1
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
2
|
Sripa J, Chaiwong T. Multi-epitope protein production and its application in the diagnosis of opisthorchiasis. Parasit Vectors 2024; 17:206. [PMID: 38715089 PMCID: PMC11077728 DOI: 10.1186/s13071-024-06285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Opisthorchiasis and cholangiocarcinoma (CCA) continue to be public health concerns in many Southeast Asian countries. Although the prevalence of opisthorchiasis is declining, reported cases tend to have a light-intensity infection. Therefore, early detection by using sensitive methods is necessary. Several sensitive methods have been developed to detect opisthorchiasis. The immunological detection of antigenic proteins has been proposed as a sensitive method for examining opisthorchiasis. METHODS The Opisthorchis viverrini antigenic proteins, including cathepsin B (OvCB), asparaginyl endopeptidase (OvAEP), and cathepsin F (OvCF), were used to construct multi-antigenic proteins. The protein sequences of OvCB, OvAEP, and OvCF, with a high probability of B cell epitopes, were selected using BepiPred 1.0 and the IEDB Analysis Resource. These protein fragments were combined to form OvCB_OvAEP_OvCF recombinant DNA, which was then used to produce a recombinant protein in Escherichia coli strain BL21(DE3). The potency of the recombinant protein as a diagnostic target for opisthorchiasis was assessed using immunoblotting and compared with that of the gold standard method, the modified formalin-ether concentration technique. RESULTS The recombinant OvCB_OvAEP_OvCF protein showed strong reactivity with total immunoglobulin G (IgG) antibodies against light-intensity O. viverrini infections in the endemic areas. Consequently, a high sensitivity (100%) for diagnosing opisthorchiasis was reported. However, cross-reactivity with sera from other helminth and protozoan infections (including taeniasis, strongyloidiasis, giardiasis, E. coli infection, enterobiasis, and mixed infection of Echinostome spp. and Taenia spp.) and no reactivity with sera from patients with non-parasitic infections led to a reduced specificity of 78.4%. In addition, the false negative rate (FNR), false positive rate (FPR), positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were 0%, 21.6%, 81.4%, 100%, and 88.9%, respectively. CONCLUSIONS The high sensitivity of the recombinant OvCB_OvAEP_OvCF protein in detecting opisthorchiasis demonstrates its potential as an opisthorchiasis screening target. Nonetheless, research on reducing cross-reactivity should be undertaken by detecting other antibodies in other sample types, such as saliva, urine, and feces.
Collapse
Affiliation(s)
- Jittiyawadee Sripa
- College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, 34190, Ubon Ratchathani, Thailand.
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, 34190, Ubon Ratchathani, Thailand.
| | - Tarinee Chaiwong
- College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, 34190, Ubon Ratchathani, Thailand
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, 34190, Ubon Ratchathani, Thailand
| |
Collapse
|
3
|
Lopes KF, Freire ML, Souza Lima DC, Enk MJ, Oliveira E, Geiger SM. Development and evaluation of an indirect ELISA using a multiepitope antigen for the diagnosis of intestinal schistosomiasis. Parasitology 2023; 150:683-692. [PMID: 37092694 PMCID: PMC10410369 DOI: 10.1017/s0031182023000409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
The laboratory diagnosis of intestinal schistosomiasis, carried out by detecting parasite eggs in feces, has low sensitivity when applied to individuals with low parasitic load. Serological tests can be more sensitive for the diagnosis of the disease. Therefore, the objective of this work was to develop and evaluate an ELISA-based immunoenzymatic assay, using a Schistosoma mansoni multiepitope antigen (ELISA IgG anti-SmME). For this, the amino acid sequences of S. mansoni cathepsin B and asparaginyl endopeptidase were submitted to the prediction of B cell epitopes and, together with peptide sequences obtained from earlier works, were used in the construction of a minigene. The multiepitope protein was expressed in Escherichia coli and the performance of the ELISA IgG anti-SmME for schistosomiasis was evaluated using serum samples from 107 individuals either egg positive or negative. In addition, 11 samples from individuals with other helminth infections were included. The ELISA IgG anti-SmME showed a sensitivity of 81.1% and a specificity of 46.1%. Further analysis revealed a 77.2% sensitivity in diagnosis of individuals with egg counts of ≤12 epg (eggs per gram feces) and 87.5% for individuals with 13–99 epg. It is worth mentioning that, to our knowledge, this was the first study using a multiepitope recombinant antigen in an ELISA for diagnosis of intestinal schistosomiasis, which demonstrated promising results in the diagnosis of individuals with low parasitic loads.
