1
|
Shih CM, Huang XR, Erazo E, Chao LL. First Molecular Survey and Genetic Characterization of Rickettsia spp. in Haemaphysalis hystricis Ticks Infesting Dogs in Taiwan. Microorganisms 2025; 13:424. [PMID: 40005788 PMCID: PMC11857873 DOI: 10.3390/microorganisms13020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Rickettsia infection in Haemaphysalis hystricis ticks infesting dogs was first screened in Taiwan by nested-PCR assay targeting the citrate synthase gene (gltA) of Rickettsia. A general infection rate (3.46%) was detected in a total of 1186 examined ticks, and infection rates of 3.20%, 3.6%, and 4.27% were detected in females, males, and nymphs, respectively. The monthly prevalence of Rickettsia infection was observed from March to November, and the highest infection was detected in April (6.92%) followed by a higher infection in July (5.56%), October (4.72%), September (3.57%), and May (3.54%). The prevalence of Rickettsia infection in ticks infesting stray dogs (4.15%) is significantly higher than ticks infesting domestic dogs (1.11%) (chi-square test, p = 0.015). Genetic analysis based on the gltA gene sequences from 13 Taiwan specimens, compared with 13 genospecies of Rickettsia strains documented in GenBank, revealed that the genetic identities of these Taiwan strains were phylogenetically affiliated with the genospecies of the transitional group (R. felis) and the spotted fever group (R. aeschlimannii and R. raoultii) of Rickettsia. This study demonstrates the first molecular screening of Rickettsia spp. in H. hystricis ticks infesting dogs in Taiwan. The human pathogenic strain of R. aeschlimannii was first discovered in H. hystricis ticks infesting dogs. Because dogs serve as companion animals to humans, the presence of various Rickettsia species existing in H. hystricis ticks may pose a potential threat to human health in Taiwan.
Collapse
Affiliation(s)
- Chien-Ming Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-M.S.)
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Xing-Ru Huang
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Esmeralda Erazo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-M.S.)
| | - Li-Lian Chao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-M.S.)
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Roth M, Geerling G, Strzalkowski P, Lindhof HH, Guthoff R. [Emerging pathogens of ocular infections due to environmental changes-What lies ahead?]. DIE OPHTHALMOLOGIE 2025; 122:31-36. [PMID: 39775877 DOI: 10.1007/s00347-024-02176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 09/29/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Due to the global effects of climate change numerous infectious diseases are increasingly spreading to regions that were previously hardly or only slightly affected. As ocular involvement is possible in many of these infectious diseases, we must also adapt to new pathogens and clinical pictures in Germany in the medium to long term. Using selected bacterial, viral and mycotic pathogens and diseases as examples, the causes of the increase in dissemination and the consequences for ophthalmology are presented.
Collapse
Affiliation(s)
- M Roth
- Klinik für Augenheilkunde, Universitätsaugenklinik Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - G Geerling
- Klinik für Augenheilkunde, Universitätsaugenklinik Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - P Strzalkowski
- Klinik für Augenheilkunde, Universitätsaugenklinik Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - H H Lindhof
- Klinik für Dermatologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - R Guthoff
- Klinik für Augenheilkunde, Universitätsaugenklinik Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
3
|
Osip S, Friedman M, Haynes E, Coker SM, Bryan Ii JA, Sidouin M, Ouakou PT, Ngandolo BNR, Cleveland CA, Yabsley MJ. Prevalence and diversity of spotted fever group Rickettsia species in ixodid ticks from domestic dogs in Chad, Africa. Ticks Tick Borne Dis 2024; 15:102405. [PMID: 39427603 DOI: 10.1016/j.ttbdis.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Tick-borne pathogens in the genus Rickettsia are the causative agents of severe and potentially fatal spotted fever group (SFG) and typhus group diseases in dogs and humans. Climate, habitat, and land-use changes are impacting vector ranges, with expansions potentially resulting in novel pathogens being introduced into naïve locations. Despite the public health importance of SFG Rickettsia, there are relatively few data on the prevalence and diversity of rickettsial pathogens in sub-Saharan Africa. The aim of this study was to characterize the SFG Rickettsia prevalence and diversity in ixodid ticks (104 Amblyomma spp., 160 Rhipicephalus spp., and one Hyalomma truncatum) collected from domestic dogs in Chad, Africa. Ticks were screened for Rickettsia spp. using a nested PCR targeting the 17-kDa gene. Species identification was through bidirectional Sanger sequencing of the 17-kDa, ompA, ompB, and/or gltA gene targets. A total of 43.3 % (115/265) ticks were positive for Rickettsia spp. and six Rickettsia species were identified: R. africae, R. massiliae, R. conorii, R. felis, R. monacensis and Candidatus Rickettsia muridii. Seven additional samples were positive for Rickettsia of undetermined species. Rickettsia africae, an important zoonotic pathogen, was found in 81 % (79/97) of A. variegatum and 29 % (2/7) of an A. marmoreum complex species, a group that infests a wide range of birds and mammals, including humans. Finally, we detected a high diversity of Rickettsia spp., most of which were zoonotic, in Rh. muhsamae. Collectively these data indicate there is a risk of rickettsiosis in Chad and further studies on ticks and rickettsial pathogens in this region are warranted.
