been largely ignored in marine environments. Gnathiid isopods, often referred to as "ticks of the sea", are temporary external parasites of fishes. They are found in all marine environments and have many consequential impacts on host fitness. Because they are highly mobile and only associated with their hosts while obtaining a blood meal, their broader trophic connections are difficult to discern. Conventional methods rely heavily on detecting gnathiids on wild-caught fishes. However, this approach typically yields few gnathiids and does not account for hosts that avoid capture. To overcome this limitation, we sequenced blood meals of free-living gnathiids collected in light traps to assess the host range and community-dependent exploitation of Caribbean gnathiid isopods. Using fish-specific COI (cox1) primers, sequencing individual blood meals from 1060 gnathiids resulted in the identification of 70 host fish species from 27 families. Comparisons of fish assemblages to blood meal identification frequencies at four collection sites indicated that fishes within the families Haemulidae (grunts) and Lutjanidae (snappers) were exploited more frequently than expected based on their biomass, and Labrid parrotfishes were exploited less frequently than expected. The broad host range along with the biased exploitation of diel-migratory species has important implications for the role gnathiid isopods play in Caribbean coral reef communities.
Collapse
Affiliation(s)
- Gina C Hendrick
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - Matthew D Nicholson
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - J Andres Pagan
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO - Universidade do Porto, Vairão, Portugal
| | - John M Artim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Maureen C Dolan
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | - Paul C Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA.
- Water Research Group, Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
3
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
4
|
Spanoudis CG, Wondwosen B, Isberg E, Andreadis SS, Kline DL, Birgersson G, Ignell R. The chemical code for attracting Culex mosquitoes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes use chemical codes to locate and discriminate among vertebrate hosts to obtain a blood meal. Recent advances have allowed for the identification of the chemical codes used by mosquitoes to locate and discriminate humans from other vertebrate hosts. Humans are incidental “dead-end” hosts for the West Nile virus, which is maintained in an enzootic cycle, primarily through its transmission between infected birds by Culex mosquitoes. Host-seeking Culex mosquitoes are attracted to the odor of chicken, which are used in sentinel traps to monitor West Nile virus transmission. Using combined gas chromatography and electroantennography and mass spectrometry we identify a blend of volatile organic compounds present in chicken emanates, including mostly salient bioactive compounds previously identified in human emanates. When released at their identified ratios, this blend elicits behavioral responses of Culex pipiens molestus and Culex quinquefasciatus similar to that to the natural chicken odor. Tested under field conditions, this blend attract Culex spp. and other species of mosquitoes using birds among their hosts. This study provides evidence for conserved chemical codes for resource location by mosquitoes, and highlights the intricate role of CO2 for host-seeking mosquitoes. The identification of conserved chemical codes, which drive innate preference behaviors that are fundamental for survival and reproduction, provides important substrates for future control interventions targeting disease vector mosquitoes.
Collapse
|
5
|
Fynmore N, Lühken R, Kliemke K, Lange U, Schmidt-Chanasit J, Lurz PWW, Becker N. Honey-baited FTA cards in box gravid traps for the assessment of Usutu virus circulation in mosquito populations in Germany. Acta Trop 2022; 235:106649. [PMID: 35963312 DOI: 10.1016/j.actatropica.2022.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Usutu virus (USUV) is becoming increasingly important to veterinary and human health in Germany. USUV has been implicated in mass die-off events of birds, especially of blackbirds (Turdus merula), and has experienced significant range expansion in the years since its first detection in 2010. Current detection methods rely primarily on dead bird surveillance or mass mosquito collection using CO2 as the main attractant. Dead bird surveillance can result in detection of disease circulation past the point at which control efforts would be most impactful. Vector surveillance offers the opportunity to detect disease circulation before significant outbreaks occur. However, current methods result in collections of extremely large numbers of predominantly nulliparous female mosquitoes who have not yet taken a blood meal. This study sought to test whether box gravid traps could successfully trap USUV infected gravid Culex mosquitoes, and if viral RNA could be successfully transferred and stabilised on an FTA card. During the month of August 2020, 18 Reiter-Cummings style box gravid traps with honey-baited FTA cards were set in a region of known USUV circulation around the southern border of Hesse, Germany. Four 48-hour trapping rounds were conducted. All mosquitoes and FTA cards were collected and stored during transport to the laboratory on dry ice. Samples and FTA cards were then transferred and stored in a freezer at -5 °C until identification. Identification was carried out on a chill plate before being sent with overnight courier in a styrofoam box with cooling elements for virus detection with a modified generic flavivirus RT-PCR. Mosquitoes were separated into pools by trap, date, species and feeding status. 2003 mosquitoes were caught in four rounds of trapping, 1834 or 88% of which were female Culex mosquitoes used for examination. 13 pools of mosquitoes and four FTA cards tested positive for USUV. No positive FTA cards were found in traps with positive mosquitoes and no positive mosquitoes were found in traps with positive FTA cards. Although fewer FTA cards than expected returned a positive result, this may have been a result of the extreme conditions experienced in the field and highlights the need to establish the temperature and humidity boundaries such a collection method can withstand. Box gravid traps however, provided a highly effective and targeted approach for capturing gravid female Culex mosquitoes, the most appropriate subpopulation for testing for USUV. Additionally, the simplicity and effectiveness of this trapping and surveillance method make it an attractive option for use as an early warning system, including for large scale surveillance programmes.