Collapse
Affiliation(s)
- Karine Ferreira Lopes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- René Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Dayane Costa Souza Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Martin Johannes Enk
- Evandro Chagas Institute – Secretary of Health Vigilance, Ministry of Health, Ananindeua, Pará, Brazil
| | - Edward Oliveira
- René Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Stefan Michael Geiger
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Tong Y, Tang L, Xia M, Li G, Hu B, Huang J, Wang J, Jiang H, Yin J, Xu N, Chen Y, Jiang Q, Zhou J, Zhou Y. Identifying determinants for the seropositive rate of schistosomiasis in Hunan province, China: A multi-scale geographically weighted regression model. PLoS Negl Trop Dis 2023; 17:e0011466. [PMID: 37440524 DOI: 10.1371/journal.pntd.0011466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Schistosomiasis is of great public health concern with a wide distribution and multiple determinants. Due to the advances in schistosomiasis elimination and the need for precision prevention and control, identifying determinants at a fine scale is urgent and necessary, especially for resource deployment in practice. Our study aimed to identify the determinants for the seropositive rate of schistosomiasis at the village level and to explore their spatial variations in local space. METHODOLOGY The seropositive rates of schistosomiasis were collected from 1714 villages or communities in Human Province, and six spatial regression models including ordinary least squares (OLS), spatial lag model (SLM), spatial error model (SEM), geographically weighted regression (GWR), robust GWR (RGWR) and multiscale GWR (MGWR) were used to fit the data. PRINCIPAL/FINDINGS MGWR was the best-fitting model (R2: 0.821, AICc:2727.092). Overall, the nearest distance from the river had the highest mean negative correlation, followed by proportion of households using well water and the annual average daytime surface temperature. The proportions of unmodified toilets showed the highest mean positive correlation, followed by the snail infested area, and the number of cattle. In spatial variability, the regression coefficients for the nearest distance from the river, annual average daytime surface temperature and the proportion of unmodified toilets were significant in all villages or communities and varied little in local space. The other significant determinants differed substantially in local space and had significance ratios ranging from 41% to 70%, including the number of cattle, the snail infested area and the proportion of households using well water. CONCLUSIONS/SIGNIFICANCE Our study shows that MGWR was well performed for the spatial variability of schistosomiasis in Hunan province. The spatial variability was different for different determinants. The findings for the determinants for the seropositive rate and mapped variability for some key determinants at the village level can be used for developing precision intervention measure for schistosomiasis control.
Collapse
Affiliation(s)
- Yixin Tong
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Ling Tang
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Meng Xia
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Guangping Li
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Benjiao Hu
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Junhui Huang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Jiamin Wang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Honglin Jiang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Jiangfan Yin
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Ning Xu
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Qingwu Jiang
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| | - Jie Zhou
- Hunan Institute for Schistosomiasis Control, Yueyang, China
| | - Yibiao Zhou
- Fudan University School of Public Health, Shanghai, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China
- Fudan University Center for Tropical Disease Research, Shanghai, China
| |
Collapse
|
5
|
Wanlop A, Angeles JMM, Macalanda AMC, Kirinoki M, Ohari Y, Yajima A, Yamagishi J, Ona KAL, Kawazu SI. Cloning, Expression and Evaluation of Thioredoxin Peroxidase-1 Antigen for the Serological Diagnosis of Schistosoma mekongi Human Infection. Diagnostics (Basel) 2022; 12:diagnostics12123077. [PMID: 36553084 PMCID: PMC9777376 DOI: 10.3390/diagnostics12123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Schistosoma mekongi, a blood fluke that causes Asian zoonotic schistosomiasis, is distributed in communities along the Mekong River in Cambodia and Lao People's Democratic Republic. Decades of employing numerous control measures including mass drug administration using praziquantel have resulted in a decline in the prevalence of schistosomiasis mekongi. This, however, led to a decrease in sensitivity of Kato-Katz stool microscopy considered as the gold standard in diagnosis. In order to develop a serological assay with high sensitivity and specificity which can replace Kato-Katz, recombinant S. mekongi thioredoxin peroxidase-1 protein (rSmekTPx-1) was expressed and produced. Diagnostic performance of the rSmekTPx-1 antigen through ELISA for detecting human schistosomiasis was compared with that of recombinant protein of S. japonicum TPx-1 (rSjTPx-1) using serum samples collected from endemic foci in Cambodia. The sensitivity and specificity of rSmekTPx-1 in ELISA were 89.3% and 93.3%, respectively, while those of rSjTPx-1 were 71.4% and 66.7%, respectively. In addition, a higher Kappa value of 0.82 calculated between rSmekTPx-1 antigen ELISA and Kato-Katz confirmed better agreement than between rSjTPx-1 antigen ELISA and Kato-Katz (Kappa value 0.38). These results suggest that ELISA with rSmekTPx-1 antigen can be a potential diagnostic method for detecting active human S. mekongi infection.