Collapse
Affiliation(s)
- Stephanie Osip
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - Morgan Friedman
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - Sarah M Coker
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA
| | - John A Bryan Ii
- Zachery Consulting LLC, 2595 Rogers Mill Road, Danielsville, GA, 30633, USA
| | - Metinou Sidouin
- The Carter Center, National Guinea Worm Eradication Program, N'Djamena, BP 440, Chad
| | | | | | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W. Brooks Dr., University of Georgia, Athens, GA, 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Mertens-Scholz K, Hoffmann B, Gethmann JM, Brangsch H, Pletz MW, Klaus C. Prevalence of tick-borne bacterial pathogens in Germany-has the situation changed after a decade? Front Cell Infect Microbiol 2024; 14:1429667. [PMID: 39091677 PMCID: PMC11291221 DOI: 10.3389/fcimb.2024.1429667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Tick-borne pathogens, such as Borreliella spp., Rickettsia spp., and Anaplasma spp., are frequently detected in Germany. They circulate between animals and tick vectors and can cause mild to severe diseases in humans. Knowledge about distribution and prevalence of these pathogens over time is important for risk assessment of human and animal health. Methods Ixodes ricinus nymphs were collected at different locations in 2009/2010 and 2019 in Germany and analyzed for tick-borne pathogens by real-time PCR and sequencing. Results Borreliella spp. were detected with a prevalence of 11.96% in 2009/2010 and 13.10% in 2019 with B. afzelii and B. garinii as dominant species. Borrelia miyamotoi was detected in seven ticks and in coinfection with B. afzelii or B. garinii. Rickettsia spp. showed a prevalence of 8.82% in 2009/2010 and 1.68% in 2019 with the exclusive detection of R. helvetica. The prevalence of Anaplasma spp. was 1.00% in 2009/2010 and 7.01% in 2019. A. phagocytophilum was detected in seven tick samples. None of the nymphs were positive for C. burnetii. Discussion Here, observed changes in prevalence were not significant after a decade but require longitudinal observations including parameters like host species and density, climatic factors to improve our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Greifswald-Insel Riems, Germany
| | - Jörn M. Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Greifswald-Insel Riems, Germany
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Christine Klaus
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
| |
Collapse
|
5
|
Springer A, Schütte K, Brandes F, Reuschel M, Fehr M, Dobler G, Margos G, Fingerle V, Sprong H, Strube C. Potential drivers of vector-borne pathogens in urban environments: European hedgehogs ( Erinaceus europaeus) in the spotlight. One Health 2024; 18:100764. [PMID: 38855195 PMCID: PMC11157281 DOI: 10.1016/j.onehlt.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Vector-borne diseases (VBDs) are considered as (re-)emerging, but information on the transmission cycles and wildlife reservoirs is often incomplete, particularly with regard to urban areas. The present study investigated blood samples from European hedgehogs (Erinaceus europaeus) presented at wildlife rehabilitation centres in the region of Hanover. Past exposure to B. burgdorferi sensu lato (s.l.) and tick-borne encephalitis virus (TBEV) was assessed by serological detection of antibodies, while current infections with Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis, Bartonella spp., Babesia spp. and Spiroplasma ixodetis were investigated by (q)PCR. Of 539 hedgehogs tested for anti-Borrelia antibodies, 84.8% (457/539) were seropositive, with a higher seropositivity rate in adult than subadult animals, while anti-TBEV antibodies were detected in one animal only (0.2%; 1/526). By qPCR, 31.2% (168/539) of hedgehog blood samples were positive for Borrelia spp., 49.7% (261/525) for A. phagocytophilum, 13.0% (68/525) for Bartonella spp., 8.2% for S. ixodetis (43/525), 8.0% (42/525) for Rickettsia spp. and 1.3% (7/525) for Babesia spp., while N. mikurensis was not detected. While further differentiation of Borrelia spp. infections was not successful, 63.2% of the A. phagocytophilum infections were assigned