Collapse
Affiliation(s)
- Noelle Fynmore
- Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, Speyer 67346, Germany; The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom; Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Renke Lühken
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Konstantin Kliemke
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Unchana Lange
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg 20359, Germany; Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Peter W W Lurz
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| | - Norbert Becker
- Institute of Dipterology (IfD), Georg-Peter-Süß-Str. 3, Speyer 67346, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
7
|
Smitz N, De Wolf K, Gheysen A, Deblauwe I, Vanslembrouck A, Meganck K, De Witte J, Schneider A, Verlé I, Dekoninck W, Gombeer S, Vanderheyden A, De Meyer M, Backeljau T, Müller R, Van Bortel W. DNA identification of species of the Anopheles maculipennis complex and first record of An. daciae in Belgium. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:442-450. [PMID: 33951205 PMCID: PMC8453948 DOI: 10.1111/mve.12519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The present study aimed at identifying the members of the Anopheles maculipennis complex (Diptera: Culicidae) occurring in Belgium. Therefore, the second internal transcribed spacer of nuclear ribosomal DNA (ITS2) and the mitochondrial cytochrome oxidase subunit I (COI) loci were sequenced in 175 and 111 specimens, respectively, collected between 2007 and 2019. In parallel, the suitability of two species-diagnostic PCR-RFLP assays was tested. The identified specimens included: An. maculipennis s.s. (N = 105), An. daciae (N = 62), An. atroparvus (N = 6) and An. messeae (N = 2). Each species was characterized by unique ITS2 haplotypes, whereas COI only supported the monophyly of An. atroparvus, a historical malaria vector in Belgium. Species identification results were further supported by unique PCR-RFLP banding patterns. We report for the first time An. daciae in Belgium, where it was found to co-occur with An. maculipennis s.s. The latter was the most prevalent in the collection studied (60%) and appears to have the widest distribution in Belgium. As in other studies, An. daciae and An. messeae appeared the most closely related species, up to the point that their species status remains debatable, while their ecological differences, including vector competences, need further study.
Collapse
Affiliation(s)
- N Smitz
- Royal Museum for Central Africa (BopCo & Biology Department), Tervuren, Belgium
| | - K De Wolf
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Gheysen
- Royal Museum for Central Africa (BopCo & Biology Department), Tervuren, Belgium
| | - I Deblauwe
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Vanslembrouck
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Brussels, Belgium
| | - K Meganck
- Royal Museum for Central Africa (BopCo & Biology Department), Tervuren, Belgium
| | - J De Witte
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Schneider
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - I Verlé
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - W Dekoninck
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Brussels, Belgium
| | - S Gombeer
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Brussels, Belgium
| | - A Vanderheyden
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Brussels, Belgium
| | - M De Meyer
- Royal Museum for Central Africa (BopCo & Biology Department), Tervuren, Belgium
| | - T Backeljau
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Brussels, Belgium
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - R Müller
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - W Van Bortel
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
8
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana
| | - Julien B. Z. Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouake, 27 BP 529 Abidjan 27, Cote D’Ivoire;
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Département de Recherche et Développement, 01 BP 1303 Abidjan 01, Cote D’Ivoire
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, Universitée Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso;
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Nebbak A, Monteil-Bouchard S, Berenger JM, Almeras L, Parola P, Desnues C. Virome Diversity among Mosquito Populations in a Sub-Urban Region of Marseille, France. Viruses 2021; 13:v13050768. [PMID: 33925487 PMCID: PMC8145591 DOI: 10.3390/v13050768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/28/2022] Open
Abstract
Some mosquito species have significant public health importance given their ability to transmit major diseases to humans and animals, making them the deadliest animals in the world. Among these, the Aedes (Ae.) genus is a vector of several viruses such as Dengue, Chikungunya, and Zika viruses that can cause serious pathologies in humans. Since 2004, Ae. albopictus has been encountered in the South of France, and autochthonous cases of Dengue, Chikungunya, and Zika diseases have recently been reported, further highlighting the need for a comprehensive survey of the mosquitoes and their associated viruses in this area. Using high throughput sequencing (HTS) techniques, we report an analysis of the DNA and RNA viral communities of three mosquito species Ae. albopictus, Culex (Cx.) pipiens, and Culiseta (Cs.) longiareolata vectors of human infectious diseases in a small sub-urban city in the South of France. Results revealed the presence of a significant diversity of viruses known to infect bacteria, plants, insects, and mammals. Several novel viruses were detected, including novel members of the Rhabdoviridae, Totiviridae, Iflaviviridae, Circoviridae, and Sobemoviridae families. No sequence related to major zoonotic viruses transmitted by mosquitoes was detected. The use of HTS on arthropod vector populations is a promising strategy for monitoring the emergence and circulation of zoonoses and epizooties. This study is a contribution to the knowledge of the mosquito microbiome.
Collapse
Affiliation(s)
- Amira Nebbak
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail RP 42004, Tipaza, Algeria
| | - Sonia Monteil-Bouchard
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jean-Michel Berenger
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Lionel Almeras
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Christelle Desnues
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
- Correspondence:
| |
Collapse
|
10
|
Drummond C, Gebhardt ME, Sáenz Robles MT, Carpi G, Hoyer I, Pastusiak A, Reddy MR, Norris DE, Pipas JM, Jackson EK. Stability and detection of nucleic acid from viruses and hosts in controlled mosquito blood feeds. PLoS One 2020; 15:e0231061. [PMID: 32525960 PMCID: PMC7289426 DOI: 10.1371/journal.pone.0231061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/23/2020] [Indexed: 12/29/2022] Open
Abstract
Monitoring the presence and spread of pathogens in the environment is of critical importance. Rapid detection of infectious disease outbreaks and prediction of their spread can facilitate early responses of health agencies and reduce the severity of outbreaks. Current sampling methods are sorely limited by available personnel and throughput. For instance, xenosurveillance utilizes captured arthropod vectors, such as mosquitoes, as sampling tools to access blood from a wide variety of vertebrate hosts. Next generation sequencing (NGS) of nucleic acid from individual blooded mosquitoes can be used to identify mosquito and host species, and microorganisms including pathogens circulating within either host. However, there are practical challenges to collecting and processing mosquitoes for xenosurveillance, such as the rapid metabolization or decay of microorganisms within the mosquito midgut. This particularly affects pathogens that do not replicate in mosquitoes, preventing their detection by NGS or other methods. Accordingly, we performed a series of experiments to establish the windows of detection for DNA or RNA from human blood and/or viruses present in mosquito blood meals. Our results will contribute to the development of xenosurveillance techniques with respect to optimal timing of sample collection and NGS processing and will also aid trap design by demonstrating the stabilizing effect of temperature control on viral genome recovery from blood-fed mosquitoes.