Collapse
Affiliation(s)
- Atcharaphan Wanlop
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Jose Ma. M. Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Adrian Miki C. Macalanda
- Department of Immunopathology and Microbiology, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang 4122, Philippines
| | - Masashi Kirinoki
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yuma Ohari
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Aya Yajima
- Would Health Organization Regional Office for Southeast Asia, New Delhi 110011, India
| | - Junya Yamagishi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Kevin Austin L. Ona
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- Correspondence:
| |
Collapse
|
6
|
Li YL, Dang H, Guo SY, Zhang LJ, Feng Y, Ding SJ, Shan XW, Li GP, Yuan M, Xu J, Li SZ. Molecular evidence on the presence of Schistosoma japonicum infection in snails along the Yangtze River, 2015-2019. Infect Dis Poverty 2022; 11:70. [PMID: 35717331 PMCID: PMC9206329 DOI: 10.1186/s40249-022-00995-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022] Open
Abstract
Background Due to sustained control activities, the prevalence of Schistosoma japonicum infection in humans, livestock and snails has decreased significantly in P. R. China, and the target has shifted from control to elimination according to the Outline of Healthy China 2030 Plan. Applying highly sensitive methods to explore the presence of S. japonicum infection in its intermediate host will benefit to assess the endemicity or verify the transmission interruption of schistosomiasis accurately. The aim of this study was to access the presence of S. japonicum infection by a loop-mediated isothermal amplification (LAMP) method through a 5-year longitudinal study in five lake provinces along the Yangtze River. Methods Based on previous epidemiological data, about 260 villages with potential transmission risk of schistosomiasis were selected from endemic counties in five lake provinces along the Yangtze River annually from 2015 to 2019. Snail surveys were conducted in selected villages by systematic sampling method and/or environmental sampling method each year. All live snails collected from field were detected by microscopic dissection method, and then about one third of them were detected by LAMP method to assess the presence of S. japonicum infection with a single blind manner. The infection rate and nucleic acid positive rate of schistosomes in snails, as well as the indicators reflecting the snails’ distribution were calculated and analyzed. Fisher's exact test was used to examine any change of positive rate of schistosomes in snails over time. Results The 5-year survey covered 94,241 ha of environment with 33,897 ha of snail habitats detected accumulatively. Totally 145.3 ha new snail habitats and 524.4 ha re-emergent snail habitats were found during 2015–2019. The percentage of frames with snails decreased from 5.93% [45,152/761,492, 95% confidence intervals (CI): 5.88–5.98%] in 2015 to 5.25% (30,947/589,583, 95% CI: 5.19–5.31%) in 2019, while the mean density of living snails fluctuated but presented a downward trend generally from 0.20 snails/frame (155,622/761,492, 95% CI: 0.17–0.37) in 2015 to 0.13 snails/frame (76,144/589,583, 95% CI: 0.11–0.39) in 2019. A total of 555,393 live snails were collected, none of them was positive by dissection method. Totally 17 pooling snail samples were determined as positives by LAMP method among 8716 pooling samples with 174,822 of living snails, distributed in 12 villages of Hubei, Hunan, Jiangxi and Anhui provinces. The annual average positive rate was 0.41% (95% CI: 0.13–0.69%) in 2015, 0% in 2016, 0.36% (95% CI: 0.09–0.63%) in 2017, 0.05% (95% CI: 0–0.16%) in 2018, 0.05% (95% CI: 0–0.15%) in 2019, respectively, presenting a downward trend from 2015 to 2019 with statistical significance (χ2 = 11.64, P < 0.05). Conclusions The results suggest that S. japonicum infection still persisted in nature along the Yangtze River and traditional techniques might underestimate the prevalence of schistosomiasis in its intermediate hosts. Exploring and integrating molecular techniques into national surveillance programme could improve the sensitivity of surveillance system and provide guidance on taking actions against schistosomiasis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-00995-9.
Collapse
Affiliation(s)
- Yin-Long Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Hui Dang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Su-Ying Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Li-Juan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| | - Yun Feng
- Jiangsu Provincial Institute of Schistosomiasis Control, Wuxi, Jiangsu Province, 214064, People's Republic of China
| | - Song-Jun Ding
- Anhui Provincial Institute of Schistosomiasis Control, Hefei, Anhui Province, 230061, People's Republic of China
| | - Xiao-Wei Shan
- Hubei Provincial Institute of Schistosomiasis Control, Hubei Center for Disease Control, Wuhan, Hubei Province, 430079, People's Republic of China
| | - Guang-Ping Li
- Hunan Provincial Institute of Schistosomiasis Control, Hunan Province 414000, Yueyang, People's Republic of China
| | - Min Yuan
- Jiangxi Provincial Institute of Parasitic Disease, Nanchang, Jiangxi Province, 330006, People's Republic of China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China. .,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China. .,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China.
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, People's Republic of China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, People's Republic of China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, People's Republic of China
| |
Collapse
|
7
|
Ozturk EA, Manzano-Román R, Sánchez-Ovejero C, Caner A, Angın M, Gunduz C, Karaman Ü, Altintas N, Bozkaya H, Unalp O, Dokumcu Z, Divarci E, Casulli A, Altintas N, Siles-Lucas M, Unver A. Comparison of the multi-epitope recombinant antigen DIPOL and hydatid fluid for the diagnosis of patients with cystic echinococcosis. Acta Trop 2022; 225:106208. [PMID: 34687646 DOI: 10.1016/j.actatropica.2021.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 11/01/2022]
Abstract
The use of serological tests containing multiple immunodominant antigens rather than single antigens have the potential to improve the diagnostic performance in Cystic Echinococcoses (CE) as a complement tool to clear the inconclusive imaging data. Here, we comparatively evaluated the diagnostic value of Hydatid Fluid (HF) and the recently described recombinant multi-epitope antigen DIPOL in IgG-ELISA in a clinically defined cohort of CE patients. The serum samples from 149 CE patients were collected just before surgical or Percutaneous- Aspiration- Injection- Reaspiration (PAIR) procedures. Additionally, serum samples of patients with other parasitic infections (n=49) and healthy individuals (n=21) were also included in the study as controls. To investigate the association between the genotype of the parasite and DIPOL, cyst materials from 20 CE patients were sequenced. In terms of overall sensitivity, HF was higher than DIPOL (82.55%,78.52%, respectively). However, while the sensitivity of HF was higher than DIPOL in patients with active and transitional cysts (83.3%, 75.4%, respectively), sensitivity of DIPOL in inactive cysts was higher compared to HF (95.6%, 78.3%, respectively). The sensitivity of DIPOL depending on cyst stage was statistically significant (P= 0.041). In terms of specificity, DIPOL was found to be better than HF (97.71%, 91.43%, respectively). By genotyping, the majority of 20 patients showed G1 genotype (80%). All patients harboring G3 and G1/G3 cyst genotypes were positive with both antigens, while 87.5% of patients with G1 genotype were seropositive with HF and 75% with DIPOL. The overall sensitivity and high specificity of DIPOL suggest that this recombinant protein containing immunodominant epitopes is a potential substitute for the HF by serological tests for the diagnosis of CE.