to the zoonotic ecotype I and among Rickettsia spp. infections, 50.0% to R. helvetica by ecotype- or species-specific qPCR, respectively. Sequencing revealed the presence of a Rickettsia sp. closely related to Rickettsia felis in addition to a Bartonella sp. previously described from hedgehogs, as well as Babesia microti and Babesia venatorum. These findings show that hedgehogs from rehabilitation centres are valuable sources to identify One Health pathogens in urban areas. The hedgehogs are not only exposed to pathogens from fleas and ticks in urban areas, but they also act as potent amplifiers for these vectors and their pathogens, relevant for citizens and their pets.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | - Karolin Schütte
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
- Wildlife Rescue and Conservation Center Sachsenhagen, Hohe Warte 1, 31553 Sachsenhagen, Germany
| | - Florian Brandes
- Wildlife Rescue and Conservation Center Sachsenhagen, Hohe Warte 1, 31553 Sachsenhagen, Germany
| | - Maximilian Reuschel
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hanover, Buenteweg 9, 30559 Hanover, Germany
| | - Michael Fehr
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hanover, Buenteweg 9, 30559 Hanover, Germany
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Food and Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Food and Health and Food Safety Authority, Veterinärstraße 2, 85764 Oberschleissheim, Germany
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute of Public Health and Environment, Antonie van Leeuwenhoeklaan 9, 3720, BA, Bilthoven, Netherlands
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| |
Collapse
|
6
|
Daněk O, Hrbatová A, Volfová K, Ševčíková S, Lesiczka P, Nováková M, Ghodrati S, Hrazdilova K, Veneziano V, Napoli E, Otranto D, Montarsi F, Mihalca AD, Mechouk N, Adamík P, Modrý D, Zurek L. Italian peninsula as a hybridization zone of Ixodes inopinatus and I. ricinus and the prevalence of tick-borne pathogens in I. inopinatus, I. ricinus, and their hybrids. Parasit Vectors 2024; 17:196. [PMID: 38685096 PMCID: PMC11059663 DOI: 10.1186/s13071-024-06271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Ixodes inopinatus was described from Spain on the basis of morphology and partial sequencing of 16S ribosomal DNA. However, several studies suggested that morphological differences between I. inopinatus and Ixodes ricinus are minimal and that 16S rDNA lacks the power to distinguish the two species. Furthermore, nuclear and mitochondrial markers indicated evidence of hybridization between I. inopinatus and I. ricinus. In this study, we tested our hypothesis on tick dispersal from North Africa to Southern Europe and determined the prevalence of selected tick-borne pathogens (TBPs) in I. inopinatus, I. ricinus, and their hybrids. METHODS Ticks were collected in Italy and Algeria by flagging, identified by sequencing of partial TROSPA and COI genes, and screened for Borrelia burgdorferi s.l., B. miyamotoi, Rickettsia spp., and Anaplasma phagocytophilum by polymerase chain reaction and sequencing of specific markers. RESULTS Out of the 380 ticks, in Italy, 92 were I. ricinus, 3 were I. inopinatus, and 136 were hybrids of the two species. All 149 ticks from Algeria were I. inopinatus. Overall, 60% of ticks were positive for at least one TBP. Borrelia burgdorferi s.l. was detected in 19.5% of ticks, and it was significantly more prevalent in Ixodes ticks from Algeria than in ticks from Italy. Prevalence of Rickettsia spotted fever group (SFG) was 51.1%, with significantly greater prevalence in ticks from Algeria than in ticks from Italy. Borrelia miyamotoi and A. phagocytophilum were detected in low prevalence (0.9% and 5.2%, respectively) and only in ticks from Italy. CONCLUSIONS This study indicates that I. inopinatus is a dominant species in Algeria, while I. ricinus and hybrids were common in Italy. The higher prevalence of B. burgdorferi s.l. and Rickettsia SFG in I. inopinatus compared with that in I. ricinus might be due to geographical and ecological differences between these two tick species. The role of I. inopinatus in the epidemiology of TBPs needs further investigation in the Mediterranean Basin.