Collapse
Affiliation(s)
- Coyne Drummond
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary E. Gebhardt
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Maria Teresa Sáenz Robles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Isaiah Hoyer
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
| | - Andrzej Pastusiak
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
| | - Michael R. Reddy
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
- * E-mail:
| | - Douglas E. Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ethan K. Jackson
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
| |
Collapse
|
11
|
Hernández-Triana LM, Brugman VA, Pramual P, Barrero E, Nikolova NI, Ruiz-Arrondo I, Kaiser A, Krüger A, Lumley S, Osório HC, Ignjatović-Ćupina A, Petrić D, Laure Setier-Rio M, Bødker R, Johnson N. Genetic diversity and population structure of Culex modestus across Europe: does recent appearance in the United Kingdom reveal a tendency for geographical spread? MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:86-96. [PMID: 31603254 DOI: 10.1111/mve.12412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
In mainland Europe, the mosquito species Culex modestus Ficalbi (1890) is a bridge vector for West Nile virus (WNV) from its natural bird-mosquito cycle to mammals. The present study assessed the genetic diversity of Cx. modestus, as well as related Culex species, using the mitochondrial COI DNA barcoding region and compared this with the population structure across Europe. A haplotype network was mapped to determine genealogical relationships among specimens. The intraspecific genetic diversity within individual Culex species was below 2%, whereas the interspecific genetic divergence varied from 2.99% to 13.74%. In total, 76 haplotypes were identified among 198 sequences. A median-joining network determined from 198 COI sequences identified two major lineages that were separated by at least four mutation steps. A high level of intraspecific genetic diversity was not detected in Cx. modestus in samples submitted from different European populations, which indicates that morphologically identified specimens represent a single species and not a species complex. Therefore, it is deduced that different populations of Cx. modestus will show a similar potential to transmit WNV, lending support to concerns that the population present in southeast England represents a risk of transmission to humans.
Collapse
Affiliation(s)
| | - V A Brugman
- Vecotech Ltd, London, U.K
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, U.K
| | - P Pramual
- Department of Biology and Biodiversity and Traditional Knowledge Research Unit, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham, Thailand
| | - E Barrero
- Animal and Plant Health Agency, Addlestone, U.K
| | - N I Nikolova
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - I Ruiz-Arrondo
- Center for Rickettsiosis and Arthropod-Borne Diseases, CIBIR, Logroño, La Rioja, Spain
| | - A Kaiser
- German Mosquito Control Association (KABS), Institute for Dipterology, Speyer, Rhineland-Palatinate, Germany
| | - A Krüger
- Bundeswehr Hospital Hamburg, Section Tropical Microbiology & Entomology, Hamburg, Germany
| | - S Lumley
- The Pirbright Institute, Pirbright, Woking, U.K
| | - H C Osório
- Centre for Vectors and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Águas de Moura, Portugal
| | - A Ignjatović-Ćupina
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Vojvodina Province, Serbia
| | - D Petrić
- Direction Recherche et Dèvelopment, Montpellier, Cedex, France
| | | | - R Bødker
- Technical University of Denmark, National Veterinary Institute, Frederiksberg C, Denmark
| | - N Johnson
- Animal and Plant Health Agency, Addlestone, U.K
- Faculty of Health and Medical Science, University of Surrey, Guildford, U.K
| |
Collapse
|
12
|
Farrell S, Noble PM, Pinchbeck GL, Brant B, Caravaggi A, Singleton DA, Radford AD. Seasonality and risk factors for myxomatosis in pet rabbits in Great Britain. Prev Vet Med 2020; 176:104924. [PMID: 32114004 DOI: 10.1016/j.prevetmed.2020.104924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Myxomatosis is a highly contagious, frequently fatal viral disease affecting both wild and domesticated European rabbits across many areas of the world. Here we used electronic health records (EHRs) collected from pet rabbits attending a sentinel voluntary network of 191 veterinary practices across Great Britain (GB) between March 2014 and June 2019 to identify new features of this disease's epidemiology. From a total of 89,408 rabbit consultations, text mining verified by domain experts identified 207 (0.23 %) cases where myxomatosis was the only differential diagnosis recorded by the attending practitioner. Cases occurred in all months but February and were distributed across the country. Consistent with studies in wild rabbits, the majority of cases occurred between August and November. However, there was also evidence for considerable variation between years. A nested case control study identified important risk factors for myxomatosis within this pet animal population including season, sex, age, vaccination status and distance to likely wild rabbit habitats. Female entire rabbits were twice as likely to be a case (odds ratio (OR) 1.98, 95 % confidence interval (CI) 1.26-3.13, p = 0.003), suggesting a novel role for behaviour in driving transmission from wild to domesticated rabbits. Vaccination had the largest protective effect with vaccinated rabbits being 8.3 times less likely to be a case than unvaccinated rabbits (OR = 0.12, 95 % CI 0.06-0.21, p = <0.001).
