1
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
2
|
Jebessa E, Guo L, Chen X, Bello SF, Cai B, Girma M, Hanotte O, Nie Q. Influence of Eimeria maxima coccidia infection on gut microbiome diversity and composition of the jejunum and cecum of indigenous chicken. Front Immunol 2022; 13:994224. [PMID: 36131927 PMCID: PMC9483182 DOI: 10.3389/fimmu.2022.994224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Coccidiosis is an economically significant protozoan disease and an intracellular parasite that significantly impacts poultry production. The gastrointestinal tract microbiota plays a central role in host health and metabolism, and these microbes enhance chickens’ immune systems and nutrient absorption. In this study, we analyzed the abundance and diversity of microbiota of the jejunum and cecum of a dual-purpose indigenous Horro chicken following Eimeria maxima infection. We compared microbial abundance, composition, and diversity at the 4- and 7- days post-infection using 16S rRNA gene sequencing. We obtained, on average, 147,742 and 132,986 high-quality sequences per sample for jejunum and cecum content, respectively. Firmicutes, Proteobacteria, Campilobacterota and Bacteroidota were the major microbial phylum detected in the jejunum content. Firmicutes were the dominant phylum for 4- and 7-days jejunum control groups accounting for (>60% of the sequences). In the infected group Campilobacterota was the dominant phylum in the jejunum (> 24% of sequences) at 4-and 7-days post-infection groups, while Proteobacteria was predominant at 4- and 7-days post-infection of the cecum (> 40% of the sequences). The microbial genus Lactobacillus and Helicobacter were found in the jejunum, while Alistipes, Barnesiella and Faecalibacterium were detected in the cecum. In the jejunum, Helicobacter was dominant at 4 -and-7 days post-infection (≥24%), and Lactobacillus was dominant at 4 -and 7- days in the control group (> 50%). In 4- and 7-days post-infection, Alistipes genus was the more prevalent (> 38%) in the cecum. Thus, clear differences were observed in the bacterial microbiota distribution and abundance between the jejunum and cecum, as well as between infected and control groups for both tissues. The results indicate that chicken intestinal microbial imbalance (dysbiosis) is associated with Eimeria parasite infection and will likely affect the host-microbial non-pathogenic and pathogenic molecular interactions.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- LiveGene – Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Mekonnen Girma
- LiveGene – Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- LiveGene – Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
- *Correspondence: Qinghua Nie, ; Olivier Hanotte, ,
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- *Correspondence: Qinghua Nie, ; Olivier Hanotte, ,
| |
Collapse
|
3
|
Zaheer T, Abbas RZ, Imran M, Abbas A, Butt A, Aslam S, Ahmad J. Vaccines against chicken coccidiosis with particular reference to previous decade: progress, challenges, and opportunities. Parasitol Res 2022; 121:2749-2763. [PMID: 35925452 PMCID: PMC9362588 DOI: 10.1007/s00436-022-07612-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Chicken coccidiosis is an economically significant disease of commercial chicken industry accounting for losses of more than £10.4 billion (according to 2016 prices). Additionally, the costs incurred in prophylaxis and therapeutics against chicken coccidiosis in developing countries (for instance Pakistan according to 2018 prices) reached US $45,000.00 while production losses for various categories of chicken ranges 104.74 to US $2,750,779.00. The infection has been reported from all types of commercial chickens (broiler, layer, breeder) having a range of reported prevalence of 7-90%. The concern of resistance towards major anticoccidials has provided a way forward to vaccine research and development. For prophylaxis of chicken coccidiosis, live virulent, attenuated, ionophore tolerant strains and recombinant vaccines have been extensively trialed and commercialized. Eimeria antigens and novel vaccine adjuvants have elicited the protective efficacy against coccidial challenge. The cost of production and achieving robust immune responses in birds are major challenges for commercial vaccine production. In the future, research should be focused on the development of multivalent anticoccidial vaccines for commercial poultry. Efforts should also be made on the discovery of novel antigens for incorporation into vaccine designs which might be more effective against multiple Eimeria species. This review presents a recap to the overall progress against chicken Eimeria with particular reference to previous decade. The article presents critical analysis of potential areas for future research in chicken Eimeria vaccine development.