Collapse
Affiliation(s)
- Ondřej Daněk
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Alena Hrbatová
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
| | - Karolina Volfová
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sylvie Ševčíková
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Paulina Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Markéta Nováková
- CEITEC University of Veterinary Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sajjad Ghodrati
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristyna Hrazdilova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Ettore Napoli
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Fabrizio Montarsi
- Instituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Noureddine Mechouk
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Peter Adamík
- Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| | - David Modrý
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludek Zurek
- CEITEC University of Veterinary Sciences, Brno, Czech Republic.
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
7
|
Probst J, Springer A, Fingerle V, Strube C. Frequency of Anaplasma phagocytophilum, Borrelia spp., and coinfections in Ixodes ricinus ticks collected from dogs and cats in Germany. Parasit Vectors 2024; 17:87. [PMID: 38395915 PMCID: PMC10893606 DOI: 10.1186/s13071-024-06193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Changing geographical and seasonal activity patterns of ticks may increase the risk of tick infestation and tick-borne pathogen (TBP) transmission for both humans and animals. METHODS To estimate TBP exposure of dogs and cats, 3000 female I. ricinus from these hosts were investigated for Anaplasma phagocytophilum and Borrelia species. RESULTS qPCR inhibition, which was observed for ticks of all engorgement stages but not questing ticks, was eliminated at a template volume of 2 µl. In ticks from dogs, A. phagocytophilum and Borrelia spp. prevalence amounted to 19.0% (285/1500) and 28.5% (427/1500), respectively, while ticks from cats showed significantly higher values of 30.9% (464/1500) and 55.1% (827/1500). Accordingly, the coinfection rate with both A. phagocytophilum and Borrelia spp. was significantly higher in ticks from cats (17.5%, 262/1500) than dogs (6.9%, 104/1500). Borrelia prevalence significantly decreased with increasing engorgement duration in ticks from both host species, whereas A. phagocytophilum prevalence decreased only in ticks from dogs. While A. phagocytophilum copy numbers in positive ticks did not change significantly over the time of engorgement, those of Borrelia decreased initially in dog ticks. In ticks from cats, copy numbers of neither A. phagocytophilum nor Borrelia spp. were affected by engorgement. Borrelia species differentiation was successful in 29.1% (365/1254) of qPCR-positive ticks. The most frequently detected species in ticks from dogs were B. afzelii (39.3% of successfully differentiated infections; 70/178), B. miyamotoi (16.3%; 29/178), and B. valaisiana (15.7%; 28/178), while B. afzelii (40.1%; 91/227), B. spielmanii (21.6%; 49/227), and B. miyamotoi (14.1%; 32/227) occurred most frequently in ticks from cats. CONCLUSIONS The differences in pathogen prevalence and Borrelia species distribution between ticks collected from dogs and cats may result from differences in habitat overlap with TBP reservoir hosts. The declining prevalence of A. phagocytophilum with increasing engorgement duration, without a decrease in copy numbers, could indicate transmission to dogs over the time of attachment. The fact that this was not observed in ticks from cats may indicate less efficient transmission. In conclusion, the high prevalence of A. phagocytophilum and Borrelia spp. in ticks collected from dogs and cats underlines the need for effective acaricide tick control to protect both animals and humans from associated health risks.