Collapse
Affiliation(s)
- Sean Farrell
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Pj-M Noble
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Gina L Pinchbeck
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Beth Brant
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Anthony Caravaggi
- School of Applied Sciences, University of South Wales, 9 Graig Fach, Pontypridd, UK CF37 4BB, UK
| | - David A Singleton
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Alan D Radford
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK.
| |
Collapse
|
13
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front Vet Sci 2020; 7:20. [PMID: 32118054 PMCID: PMC7010938 DOI: 10.3389/fvets.2020.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Daniel Dorey-Robinson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | | | - L. Paul Phipps
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
- Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Simons RRL, Croft S, Rees E, Tearne O, Arnold ME, Johnson N. Using species distribution models to predict potential hot-spots for Rift Valley Fever establishment in the United Kingdom. PLoS One 2019; 14:e0225250. [PMID: 31869335 PMCID: PMC6927579 DOI: 10.1371/journal.pone.0225250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 10/31/2019] [Indexed: 12/02/2022] Open
Abstract
Vector borne diseases are a continuing global threat to both human and animal health. The ability of vectors such as mosquitos to cover large distances and cross country borders undetected provide an ever-present threat of pathogen spread. Many diseases can infect multiple vector species, such that even if the climate is not hospitable for an invasive species, indigenous species may be susceptible and capable of transmission such that one incursion event could lead to disease establishment in these species. Here we present a consensus modelling methodology to estimate the habitat suitability for presence of mosquito species in the UK deemed competent for Rift Valley fever virus (RVF) and demonstrate its application in an assessment of the relative risk of establishment of RVF virus in the UK livestock population. The consensus model utilises observed UK mosquito surveillance data, along with climatic and geographic prediction variables, to inform six independent species distribution models; the results of which are combined to produce a single prediction map. As a livestock host is needed to transmit RVF, we then combine the consensus model output with existing maps of sheep and cattle density to predict the areas of the UK where disease is most likely to establish in local mosquito populations. The model results suggest areas of high suitability for RVF competent mosquito species across the length and breadth of the UK. Notable areas of high suitability were the South West of England and coastal areas of Wales, the latter of which was subsequently predicted to be at higher risk for establishment of RVF due to higher livestock densities. This study demonstrates the applicability of outputs of species distribution models to help predict hot-spots for risk of disease establishment. While there is still uncertainty associated with the outputs we believe that the predictions are an improvement on just using the raw presence points from a database alone. The outputs can also be used as part of a multidisciplinary approach to inform risk based disease surveillance activities.
Collapse
Affiliation(s)
- Robin R. L. Simons
- Animal and Plant Health Agency, New Haw, Surrey, United Kingdom
- * E-mail:
| | - Simon Croft
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton York, United Kingdom
| | - Eleanor Rees
- Animal and Plant Health Agency, New Haw, Surrey, United Kingdom
| | - Oliver Tearne
- Animal and Plant Health Agency, New Haw, Surrey, United Kingdom
| | - Mark E. Arnold
- Animal and Plant Health Agency, New Haw, Surrey, United Kingdom
| | | |
Collapse
|
15
|
Salem HM, Morsy EA, Hassanen EI, Shehata AA. Outbreaks of myxomatosis in Egyptian domestic rabbit farms. WORLD RABBIT SCIENCE 2019. [DOI: 10.4995/wrs.2019.10585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p class="Default">Myxomatosis is an endemic infectious, severe and often fatal disease of rabbit caused by myxoma virus. In the present study, myxomatosis outbreaks were reported in 7 domestic rabbit farms in Egypt. Rabbits showed oedema of the eyelids, facial oedema and blepharoconjunctivitis. The morbidity and lethality rates were 18-100% and 20-80%, respectively. The myxomatosis diagnosis was based on histopathology, virus isolation on rabbit kidney cell line (RK-13), polymerase chain reaction (PCR) and sequence analysis. Histopathological examination revealed the presence of epidermal hyperplasia, dermal necrosis and intracytoplasmic eosinophilic inclusion bodies. The virus was isolated on RK-13 cells and induced cytopathic effect. Using PCR, a band of 471 base pair corresponding to the M071L gene was amplified from extracted DNA. Sequence alignment of four out of the 7 isolates revealed that these isolates were 98-99% identical to European and Australian rabbit myxoma reference viruses. In conclusion, rabbit myxomatosis outbreaks and virus isolation procedures are reported herein for the first time in Egypt. Preventive policies against disease circulation should be adopted by the national authorities.</p>
Collapse
|
16
|
Hendrick GC, Dolan MC, McKay T, Sikkel PC. Host DNA integrity within blood meals of hematophagous larval gnathiid isopods (Crustacea, Isopoda, Gnathiidae). Parasit Vectors 2019; 12:316. [PMID: 31234905 PMCID: PMC6591976 DOI: 10.1186/s13071-019-3567-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Juvenile gnathiid isopods are common ectoparasites of marine fishes. Each of the three juvenile stages briefly attach to a host to obtain a blood meal but spend most of their time living in the substrate, thus making it difficult to determine patterns of host exploitation. Sequencing of host blood meals from wild-caught specimens is a promising tool to determine host identity. Although established protocols for this approach exist, certain challenges must be overcome when samples are subjected to typical field conditions that may contribute to DNA degradation. The goal of this study was to address a key methodological issue associated with molecular-based host identification from free-living, blood-engorged gnathiid isopods-the degradation of host DNA within blood meals. Here we have assessed the length of time host DNA within gnathiid blood meals can remain viable for positive host identification. METHODS Juvenile gnathiids were allowed to feed on fish of known species and subsets were preserved at 4-h intervals over 24 h and then every 24 h up to 5 days post-feeding. Host DNA extracted from gnathiid blood meals was sequenced to validate the integrity of host DNA at each time interval. DNA was also extracted from blood meals of wild-fed gnathiids for comparison. Attempts were also made to extract host DNA from metamorphosed juveniles. RESULTS Using a cox1 universal fish primer set, known fish host DNA sequences were successfully identified for nearly 100% of third-stage juvenile gnathiid blood meals, digested for up to 5 days post-feeding. For second-stage juveniles, host identification was 100% successful when gnathiids were preserved within 24 h of collection. Fish hosts were positively identified for 69% of sequences from wild-fed gnathiid isopods. Of the 31% of sequences not receiving a ≥ 98 % match to a sequence in GenBank, 25 sequences were of possible invertebrate origin. CONCLUSIONS To our knowledge, this is the first study to examine the degradation rate of gnathiid isopod blood meals. Determining the rate at which gnathiids digest their blood meal is an important step in ensuring the successful host identification by DNA-based methods in large field studies.