Collapse
|
8
|
Sabna S, Kamboj DV, Kumar RB, Babele P, Rajoria S, Gupta MK, Alam SI. Strategy for the enrichment of protein biomarkers from diverse bacterial select agents. Protein Pept Lett 2021; 28:1071-1082. [PMID: 33820508 DOI: 10.2174/0929866528666210405160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002. India
| |
Collapse
|
9
|
Chen C, Guo Q, Fu Z, Liu J, Lin J, Xiao K, Sun P, Cong X, Liu R, Hong Y. Reviews and advances in diagnostic research on Schistosoma japonicum. Acta Trop 2021; 213:105743. [PMID: 33159894 DOI: 10.1016/j.actatropica.2020.105743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
Schistosomiasis is an acute and chronic parasitic disease caused by blood flukes (trematode worms) of the genus Schistosoma. Schistosoma japonicum (S. japonicum) infection has decreased significantly in prevalence and intensity of infection in China. However, this disease still remains a serious public health problem in some endemic areas of the Philippines and Indonesia. Thus, more accurate and sensitive methods are much needed for further control of this disease. Here, we review the research progress in techniques for the diagnosis of S. japonicum infection.
Collapse
Affiliation(s)
- Cheng Chen
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R.China
| | - Qinghong Guo
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R.China
| | - Zhiqiang Fu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R.China
| | - Jinming Liu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R.China
| | - Jiaojiao Lin
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R.China
| | - Kai Xiao
- Huancui Development Center for Animal Husbandry, Weihai, 264200, P.R.China
| | - Pengxiang Sun
- Center for Disease Control and Prevention of Huancui, Weihai, 264200, P.R.China
| | - Xiaonan Cong
- Huancui Development Center for Animal Husbandry, Weihai, 264200, P.R.China
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Yang Hong
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R.China..
| |
Collapse
|
10
|
Guo Q, Chen C, Zhou K, Li Y, Tong L, Yue Y, Zhou K, Liu J, Fu Z, Lin J, Zhao J, Sun P, Hong Y. Evaluation of a real-time PCR assay for diagnosis of schistosomiasis japonica in the domestic goat. Parasit Vectors 2020; 13:535. [PMID: 33109260 PMCID: PMC7590668 DOI: 10.1186/s13071-020-04420-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/21/2020] [Indexed: 12/03/2022] Open
Abstract
Background Schistosomiasis japonica is an infectious disease caused by Schistosoma japonicum that seriously endangers human health. Domestic animals have important roles in disease transmission and goats are considered a primary reservoir host and source of infection. The prevalence and intensity of schistosomiasis infections have significantly decreased in China, and a more sensitive, specific detection method is urgently needed. The aim of this study was to develop a real-time PCR assay for accurate detection of S. japonicum infection in goats. Methods A real-time PCR method for detecting schistosomiasis japonica in goats was developed by amplification of a specific S. japonicum DNA fragment, and validated using a total of 94 negative and 159 positive plasma and serum samples collected in our previous study of S. japonicum infection. Both plasma and serum samples were evaluated by real-time PCR and enzyme-linked immunosorbent assay (ELISA). In addition, 120 goat plasma samples from an S. japonicum-endemic area (Wangjiang) and 33 from a non-endemic region (Weihai) were collected and evaluated using our method. Results The sensitivity and specificity of the real-time PCR for detecting infected samples were 98.74% (157/159, 95% CI: 95.53–99.85%) and 100% (94/94, 95% CI: 96.15–100%), respectively. For the ELISA, sensitivity and specificity were 98.11% (156/159, 95% CI: 94.59–99.61%) and 90.43% (85/94, 95% CI: 82.60–95.53%), respectively. Further, we found positivity rates for S. japonicum infection in Wangjiang and Weihai of 8.33% (10/120, 95% CI: 4.07–14.79%) and 0% (0/33, 95% CI: 0–10.58%), respectively. Conclusions The results of this study indicate that our real-time PCR method exhibits higher sensitivity and specificity than ELISA and is a useful method for detection of S. japonicum infection in goats.![]()
Collapse
Affiliation(s)
- Qinghong Guo
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Cheng Chen
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Keke Zhou
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Yugang Li
- Huancui Development Center for Animal Husbandry, Weihai, 264200, P. R. China
| | - Laibao Tong
- Wangjiang County Center for Animal Disease Control and Prevention, Anqing, 246000, P. R. China
| | - Yongcheng Yue
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Kerou Zhou
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Jinming Liu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Zhiqiang Fu
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Jiaojiao Lin
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Jiaxi Zhao
- Wangjiang County Center for Animal Disease Control and Prevention, Anqing, 246000, P. R. China
| | - Pengxiang Sun
- Center for Disease Control and Prevention of Huancui, Weihai, 264200, P. R. China
| | - Yang Hong
- National Reference Laboratory of Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China.