Collapse
Affiliation(s)
- Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
8
|
Arz C, Król N, Imholt C, Jeske K, Rentería-Solís Z, Ulrich RG, Jacob J, Pfeffer M, Obiegala A. Spotted Fever Group Rickettsiae in Ticks and Small Mammals from Grassland and Forest Habitats in Central Germany. Pathogens 2023; 12:933. [PMID: 37513780 PMCID: PMC10386184 DOI: 10.3390/pathogens12070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Rickettsiae of the spotted fever group (SFG) are zoonotic tick-borne pathogens. Small mammals are important hosts for the immature life stages of two of the most common tick species in Europe, Ixodes ricinus and Dermacentor reticulatus. These hosts and vectors can be found in diverse habitats with different vegetation types like grasslands and forests. To investigate the influence of environmental and individual factors on Rickettsia prevalence, this study aimed to analyse the prevalence of SFG rickettsiae in ticks and small mammals in different small-scale habitats in central Germany for the first time. Small mammals of ten species and ticks of two species were collected from grasslands and forests in the Hainich-Dün region, central Germany. After species identification, DNA samples from 1098 ticks and ear snips of 1167 small mammals were screened for Rickettsia DNA by qPCR targeting the gltA gene. Positive samples were retested by conventional PCR targeting the ompB gene and sequencing. Rickettsia DNA was detected in eight out of ten small mammal species. Small mammal hosts from forests (14.0%) were significantly more often infected than those from grasslands (4.4%) (p < 0.001). The highest prevalence was found in the mostly forest-inhabiting genus Apodemus (14.8%) and the lowest in Microtus (6.6%), which inhabits grasslands. The prevalence was higher in D. reticulatus (46.3%) than in the I. ricinus complex (8.6%). Adult ticks were more often infected than nymphs (p = 0.0199). All sequenced rickettsiae in I. ricinus complex ticks were R. helvetica, and the ones in D. reticulatus were R. raoultii. Unlike adults, questing nymphs have had only one blood meal, which explains the higher prevalence in I. ricinus adults. Interestingly, habitat type did influence infection probability in small mammals, but did not in ticks. A possible explanation may be the high prevalence in Apodemus flavicollis and A. sylvaticus which were more abundant in the forest.
Collapse
Affiliation(s)
- Charlotte Arz
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Christian Imholt
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Zaida Rentería-Solís
- Institute for Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Jens Jacob
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Quarsten H, Henningsson A, Krogfelt K, Strube C, Wennerås C, Mavin S. Tick-borne diseases under the radar in the North Sea Region. Ticks Tick Borne Dis 2023; 14:102185. [PMID: 37116420 DOI: 10.1016/j.ttbdis.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
The impact of tick-borne diseases caused by pathogens such as Anaplasma phagocytophilum, Neoehrlichia mikurensis, Borrelia miyamotoi, Rickettsia helvetica and Babesia species on public health is largely unknown. Data on the prevalence of these pathogens in Ixodes ricinus ticks from seven countries within the North Sea Region in Europe as well as the types and availability of diagnostic tests and the main clinical features of their corresponding diseases is reported and discussed. Raised awareness is needed to discover cases of these under-recognized types of tick-borne disease, which should provide valuable insights into these diseases and their clinical significance.
Collapse
Affiliation(s)
- Hanne Quarsten
- Department of Medical Microbiology, Sørlandet Hospital, Kristiansand 4615, Norway.