Collapse
Affiliation(s)
- Gina C Hendrick
- Department of Biological Sciences, Arkansas State University, State University, AR, 72467, USA.,Arkansas Biosciences Institute, 504 University Loop, Jonesboro, AR, 72401, USA
| | - Maureen C Dolan
- Department of Biological Sciences, Arkansas State University, State University, AR, 72467, USA.,Arkansas Biosciences Institute, 504 University Loop, Jonesboro, AR, 72401, USA
| | - Tanja McKay
- Department of Biological Sciences, Arkansas State University, State University, AR, 72467, USA
| | - Paul C Sikkel
- Department of Biological Sciences, Arkansas State University, State University, AR, 72467, USA.
| |
Collapse
|
17
|
M Hernández-Triana L, A Brugman V, I Nikolova N, Ignacio Ruiz-Arrondo, Barrero E, Thorne L, Fernández de Marco M, Krüger A, Lumley S, Johnson N, R Fooks A. DNA barcoding of British mosquitoes (Diptera, Culicidae) to support species identification, discovery of cryptic genetic diversity and monitoring invasive species. Zookeys 2019; 832:57-76. [PMID: 30930645 PMCID: PMC6435598 DOI: 10.3897/zookeys.832.32257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 11/12/2022] Open
Abstract
Correct mosquito species identification is essential for mosquito and disease control programs. However, this is complicated by the difficulties in morphologically identifying some mosquito species. In this study, variation of a partial sequence of the cytochrome c oxidase unit I (COI) gene was used for the molecular identification of British mosquito species and to facilitate the discovery of cryptic diversity, and monitoring invasive species. Three DNA extraction methods were compared to obtain DNA barcodes from adult specimens. In total, we analyzed 42 species belonging to the genera Aedes Meigen, 1818 (21 species), Anopheles Meigen, 1818 (7 species), Coquillettidia Theobald, 1904 (1 species), Culex Linnaeus, 1758 (6 species), Culiseta Felt, 1904 (7 species), and Orthopodomyia Theobald, 1904 (1 species). Intraspecific genetic divergence ranged from 0% to 5.4%, while higher interspecific divergences were identified between Aedesgeminus Peus, 1971/Culisetalitorea (Shute, 1928) (24.6%) and Ae.geminus/An.plumbeus Stephens, 1828 (22.5%). Taxonomic discrepancy was shown between An.daciae Linton, Nicolescu & Harbach, 2004 and An.messeae Falleroni, 1828 indicating the poor resolution of the COI DNA barcoding region in separating these taxa. Other species such as Ae.cantans (Meigen, 1818)/Ae.annulipes (Meigen, 1830) showed similar discrepancies indicating some limitation of this genetic marker to identify certain mosquito species. The combination of morphology and DNA barcoding is an effective approach for the identification of British mosquitoes, for invasive mosquitoes posing a threat to the UK, and for the detection of hidden diversity within species groups.
Collapse
Affiliation(s)
| | - Victor A Brugman
- Vecotech Ltd., Keppel Street, London, WC1E 7HT, UK.,Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nadya I Nikolova
- Biodiversity Institute of Ontario, University of Guelph, Ontario N1G 2W1, Canada
| | - Ignacio Ruiz-Arrondo
- Center for Rickettsiosis and Arthropod-Borne Diseases, CIBIR, Logroño, La Rioja, Spain
| | - Elsa Barrero
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Leigh Thorne
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | | | - Andreas Krüger
- Bunderswehr Hospital Hamburg, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | - Sarah Lumley
- Public Health England, Porton Down, Salisbury, UK
| | - Nicholas Johnson
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L7 3EA, UK
| |
Collapse
|
18
|
Brugman VA, Medlock JM, Logan JG, Wilson AJ, Lindsay SW, Fooks AR, Mertens PPC, Johnson N, Carpenter ST. Bird-biting mosquitoes on farms in southern England. Vet Rec 2018; 183:474. [PMID: 30099408 PMCID: PMC6227795 DOI: 10.1136/vr.104830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Victor Albert Brugman
- Entomology group, The Pirbright Institute, Woking, UK.,Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Jolyon M Medlock
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department, Public Health England, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Salisbury, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Steve W Lindsay
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Department of Biosciences, Durham University, Durham, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency, Weybridge, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Peter P C Mertens
- Entomology group, The Pirbright Institute, Woking, UK.,School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, UK
| | - Nicholas Johnson
- Animal and Plant Health Agency, Weybridge, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
19
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
20
|
Fauver JR, Weger-Lucarelli J, Fakoli LS, Bolay K, Bolay FK, Diclaro JW, Brackney DE, Foy BD, Stenglein MD, Ebel GD. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa. PLoS Negl Trop Dis 2018; 12:e0006348. [PMID: 29561834 PMCID: PMC5880402 DOI: 10.1371/journal.pntd.0006348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/02/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
Background Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. Methodology/Principal findings We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. Conclusions/Significance This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens. Infectious diseases continue to be a burden on mankind, particularly in the developing countries of the tropics. Recognition of pathogen transmission in humans is a crucial step to thwarting epidemics of these pathogens. However, sampling human blood or tissue is invasive and logistically difficult. Xenosurveillance takes advantage of the blood-feeding behavior of mosquitoes to sample human blood for the presence of infectious disease agents. In this study, we aimed to compare xenosurveillance to a more traditional sampling method to assess the usefulness of this technique in field settings where it could potentially be beneficial. DNA and RNA next generation sequencing followed by an in-house bioinformatic pipeline identified viruses and parasites of human origin in blood collected by either mosquitoes or finger-stick. Xenosurveillance produces samples of comparable quality to finger-stick blood collections while alleviating many of the difficulties of direct human sampling. This study suggests xenosurveillance can be a complimentary strategy for infectious disease surveillance in low-resource areas.