| |
Collapse
|
11
|
Analyses of the expression, immunohistochemical properties and serodiagnostic potential of Schistosoma japonicum peroxiredoxin-4. Parasit Vectors 2020; 13:436. [PMID: 32867818 PMCID: PMC7460784 DOI: 10.1186/s13071-020-04313-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background Schistosoma japonicum, which inhabits the mesenteric vein of the mammalian hosts for about 20 to 30 years, is subjected to the oxidative stresses from the host defense mechanism during their intra-mammalian stages. To counteract this host immune attack, the parasite utilizes their antioxidant system for survival inside the host. Peroxiredoxins (Prxs), thiol-specific antioxidant proteins, play an essential role for protecting the parasite against oxidative stress by reducing hydrogen peroxide to water. Only three types of 2-Cys Prxs have been previously characterized in S. japonicum whereas a fourth Prx has been identified for Schistosoma mansoni as Prx-4. A sequence coding homologous to this gene in the S. japonicum database was identified, characterized and expressed as recombinant SjPrx-4 protein (rSjPrx-4). Furthermore, rSjPrx-4 was evaluated in this study for its diagnostic potentials in detecting S. japonicum infection in humans. Results The gene found in the parasite genome contained 2 active-site cysteines with conserved sequences in the predicted amino acid (AA) sequence and showed 75% identity with that of the previously characterized Prx (TPx-1) of S. japonicum. The gene was expressed in different stages of schistosome life-cycle with highest transcription level in the adult male. The gene was cloned into a plasmid vector and then transfected into Escherichia coli for expression of rSjPrx-4. Anti-rSjPrx-4 mouse sera recognized native SjPrx-4 in egg and adult worm lysate by western blotting. The result of a mixed function oxidation assay in which rSjPrx-4 prevented the nicking of DNA from hydroxyl radicals confirmed its antioxidant activity. Subsequently, immunolocalization analysis showed the localization of SjPrx-4 inside the egg, on the tegument and in the parenchyma of the adult worm. Enzyme-linked immunosorbent assay results showed that rSjPrx-4 has 83.3% sensitivity and 87.8% specificity. Its diagnostic potential was further evaluated in combination with recombinant SjTPx-1 protein, yielding an improved sensitivity and specificity of 90% and 92.7%, respectively. Conclusions These results suggest that SjPrx-4 plays a role as an antioxidant dealing with oxidative stresses of S. japonicum, and its diagnostic potential improved by coupling it with SjTPx-1 is a proof for developing a serological test with better diagnostic performance for human schistosomiasis.![]()
Collapse
|
12
|
Budiono NG, Murtini S, Satrija F, Ridwan Y, Handharyani E. Humoral responses to Schistosoma japonicum soluble egg antigens in domestic animals in Lindu Subdistrict, Central Sulawesi Province, Indonesia. INTERNATIONAL JOURNAL OF ONE HEALTH 2020. [DOI: 10.14202/ijoh.2020.99-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Schistosomiasis japonica, a disease caused by Schistosoma japonicum, is a public health problem in the Philippines, the Republic of Indonesia, and the People's Republic of China. The disease is known as zoonotic, meaning other than humans, animals are involved as the reservoirs. In Indonesia, schistosomiasis surveillance in animals is not continuous. Thus, the study to determine the prevalence of the disease in animals is needed. The study was aimed to determine the seroprevalence of S. japonicum infection among four species of domestic animals in the Lindu Sub-district, Central Sulawesi Province of Indonesia.
Materials and Methods: Blood samples of domestic animals were collected and analyzed for the presence of anti-S. japonicum immunoglobulin G antibodies against S. japonicum soluble egg antigens using the indirect hemagglutination assay. Animal stool samples were collected, and the miracidia-hatching assay was used for the detection of S. japonicum infection. Additional data concerning the animal identity and the management practices were obtained through a questionnaire used in surveys and interviews.
Results: A total of 146 sera from 13 cattle, 24 buffaloes, 54 pigs, and 55 dogs were collected. The overall schistosomiasis seroprevalence was 64.4%. The serology prevalence in cattle, buffalo, pig, and dog was 100.0%, 41.7%, 74.1%, and 56.4%, respectively. Domestic animals in all of five villages have previous exposure with S. japonicum as seropositive animals detected in every village. A total of 104 animal stool samples from 146 animals sampled were obtained. The overall schistosomiasis prevalence determined by the miracidia hatching assay was 16.35%. The sensitivity and specificity of indirect hemagglutination assay (IHA) in the current study were 88.24% and 41.37%, respectively, with miracidia hatching assay as the gold-standard method.