| | - Anna Henningsson
- Department of Clinical Microbiology in Jönköping, County Hospital Ryhov, Jönköping 55185, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping 58183, Sweden
| | - Karen Krogfelt
- Department of Science and Environment, University of Roskilde, Roskilde 4000, Denmark
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover 30559, Germany
| | - Christine Wennerås
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg 413 46, Sweden
| | - Sally Mavin
- Scottish Lyme Disease and Tick-Borne Infections Reference Laboratory, Raigmore Hospital, Inverness IV2 3BW, United Kingdom
| |
Collapse
|
10
|
Hoffmann A, Müller T, Fingerle V, Silaghi C, Noll M. Co-Infection of Potential Tick-Borne Pathogens of the Order Rickettsiales and Borrelia burgdorferi s. l. and Their Link to Season and Area in Germany. Microorganisms 2023; 11:microorganisms11010157. [PMID: 36677449 PMCID: PMC9861244 DOI: 10.3390/microorganisms11010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The prevalence of potential human pathogenic members of the order Rickettsiales differs between Borrelia burgdorferi sensu lato-positive and -negative tick microbiomes. Here, co-infection of members of the order Rickettsiales, such as Rickettsia spp., Anaplasma phagocytophilum, Wolbachia pipientis, and Neoehrlichia mikurensis as well as B. burgdorferi s.l. in the tick microbiome was addressed. This study used conventional PCRs to investigate the diversity and prevalence of the before-mentioned bacteria in 760 nucleic acid extracts of I. ricinus ticks detached from humans, which were previously tested for B. burgdorferi s.l.. A gltA gene-based amplicon sequencing approach was performed to identify Rickettsia species. The prevalence of Rickettsia spp. (16.7%, n = 127) and W. pipientis (15.9%, n = 121) were similar, while A. phagocytophilum was found in 2.8% (n = 21) and N. mikurensis in 0.1% (n = 1) of all ticks. Co-infection of B. burgdorferi s. l. with Rickettsia spp. was most frequent. The gltA gene sequencing indicated that Rickettsia helvetica was the dominant Rickettsia species in tick microbiomes. Moreover, R, monacensis and R. raoultii were correlated with autumn and area south, respectively, and a negative B. burgdorferi s. l. finding. Almost every fifth tick carried DNA of at least two of the human pathogenic bacteria studied here.
Collapse
Affiliation(s)
- Angeline Hoffmann
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Thomas Müller
- Synlab Medical Care Unit, Department of Molecular biology, Tick Laboratory, 92637 Weiden in der Oberpfalz, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority (LGL), National Reference Center for Borrelia, 85764 Oberschleißheim, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institute, Federal Research Institute of Animal Health, 17493 Greifswald, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
- Correspondence: ; Tel.: +49-9561-317-645
| |
Collapse
|
11
|
15-year Borrelia prevalence and species distribution monitoring in Ixodes ricinus/inopinatus populations in the city of Hanover, Germany. Ticks Tick Borne Dis 2023; 14:102074. [PMID: 36335680 DOI: 10.1016/j.ttbdis.2022.102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis, caused by Borrelia burgdorferi sensu lato (s.l.) spirochaetes, is the most common tick-borne disease (TBD) in the Northern Hemisphere. Rising incidences indicate that its epidemiology may be affected by global changes. Therefore, the current study aimed to assess changes in tick infection rates with Borrelia spp. over a 15-year monitoring period in the city of Hanover, Germany, as a follow-up to previous prevalence studies (years 2005, 2010 and 2015). To assess the epidemiological risk, ticks of the Ixodes ricinus/inopinatus-complex were sampled from April to October 2020 by the flagging method at 10 frequently visited recreation areas in Hanover. Analysis by quantitative real-time PCR of 2100 individual ticks revealed an overall Borrelia prevalence of 25.5% (535/2100). Regarding different tick developmental stages, nymphs showed a significantly lower Borrelia prevalence (18.4% [193/1050]) than adult ticks (32.6% [342/1050]). Comparison with previous years revealed a stable total Borrelia prevalence along with consistent infection rates in the different developmental stages over the 15-year monitoring period. Borrelia species differentiation by Reverse Line Blot was successful in 67.3% of positive ticks collected in 2020, with B. afzelii being the dominating species (59.2% of the differentiated infections), besides B. burgdorferi sensu stricto (s.s.), B. garinii, B. valaisiana, B. spielmanii, B. bavariensis and B. bissettiae and the relapsing fever spirochaete B. miyamotoi. Additionally, the proportion of infections attributed to B. afzelii showed a significant increase in 2020 compared to 2005 and 2015 (59.2% vs. 37.6% and 32.0% of successfully differentiated infections, respectively). Coinfections with Anaplasma phagocytophilum and Rickettsia spp. stayed stable comparing 2020 with previous years. Therefore, although changes in the Borrelia prevalence in questing ticks were not observed throughout the 15-year monitoring period, shifts in Borrelia species distribution may alter the epidemiological risk.