Collapse
Affiliation(s)
- Joseph R. Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Kpehe Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | - Fatorma K. Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | - Doug E. Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian D. Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
21
|
Abade Dos Santos FA, Carvalho C, Nuno O, Correia JJ, Henriques M, Peleteiro MC, Fevereiro M, Duarte MD. Detection of rabbit Haemorrhagic disease virus 2 during the wild rabbit (Oryctolagus cuniculus) eradication from the Berlengas archipelago, Portugal. BMC Vet Res 2017; 13:336. [PMID: 29141631 PMCID: PMC5688637 DOI: 10.1186/s12917-017-1257-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the regular wildlife monitoring action carried out in the summer of the past few years at the Berlenga Island, wild rabbits (Oryctolagus cuniculus) have been repeatedly found dead. However, the origin of those deaths was never investigated. Our aim was to investigate the cause of death of 11 rabbits collected between April and May 2016. RESULTS While screening samples from rabbit carcasses for the major viral rabbit pathogens, five tested positive to RHDV2 but all were negative for RHDV and myxoma virus (MYXV). For six RHDV2-negative specimens, emaciation and parasitism were considered the most probable cause of death. Lesions identified in the RHDV2-positive rabbits included non-suppurative diffuse hepatic necrosis and pulmonary lesions varying from congestion and oedema of the lungs to interstitial pneumonia. Sequencing analysis of the vp60 gene obtained from two specimens showed identical vp60 sequences. Comparison with other known RHDV2 strains from public databases through BLAST analysis revealed a closer similarity with strains from Alentejo collected during 2013. Maximum Likelihood and Bayesian phylogenetic analysis showed that the 2016 strains from the archipelago have a higher resemblance with a group of strains mostly collected in the South of Portugal between 2013 and 2014. CONCLUSION The results suggest that RHDV2 may have been introduced on the Berlenga Island a few years ago, having evolved separately from mainland strains due to insularity.
Collapse
Affiliation(s)
- F A Abade Dos Santos
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa. Av. da Universidade Técnica, 1300-477, Lisbon, Portugal. .,Rua Quinta do Pinto N°5 3°D, 2660-067, Loures, Frielas, Portugal.
| | - C Carvalho
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM); Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora. Núcleo da Mitra, 7000, Évora, Portugal
| | - Oliveira Nuno
- Sociedade Portuguesa para o Estudo das Aves (SPEA), Av. Columbano Bordalo Pinheiro, 87, 3º Andar, 1070-062, Lisboa, Portugal
| | - J J Correia
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa. Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - M Henriques
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Virologia. Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - M C Peleteiro
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa. Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - M Fevereiro
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Virologia. Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - M D Duarte
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Laboratório de Virologia. Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| |
Collapse
|
22
|
How often do mosquitoes bite humans in southern England? A standardised summer trial at four sites reveals spatial, temporal and site-related variation in biting rates. Parasit Vectors 2017; 10:420. [PMID: 28915829 PMCID: PMC5602952 DOI: 10.1186/s13071-017-2360-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This field-based study examined the abundance and species complement of mosquitoes (Diptera: Culicidae) attracted to humans at four sites in the United Kingdom (UK). The study used a systematic approach to directly measure feeding by mosquitoes on humans at multiple sites and using multiple volunteers. Quantifying how frequently humans are bitten in the field by mosquitoes is a fundamental parameter in assessing arthropod-borne virus transmission. METHODS Human landing catches were conducted using a standardised protocol by multiple volunteers at four rural sites between July and August 2013. Collections commenced two hours prior to sunset and lasted for a total of four hours. To reduce bias occurring due to collection point or to the individual attractiveness of the volunteer to mosquitoes, each collection was divided into eight collection periods, with volunteers rotated by randomised Latin square design between four sampling points per site. While the aim was to collect mosquitoes prior to feeding, the source of blood meals from any engorged specimens was also identified by DNA barcoding. RESULTS Three of the four sites yielded human-biting mosquito populations for a total of 915 mosquitoes of fifteen species/species groups. Mosquito species composition and biting rates differed significantly between sites, with individual volunteers collecting between 0 and 89 mosquitoes (over 200 per hour) of up to six species per collection period. Coquillettidia richiardii (Ficalbi, 1889) was responsible for the highest recorded biting rates at any one site, reaching 161 bites per hour, whilst maximum biting rates of 55 bites per hour were recorded for Culex modestus (Ficalbi, 1889). Human-biting by Culex pipiens (L., 1758) form pipiens was also observed at two sites, but at much lower rates when compared to other species. CONCLUSIONS Several mosquito species are responsible for human nuisance biting pressure in southern England, although human exposure to biting may be largely limited to evening outdoor activities. This study indicates Cx. modestus can be a major human-biting species in the UK whilst Cx. pipiens f. pipiens may show greater opportunistic human-biting than indicated by earlier studies.