Conclusion: This study has shown a high seroprevalence of schistosomiasis japonica among domestic animals in the Lindu Subdistrict. IHA can be used as the screening method for the detection of S. japonicum infection in domestic animals. Chemotherapy and animal livestock grazing management programs to reduce the parasite burden and Schistosoma egg contamination in the environment must be implemented as part of one health approaches, in addition to other control measures.
Collapse
Affiliation(s)
- Novericko Ginger Budiono
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia
| | - Sri Murtini
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Fadjar Satrija
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Yusuf Ridwan
- Parasitology and Medical Entomology Study Program, Graduate School, IPB University, Bogor, Indonesia; Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinics, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
13
|
Development and Potential Application of Ras Domain Containing Protein from Haemonchus contortus for Diagnosis of Goat Infection. Animals (Basel) 2020; 10:ani10010138. [PMID: 31952259 PMCID: PMC7022636 DOI: 10.3390/ani10010138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Haemonchus contortus is an important gastrointestinal nematode of small ruminants that causes significant mortality in goats worldwide. Diagnosis of this infection mainly depends on the evaluation of clinical signs and fecal examination. However, limitations often occur in early or mild infections. For this purpose, serological diagnosis seems to be more accurate and reliable. Ras domain-containing protein (Ras) is one of H. contortus's excretory and secretory products (ESPs) that can be isolated from different larval stages of the nematode. In this study, the recombinant H. contortus Ras domain-containing protein (rHcRas) was expressed and purified and its diagnostic potential was evaluated. Reactions between rHcRas and goat sera were tested using Western blotting (WB). The results showed that rHcRas could be recognized by sera as early as 14 days post infection (DPI), and antibodies against rHcRas in infected goats could be maintained for over 89 days. No reaction was found between rHcRas and antibodies against Trichinella spiralis, Fasciola hepatica, or Toxoplasma gondii. An indirect enzyme-linked immunosorbent assay (ELISA) was produced based on rHcRas. The optimal coating antigen (157 ng of rHcRas/well) and serum dilutions (1:50) were determined via checkerboard titration. Indirect ELISA based on rHcRas showed 87.5% sensitivity and 90.6% specificity. The cut-off values for this experiment were determined to be 0.324 (positive) and 0.273 (negative), respectively, and the variation coefficient (CV) was less than 15%. The results of the indirect ELISA in-field examination showed that 17.6% (9/51) of the goats were infected with H. contortus, higher than the fecal examination results (15.7%, 8/51). When compared the results of the indirect ELISA and necropsy testing, 98.0% (50/51) consistency was found. These results indicated that rHcRas was a potential antigen for the diagnosis of H. contortus infection in goats.
Collapse
|
14
|
Adhesion-Regulating Molecule from Haemonchus contortus: Potential Antigen for Diagnosis of Early Infection in Goats. Pathogens 2019; 9:pathogens9010034. [PMID: 31905914 PMCID: PMC7168579 DOI: 10.3390/pathogens9010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Haemonchus contortus, a blood-sucking nematode of ruminants, causes large economic losses worldwide. Diagnosis of infection mainly depends on the evaluation of clinical signs and fecal examination. However, this has limitations for the diagnosis of early or light infections, where serological diagnosis seems to be more accurate and reliable. In this study, the recombinant H. contortus adhesion-regulating molecule protein (rHCADRM) was expressed and purified, and its diagnostic potential was evaluated. Serum samples from goats experimentally infected with H. contortus (n = 5) were collected at 0 (before infection, negative control), 7, 14, 21, 35, 49, 63, 85, and 103 days post-infection (DPI). The reactions between rHcADRM and goat serum were tested using Western blot (WB) analysis. The results show that rHcADRM can be recognized in the serum as early as 14 DPI, and the antibody against rHcADRM in infected goat could be maintained for over 89 days. No reaction was found between rHcADRM and antibodies against Trichinella spiralis, Fasciola hepatica, or Toxoplasma gondii. An indirect enzyme-linked immune sorbent assay (ELISA) was developed based on rHcADRM. The optimal coating antigen (279 ng of rHcADRM/well) and serum dilutions (1:50) were determined by checkerboard titration. A total of 64 serum samples, including 32 from H. contortus infection goats and 32 from helminth-free goats, were used to determine the positive (0.362) and negative (0.306) cut-off values for the ELISA. The results show this serological diagnosis method is highly sensitive (90.6%) and specific (93.75%). The coefficient of variation within run and between runs was less than 11%. To apply this indirect ELISA during field examination, 51 serum samples were randomly collected from goat farms and tested using this method. The result showed that 19.6% (10/51) of goats were infected with H. contortus, which was 100% consistent with the necropsy result, higher than that of fecal examination (15.7%, 8/51). These results indicate that rHcADRM could be a potential antigen for diagnosis of H. contortus infection in goats.