Collapse
|
12
|
First detection and molecular identification of Rickettsia massiliae, a human pathogen, in Rhipicephalus sanguineus ticks collected from Southern Taiwan. PLoS Negl Trop Dis 2022; 16:e0010917. [DOI: 10.1371/journal.pntd.0010917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/23/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The Rickettsia massiliae was firstly detected and identified in Rhipicephalus sanguineus ticks infested on dogs in Taiwan. A total of 1154 Rh. sanguineus ticks collected from 158 dogs of four districts of Tainan city were examined for Rickettsia infection by nested-PCR assay targeting the citrate synthase (gltA) and outer membrane protein B (ompB) genes of Rickettsia. The Rickettsia infection was detected with a general infection rate of 2.77%, and was detected in male, female and nymphal stage with an infection rate of 2.77%, 3.22% and 1.32%, respectively. Phylogenetic relationships were analyzed by comparing the gltA and ompB sequences obtained from 9 Taiwan strains and 16 other strains representing 13 genospecies of Rickettsia. Results revealed that all Taiwan strains were genetically affiliated to the same clades of R. massiliae (spotted fever group) and R. felis (transitional group), and can be discriminated from other genospecies of Rickettsia. This study provides the first evidence of R. massiliae, a pathogenic spotted fever Rickettsia, identified in Rh. sanguineus ticks and highlight the potential threat for the regional transmission of Rickettsia infection among humans in Taiwan.
Collapse
|
13
|
Detection of Anaplasma phagocytophilum in horses from Germany by molecular and serological testing (2008-2021). Vet Parasitol 2022; 312:109840. [DOI: 10.1016/j.vetpar.2022.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
14
|
Chao LL, Erazo E, Robinson M, Liang YF, Shih CM. First detection and molecular identification of a pathogenic spotted fever group Rickettsia, R. massiliae, from Rhipicephalus haemaphysaloides ticks infesting dogs in southern Taiwan. Acta Trop 2022; 236:106666. [PMID: 36030046 DOI: 10.1016/j.actatropica.2022.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
Tick-borne Rickettsia pathogens become an emerging zoonotic infection worldwide. The prevalence and genetic identity of Rickettsia infection was determined firstly in Rhipicephalus haemaphysaloides ticks collected from dogs in southern Taiwan. A total of 141 Rh. haemaphysaloides ticks were examined for Rickettsia infection by nested-PCR assay targeting the citrate synthase (gltA) and outer membrane protein B (ompB) genes of Rickettsia. The Rickettsia infection was detected with a general infection rate of 2.84%, and was detected in male and female ticks with an infection rate of 3.13% and 2.60%, respectively. Genetic relationships were analyzed by comparing the gltA and ompB sequences obtained from 4 Taiwan strains and 15 other strains representing 13 genospecies of Rickettsia. Phylogenetic analyses reveal that all Taiwan strains were genetically affiliated with the R. massiliae (spotted fever group) and can be distinguished from other genospecies of Rickettsia. These results demonstrate the epidemiological significance of a human pathogenic Rickettsia species (R. massiliae) detected in Rh. haemaphysaloides ticks. Further study focused on the vector competence of this tick species may help to illustrate the potential threat for human infection in southern Taiwan.