Collapse
|
23
|
Fauver JR, Gendernalik A, Weger-Lucarelli J, Grubaugh ND, Brackney DE, Foy BD, Ebel GD. The Use of Xenosurveillance to Detect Human Bacteria, Parasites, and Viruses in Mosquito Bloodmeals. Am J Trop Med Hyg 2017; 97:324-329. [PMID: 28722623 DOI: 10.4269/ajtmh.17-0063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infectious disease surveillance is hindered by several factors, including limited infrastructure and geographic isolation of many resource-poor regions. In addition, the complexities of sample acquisition, processing, and analysis, even in developed regions, can be rate limiting. Therefore, new strategies to survey human populations for emerging pathogens are necessary. Xenosurveillance is a method that utilizes mosquitoes as sampling devices to search for genetic signatures of pathogens in vertebrates. Previously we demonstrated that xenosurveillance can detect viral RNA in both laboratory and field settings. However, its ability to detect bacteria and parasites remains to be assessed. Accordingly, we fed Anopheles gambiae mosquitoes blood that contained Trypanosoma brucei gambiense and Bacillus anthracis. In addition, we determined whether two additional emerging viruses, Middle East Respiratory Syndrome Coronavirus and Zika virus could be detected by this method. Pathogen-specific real-time reverse transcription polymerase chain reaction was used to evaluate the sensitivity of xenosurveillance across multiple pathogen taxa and over time. We detected RNA from all pathogens at clinically relevant concentrations from mosquitoes processed up to 1 day postbloodfeeding. These results demonstrate that xenosurveillance may be used as a tool to expand surveillance for viral, parasitic, and bacterial pathogens in resource-limited areas.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Alex Gendernalik
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Nathan D Grubaugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Doug E Brackney
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
de Marco MDMF, Hernández-Triana LM, Phipps LP, Hansford K, Mitchell ES, Cull B, Swainsbury CS, Fooks AR, Medlock JM, Johnson N. Emergence of Babesia canis in southern England. Parasit Vectors 2017; 10:241. [PMID: 28514953 PMCID: PMC5436420 DOI: 10.1186/s13071-017-2178-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/08/2017] [Indexed: 12/02/2022] Open
Abstract
Background The United Kingdom is considered free of autochthonous transmission of canine babesiosis although cases are reported in dogs associated with recent travel abroad. During the winter months of 2015/16, a cluster of cases of disease in dogs with signs suggestive of canine babesiosis were reported in Harlow, Essex. Methods Babesia species were detected in dog blood samples by Giemsa staining of blood smears and by pan-piroplasm PCRs. Babesia species were also detected in extracts of tick DNA using pan-piroplasm PCRs. DNA sequencing and phylogenetic analysis was used to confirm the species of Babesia present in dog blood and tick samples. Tick species were identified by PCR-sequencing based on amplification of the cytochrome c oxidase subunit one (cox1) gene. Dermacentor reticulatus ticks were sampled from field sites in England and Wales. Results Blood smear analysis on samples taken from some of the affected dogs confirmed the presence of a large Babesia species within erythrocytes. A tick recovered from one of these cases was identified as Dermacentor reticulatus, a species with a limited distribution in England and Wales, but a known vector of canine babesiosis in continental Europe. Babesia canis was subsequently identified in blood samples obtained from three clinical cases (all dogs) within the area and from ticks associated with these dogs. A field survey detected 17 adult D. reticulatus ticks from one area visited by the affected dogs. Fourteen of these ticks were shown to be positive for the B. canis parasite, implicating them as a potential source for babesiosis in Harlow. In order to assess whether the parasite is present in more than one tick population, D. reticulatus ticks from across England and Wales were screened for the presence of Babesia species. In addition to the Harlow site, a further five locations where D. reticulatus is present were screened for Babesia species. Babesia was not detected from most sites tested but one tick from a single location in Wales was positive for B. canis. Conclusions Infection with B. canis was confirmed in a number of dogs in Harlow, Essex, with no history of travel outside of the country. The same pathogen was identified in field-caught D. reticulatus ticks in the same area and is considered the likely source of infection. This highlights the need for vigilance by veterinary surgeons for future outbreaks of tick-borne disease in dogs.
Collapse
Affiliation(s)
- Maria Del Mar Fernández de Marco
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - L Paul Phipps
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Kayleigh Hansford
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - E Sian Mitchell
- Animal and Plant Health Agency Carmarthen, Jobs Well Road, Johnstown, Carmarthen, SA31 3EZ, UK
| | - Ben Cull
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | | | - Anthony R Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury, SP4 0JG, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic infections, Salisbury, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK. .,Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, GU2 XH, UK.
| |
Collapse
|
25
|
Brugman VA, Hernández-Triana LM, England ME, Medlock JM, Mertens PPC, Logan JG, Wilson AJ, Fooks AR, Johnson N, Carpenter S. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasit Vectors 2017; 10:163. [PMID: 28347323 PMCID: PMC5369192 DOI: 10.1186/s13071-017-2098-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The range of vertebrate hosts on which species of mosquito blood-feed is an important parameter for identifying potential vectors and in assessing the risk of incursion and establishment of vector-borne pathogens. In the United Kingdom, studies of mosquito host range have collected relatively few specimens and used techniques that could only broadly identify host species. This study conducted intensive collection and analysis of mosquitoes from a grazing marsh environment in southeast England. This site provides extensive wetland habitat for resident and migratory birds and has abundant human nuisance biting mosquitoes. The aim was to identify the blood-feeding patterns of mosquito species present at the site which could contribute to the transmission of pathogens. METHODS Twice-weekly collections of mosquitoes were made from Elmley Nature Reserve, Kent, between June and October 2014. Mosquitoes were collected using resting boxes, by aspiration from man-made structures and using a Mosquito Magnet Pro baited with 1-octen-3-ol. Blood-fed specimens were classified according to the degree of blood meal digestion using the Sella scale and vertebrate origin determined using sequencing of a fragment of the mitochondrial cytochrome C oxidase subunit I gene. Mosquitoes that were morphologically cryptic were identified to species level using multiplex PCR and sequencing methods. RESULTS A total of 20,666 mosquitoes of 11 species were collected, and 2,159 (10.4%) were blood-fed (Sella scale II-VI); of these 1,341 blood-fed specimens were selected for blood meal analysis. Vertebrate origin was successfully identified in 964 specimens (72%). Collections of blood-fed individuals were dominated by Anopheles maculipennis complex (73.5%), Culiseta annulata (21.2%) and Culex pipiens form pipiens (10.4%). Nineteen vertebrate hosts comprising five mammals and 14 birds were identified as hosts for mosquitoes, including two migratory bird species. Feeding on birds by Culex modestus and Anopheles atroparvus populations in England was demonstrated. CONCLUSIONS This study expands the vertebrate host range of mosquitoes in the Thames estuary region of the UK. Feeding on both resident and migratory bird species by potential arbovirus vectors including Cx. pipiens f. pipiens and Cx. modestus indicates the potential for enzootic transmission of an introduced arbovirus between migratory and local bird species by native mosquito species.