Collapse
|
15
|
Designing and Modeling of Multi-epitope Proteins for Diagnosis of Toxocara canis Infection. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09940-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Wang L, Giri BR, Chen Y, Xia T, Liu J, Li H, Li J, Cheng G. Molecular characterization, expression profile, and preliminary evaluation of diagnostic potential of CD63 in Schistosoma japonicum. Parasitol Res 2018; 117:3625-3631. [PMID: 30178196 DOI: 10.1007/s00436-018-6063-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/21/2018] [Indexed: 11/29/2022]
Abstract
Schistosomes are the causative agents of human schistosomiasis, which is endemic in tropical and subtropical zones. CD63 is a member of the tetraspanin protein family widely expressed among eukaryotes. Previously, we identified a CD63 homolog from extracellular vesicles isolated from Schistosoma japonicum. In this study, we characterized this CD63 homolog using a molecular approach and evaluated the potential of its recombinant protein for the diagnosis of schistosomiasis. A sequence alignment indicated that S. japonicum CD63 (SjCD63) has sequence identities of 76 and 28% with S. mansoni and human CD63, respectively. A phylogenetic analysis displayed that S. japonicum CD63 is related to S. mansoni and Opisthorchis viverrini CD63. The cDNA of SjCD63 was 740 bp long with an expected protein size of 23.58 kDa. A RT-qPCR analysis revealed significantly higher expression of SjCD63 mRNA in adult worms on days 21, 28, and 35 than in 7-day schistosomula, cercariae, and eggs. In addition, recombinant SjCD63 protein detected by ELISA revealed significantly higher optical density values compared to that of the negative control in both S. japonicum-infected mouse and rabbit sera, providing preliminary evidence for its diagnostic potential. Overall, these results provide insight into the molecular properties of SjCD63, its expression profiles, and its preliminary diagnostic potential.
Collapse
Affiliation(s)
- Lihui Wang
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China.,Tianjin Agricultural University, Tianjin, China
| | - Bikash Ranjan Giri
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Juntao Liu
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Huimin Li
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China
| | - Jianjun Li
- Tianjin Agricultural University, Tianjin, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
17
|
Lv C, Fu Z, Lu K, Yue R, Wang T, Cao X, Zhu C, Li H, Hong Y, Lin J. A perspective for improving the sensitivity of detection: The application of multi-epitope recombinant antigen in serological analysis of buffalo schistosomiasis. Acta Trop 2018; 183:14-18. [PMID: 29605156 DOI: 10.1016/j.actatropica.2018.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/08/2018] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
Abstract
The sensitivity and specificity are two crucial aspects of addressing the efficacy of diagnostic antigens. Achilles' heel of low sensitivity rate exists in current diagnostic recombinant antigens for schistosomiasis detection. This study focused on the diagnosis of water buffalo schistosomiasis japonica and a perspective of improving recombinant antigens' sensitivity was assessed using archived 220 water buffalo sera (114 positive sera, 92 negative sera and 14 Paramphistomum-infected sera) and the method of enzyme-linked immunosorbent assay (ELISA). The subjects included two trivalent recombinant proteins, one bivalent antigen and two single-molecular antigens. The crude antigen SEA (soluble egg antigen) was employed as reference antigen. The highest sensitivity rate in the five recombinant antigens assigned to the trivalent multi-epitope antigen PA4 (95.61%, 109/114), no significant difference with SEA (100%, 114/114, p = .836), and showing remarkable differences with the two single-molecular antigens (p < 0.01). In term of specificity, two trivalent multi-epitope antigens PA4 (97.83%, 90/92), PA5 (100%, 92/92) and the bivalent antigen PA3 (98.91%, 91/92) had few differences with one monovalent antigens PA1 (97.83%, 90/92, p = .304/0.103/0.640), significant differences with another monovalent antigens PA2 (92.39%, 85/92, p < 0.01) and SEA (82.61%, 76/92, p < 0.01). Additional, all the recombinant antigens had low cross-reactivity (7.14%, 1/14, 0% for PA5) with serum samples of paramphistomiasis, contrast with that of SEA (50%, 7/14, p < 0.01). The results indicated that multi-epitope antigens have the possibility to improve diagnostic sensitivity and the trivalent multi-epitope antigen PA4 possesses greater likelihood to be a diagnostic antigen for water buffalo schistosomiasis.
Collapse
|
18
|
Hajissa K, Zakaria R, Suppian R, Mohamed Z. An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies. BMC Infect Dis 2017; 17:807. [PMID: 29284420 PMCID: PMC5747131 DOI: 10.1186/s12879-017-2920-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 12/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated. METHODS An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis. RESULTS The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody. CONCLUSIONS This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, B.O.Box, 382, Omdurman, Sudan
| | - Robaiza Zakaria
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rapeah Suppian
- Biomedicine Program, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
19
|
Feng J, Xu R, Zhang X, Han Y, He C, Lu C, Hong Y, Lu K, Li H, Jin Y, Lin J, Liu J. A candidate recombinant antigen for diagnosis of schistosomiasis japonica in domestic animals. Vet Parasitol 2017; 243:242-247. [PMID: 28807301 DOI: 10.1016/j.vetpar.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/01/2017] [Accepted: 06/17/2017] [Indexed: 01/24/2023]
Abstract
Domestic animals infected with Schistosoma japonicum are a major source of infection and play an important role in transmission to humans. A key strategy for the elimination of schistosomiasis is to control the sources of infection. In the present study, we identified a candidate diagnostic antigen-encoding gene, SjMRP1, the putative multidrug resistance protein 1 gene, by screening a cDNA phage display library from 44-day-old S. japonicum worms using IgGs from goat, cattle, and buffalo infected with S. japonicum. We cloned and expressed the fragment of SjMRP1 and subsequently evaluated the diagnostic potential of the recombinant protein rSjMRP1. In the enzyme-linked immunosorbent assay of rSjMRP1 (rSjMRP1-ELISA), the sensitivity in goat, cattle, and buffalo was 95.6% (86/90), 100% (22/22), and 90% (81/90), respectively, and the specificity was 100% (30/30) in goat and cattle and 96.67% (29/30) in buffalo. These results were not significantly different from soluble egg antigen (SEA)-ELISA results. Notably, rSjMRP1-ELISA has no cross reaction with Haemonchus contortus, a most common nematode seen in goat and bovine in China, in 13 infected goats, and with Orientobilhazia turkestanica, which is genetically under Schistosoma, in 36 infected goats; whereas SEA-ELISA showed false positive rate of 15.38% and 83.33% in the two respective animal groups. The results obtained here suggest that rSjMRP1 may be used for diagnosis of S. japonicum infection of domestic animals.