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ali Butt
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sarfraz Aslam
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| | - Jameel Ahmad
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Chen C, Zhang Y, Liu J, Wang M, Lu M, Xu L, Yan R, Li X, Song X. An Eimeria maxima Antigen: Its Functions on Stimulating Th1 Cytokines and Protective Efficacy Against Coccidiosis. Front Immunol 2022; 13:872015. [PMID: 35669766 PMCID: PMC9163350 DOI: 10.3389/fimmu.2022.872015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
A consensus is that the Th1 immune response plays a predominant role against avian coccidiosis. Therefore, an antigen with the ability to induce Th1 cytokine responses is an ideal candidate for the development of coccidiosis vaccines. In our previous study, EmARM-β, a Th1 cytokines-stimulating antigen, was screened from the cDNA expression library of Eimeria maxima (E. maxima). Herein, we verified its stimulative effects on Th1 cytokine productions and evaluated its protective efficacy against E. maxima infection. Recombinant EmARM-β protein was expressed, and eukaryotic expression plasmid pVAX1-EmARM-β was also constructed for the immunization of birds. An immunofluorescence assay was performed to detect the native form of EmARM-β protein in the stage of sporozoites. Expressions of specific transcription factors and cytokines in immunized chickens were measured using qPCR and ELISA to verify its stimulating function on Th1 cytokines. Specific IgG antibody levels and T lymphocyte subpopulation in the immunized chickens were detected using ELISA and indirect flow cytometry to determine induced immune responses. The results showed that EmARM-β native protein is massively expressed in the sporozoites stage of E. maxima. Effective stimulation from the EmARM-β antigen to T-bet and Th1 cytokines (IL-2 and IFN-γ) was observed in vivo. After being immunized with rEmARM-β or pVAX1-EmARM-β, significant promotion to the proportion of CD4+ and CD8+ T cells and the level of antigen-specific IgG antibodies in immunized chickens was also observed. Furthermore, vaccination with rEmARM-β antigen or pVAX1-EmARM-β resulted in alleviated weight loss and enteric lesion, reduced oocyst output, and higher anticoccidial index (ACI) in challenged birds. These results indicate that EmARM-β antigen can effectively stimulate the expression of Th1 cytokines and initiate host immune responses, providing moderate protective efficacy against E. maxima. Notably, EmARM-β protein is a promising candidate for developing a novel anticoccidial vaccine.
Collapse
|
5
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Fatoba AJ, Adeleke MA. Transgenic Eimeria parasite: A potential control strategy for chicken coccidiosis. Acta Trop 2020; 205:105417. [PMID: 32105666 DOI: 10.1016/j.actatropica.2020.105417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Poultry industry has been very instrumental in curtailing malnutrition and poverty and as such contributing to economic growth. However, production loss in poultry industry due to parasitic disease such as coccidiosis has become a global challenge. Chicken coccidiosis is an enteric disease that is associated with morbidity and mortality. The control of this parasite through anticoccidial live vaccines and drugs has been very successful though with some limitations such as the cost of production of live vaccines, and drugs resistance which is a public health concern. The discovery of Eimeria vaccine antigens such as Apical membrane antigens (AMA)-1 and Immune mapped protein (IMP)-1 have introduced the use of recombinant vaccines as alternative control measures against chicken coccidiosis. Although some protections have been reported among recombinant vaccines, improving their protective efficacy has triggered the search for a novel and efficient delivery vehicle. Transgenic Eimeria, which is constructed either through stable or transient transfection is currently being explored as novel delivery vehicle of Eimeria vaccine antigens. Due to partial protections reported in chickens vaccinated with transgenic Eimeria lines expressing different Eimeria antigens, improving protective efficacy becomes imperative. Recent trends in the design of transgenic Eimeria for potential application in the control of chicken coccidiosis are summarized in this review. We conclude that, with improved protective efficacy using multiple vaccine antigens, transgenic Eimeria parasite could fill the gap in the control of chicken coccidiosis as an efficient anticoccidial vaccine.
Collapse
|