Collapse
Affiliation(s)
- V A Brugman
- The Pirbright Institute, Ash Road, Woking, Surrey, UK. .,London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | | | - M E England
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - J M Medlock
- Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - P P C Mertens
- The Pirbright Institute, Ash Road, Woking, Surrey, UK.,The University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - J G Logan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - A J Wilson
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - A R Fooks
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - N Johnson
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - S Carpenter
- The Pirbright Institute, Ash Road, Woking, Surrey, UK
| |
Collapse
|
26
|
Evans MV, Dallas TA, Han BA, Murdock CC, Drake JM. Data-driven identification of potential Zika virus vectors. eLife 2017; 6:e22053. [PMID: 28244371 PMCID: PMC5342824 DOI: 10.7554/elife.22053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States.
Collapse
Affiliation(s)
- Michelle V Evans
- Odum School of Ecology, University of Georgia, Athens, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States
| | - Tad A Dallas
- Odum School of Ecology, University of Georgia, Athens, United States
- Department of Environmental Science and Policy, University of California-Davis, Davis, United States
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, United States
| | - Courtney C Murdock
- Odum School of Ecology, University of Georgia, Athens, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States
- Department of Infectious Disease, University of Georgia, Athens, United States
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, United States
- River Basin Center, University of Georgia, Athens, United States
| | - John M Drake
- Odum School of Ecology, University of Georgia, Athens, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States
- River Basin Center, University of Georgia, Athens, United States
| |
Collapse
|
27
|
Chapman GE, Archer D, Torr S, Solomon T, Baylis M. Potential vectors of equine arboviruses in the UK. Vet Rec 2017; 180:19. [PMID: 27694545 PMCID: PMC5284472 DOI: 10.1136/vr.103825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/03/2022]
Abstract
There is growing concern about the increasing risk of disease outbreaks caused by arthropod-borne viruses (arboviruses) in both human beings and animals. There are several mosquito-borne viral diseases that cause varying levels of morbidity and mortality in horses and that can have substantial welfare and economic ramifications. While none has been recorded in the UK, vector species for some of these viruses are present, suggesting that UK equines may be at risk. The authors undertook, therefore, the first study of mosquito species on equine premises in the UK. Mosquito magnet traps and red-box traps were used to sample adults, and larvae were collected from water sources such as tyres, buckets, ditches and pools. Several species that are known to be capable of transmitting important equine infectious arboviruses were trapped. The most abundant, with a maximum catch of 173 in 72 hours, was Ochlerotatus detritus, a competent vector of some flaviviruses; the highest densities were found near saltmarsh habitats. The most widespread species, recorded at >75 per cent of sites, was Culiseta annulata. This study demonstrates that potential mosquito vectors of arboviruses, including those known to be capable of infecting horses, are present and may be abundant on equine premises in the UK.
Collapse
Affiliation(s)
- G E Chapman
- Epidemiology and Population Health, Institute of Global Health, University of Liverpool, Liverpool, UK
| | - D Archer
- Epidemiology and Population Health, Institute of Global Health, University of Liverpool, Liverpool, UK
| | - S Torr
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - T Solomon
- Clinical Infection, Microbiology and Immunology, Institute of Global Health, University of Liverpool, Liverpool, UK
| | - M Baylis
- Epidemiology and Population Health, Institute of Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
28
|
Novikov YM. On the ecology and range of Anopheles beklemishevi (Diptera: Culicidae) with reference to the taxonomy of An. lewisi. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:204-214. [PMID: 27860006 DOI: 10.1111/jvec.12215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
The ecological features and geographic distribution of Anopheles beklemishevi have not been studied extensively. These studies are important in connection with the validity of the 'Anopheles lewisi' taxon. The materials were collected in Russia and Kazakhstan from 1973 to 2012, and species identity was defined by cytogenetic analysis of polytene chromosomes of larvae and adult females. A total of 7,896 specimens from 34 geographic locations was included in the analysis. It was established that An. beklemishevi is distributed from the east coast of the Baltic Sea to the basin of the Lena River, and from the forest-tundra zone to the Altai and Sayan Mountain systems. This species is exophilic and is confined to high and/or swampy terrains found in the zone of conifer and mixed forests. The frequency of An. beklemishevi in the southwestern area, where it is sympatric with An. messeae s.l., has significantly decreased over the past decades. The results of the study indirectly suggest that An. beklemishevi does not play a significant role as a vector of malaria. It is highly improbable that An. beklemishevi and An. lewisi are the same species. Changes in the proportions of the species of the Maculipennis complex, as well as a shift of their ranges, will significantly impact the epidemiology of malaria over large areas of northern Eurasia.
Collapse
Affiliation(s)
- Yuri M Novikov
- Department of Cytology and Genetics of Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
29
|
Fernández de Marco M, Brugman V, Hernández-Triana L, Thorne L, Phipps L, Nikolova N, Fooks A, Johnson N. Detection of Theileria orientalis in mosquito blood meals in the United Kingdom. Vet Parasitol 2016; 229:31-36. [DOI: 10.1016/j.vetpar.2016.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 01/21/2023]
|
30
|
Kampen H, Schäfer M, Zielke DE, Walther D. The Anopheles maculipennis complex (Diptera: Culicidae) in Germany: an update following recent monitoring activities. Parasitol Res 2016; 115:3281-94. [DOI: 10.1007/s00436-016-5189-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
|
31
|
Adamowicz SJ, Steinke D. Increasing global participation in genetics research through DNA barcoding. Genome 2015; 58:519-26. [DOI: 10.1139/gen-2015-0130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA barcoding—the sequencing of short, standardized DNA regions for specimen identification and species discovery—has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003–2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.
Collapse
Affiliation(s)
- Sarah J. Adamowicz
- Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Dirk Steinke
- Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|