Collapse
Affiliation(s)
- Jintao Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Rui Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Yu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Chuanchuan He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Chao Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonosea, Yangzhou, Jiangsu Province 225009, PR China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai 200241, PR China.
| |
Collapse
|
20
|
Lopes MD, Oliveira FM, Coelho IEV, Passos MJF, Alves CC, Taranto AG, Júnior MC, Santos LL, Fonseca CT, Villar JAFP, Lopes DO. Epitopes rationally selected through computational analyses induce T‐cell proliferation in mice and are recognized by serum from individuals infected with
Schistosoma mansoni. Biotechnol Prog 2017; 33:804-814. [DOI: 10.1002/btpr.2463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Ivan E. V. Coelho
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Maria J. F. Passos
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Clarice C. Alves
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Moacyr C. Júnior
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Cristina T. Fonseca
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - José A. F. P. Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Débora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| |
Collapse
|
21
|
Zhang X, He CC, Liu JM, Li H, Lu K, Fu ZQ, Zhu CG, Liu YP, Tong LB, Zhou DB, Zha L, Hong Y, Jin YM, Lin JJ. Nested-PCR assay for detection of Schistosoma japonicum infection in domestic animals. Infect Dis Poverty 2017; 6:86. [PMID: 28407808 PMCID: PMC5390378 DOI: 10.1186/s40249-017-0298-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schistosomiasis japonica is a common zoonosis. Domestic animals are the primary source of infection and play an important role in disease transmission. The prevalence and infectivity of this disease in domestic animals in China have significantly decreased and, for this reason, diagnostics with a higher sensitivity have become increasingly necessary. It was reported that polymerase chain reaction (PCR)-based methods could be used to detect schistosome infection in humans and animals and presented a high sensitivity and specificity. The present study aimed to develop a PCR-based method for detection of Schistosoma japonicum infection in domestic animals. METHODS A specific nested-PCR assay was developed to detect S. japonicum infection in domestic animals via amplification of a 231-bp DNA fragment of retrotransposon SjR2. The developed assay was first used in sera and dry blood filter paper (DBFP) from goats and buffaloes at different time points of infection. Then, 78 DBFPs from 39 artificially-infected bovines at 14 and 28 days post-infection and 42 DBFPs from schistosome-negative bovines from the city of Huangshan in the Anhui province were used to evaluate the diagnostic validity. Furthermore, this assay was used to detect S. japonicum infection in domestic animals in Dongzhi and Wangjiang counties. RESULTS The expected PCR product was detected in eggs and adult worms of S. japonicum and blood samples from S. japonicum-infected goats and water buffaloes, but not from Fasciola and Haemonchus contortus worms. The nested-PCR assay could detect the target S. japonicum DNA in DBFPs from goats and buffaloes after day 3 post-infection. The sensitivity in buffaloes at 14 and 28 days post-infection was 92.30% (36/39) and 100% (39/39), respectively. The specificity was 97.60% (41/42). The positivity rates in Dongzhi and Wangjiang counties were 6.00% and 8.00% in bovines and 22.00% and 16.67% in goats, respectively. The positivity rates in goats in both counties were higher than those in bovines with a significant difference in Dongzhi County but not in Wangjiang County (P < 0.05 and P = 0.23, respectively). CONCLUSIONS Our results suggest that the developed nested-PCR assay may be used for the diagnosis of S. japonicum infection in domestic animals, and the control of S. japonicum infection in goats should be paid more attention.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Chuan-Chuan He
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jin-Ming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China.
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Zhi-Qiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Chuan-Gang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Yi-Ping Liu
- Anhui Center for Animal Disease Control and Prevention, Hefei, People's Republic of China
| | - Lai-Bao Tong
- Wangjiang county Center for Animal Husbandry and Veterinary Bureau, Anqing, People's Republic of China
| | - De-Bao Zhou
- Dongzhi county Center for Animal Husbandry and Veterinary Bureau, Chizhou, People's Republic of China
| | - Li Zha
- Huangshan Center for Animal Disease Control and Prevention, Huangshan, 341000, People's Republic of China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Ya-Mei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China
| | - Jiao-Jiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonosea, Yangzhou, Jiangsu province, 225009, People's Republic of China
| |
Collapse
|