Collapse
Affiliation(s)
- Li-Lian Chao
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Esmeralda Erazo
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Melissa Robinson
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - You-Fu Liang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chien-Ming Shih
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
15
|
Glass A, Springer A, Strube C. A 15-year monitoring of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in questing ticks in the city of Hanover, Germany. Ticks Tick Borne Dis 2022; 13:101975. [DOI: 10.1016/j.ttbdis.2022.101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
|
16
|
Prevalence of Tick-Borne Pathogens in Questing Ixodes ricinus and Dermacentor reticulatus Ticks Collected from Recreational Areas in Northeastern Poland with Analysis of Environmental Factors. Pathogens 2022; 11:pathogens11040468. [PMID: 35456142 PMCID: PMC9024821 DOI: 10.3390/pathogens11040468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ticks, such as Ixodes ricinus and Dermacentor reticulatus, act as vectors for multiple pathogens posing a threat to both human and animal health. As the process of urbanization is progressing, those arachnids are being more commonly encountered in urban surroundings. In total, 1112 I. ricinus (n = 842) and D. reticulatus (n = 270) ticks were collected from several sites, including recreational urban parks, located in Augustów and Białystok, Poland. Afterwards, the specimens were examined for the presence of Borrelia spp., Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., and Coxiella burnetii using the PCR method. Overall obtained infection rate reached 22.4% (249/1112). In total, 26.7% (225/842) of I. ricinus was infected, namely with Borrelia spp. (25.2%; 212/842), Babesia spp. (2.0%; 17/842), and A. phagocytophilum (1.2%; 10/842). Among D. reticulatus ticks, 8.9% (24/270) were infected, specifically with Babesia spp. (7.0%; 19/270), A. phagocytophilum (1.1%; 3/270), and Borrelia burgdorferi s.l. (0.7%; 2/270). No specimen tested positively for Rickettsia spp., Bartonella spp., or Coxiella burnetii. Co-infections were detected in 14 specimens. Results obtained in this study confirm that I. ricinus and D. reticulatus ticks found within the study sites of northeastern Poland are infected with at least three pathogens. Evaluation of the prevalence of pathogens in ticks collected from urban environments provides valuable information, especially in light of the growing number of tick-borne infections in humans and domesticated animals.
Collapse
|
17
|
Răileanu C, Tauchmann O, Silaghi C. Sympatric occurrence of Ixodes ricinus with Dermacentor reticulatus and Haemaphysalis concinna and the associated tick-borne pathogens near the German Baltic coast. Parasit Vectors 2022; 15:65. [PMID: 35193661 PMCID: PMC8862291 DOI: 10.1186/s13071-022-05173-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/21/2022] [Indexed: 01/20/2023] Open
Abstract
Background Ixodid ticks from the Northern Hemisphere have registered a northward expansion in recent years, and Dermacentor reticulatus is such an example in Europe, its expansion being considered a result of climate change alongside other factors. The aim of this study was to identify the composition of questing tick species and the associated pathogens at different sites near the German Baltic coast. Methods Questing ticks were collected monthly at four sites (May–November, 2020), mainly grasslands, and in October and November 2020 at a fifth site. Molecular screening of ticks for pathogens included RT-qPCR for the tick-borne encephalitis virus (TBEV), qPCR for Anaplasma phagocytophilum, PCR for Babesia species and Rickettsia species, and nested PCR for Borrelia species. Results Altogether 1174 questing ticks were collected: 760 Ixodes ricinus, 326 D. reticulatus and 88 Haemaphysalis concinna. The highest activity peak of I. ricinus and D. reticulatus was in May, in June for H. concinna while a second peak was observed only for I. ricinus and D. reticulatus in September and October, respectively. All samples tested negative for TBEV. For A. phagocytophilum, 1.5% of I. ricinus adults tested positive while the minimum infection rate (MIR) in nymphs was 1.3%. This pathogen was found in 0.6% of D. reticulatus. Babesia spp. were detected in I. ricinus (18.2% adults, 2.1% MIR in nymphs) and H. concinna (13.3% adults, 9.7% MIR in nymphs). Borrelia spp. were present only in I. ricinus (49.1% adults, 11.9% MIR in nymphs), while Rickettsia spp. were detected in I. ricinus (14% adults, 8.9% MIR in nymphs) and D. reticulatus (82%). Co-detection of pathogens was observed in 26.6% and 54.8% of positive I. ricinus adults and nymph pools, respectively, while one D. reticulatus tested positive for A. phagocytophilum and Rickettsia spp. The most common co-infection in I. ricinus adults was Babesia microti and Borrelia afzelii (12.3% of positive ticks). Conclusions The results of this study confirm the northern expansion of D. reticulatus and H. concinna in Germany. The detailed data of the infection levels at each location could be useful in assessing the risk of pathogen acquisition following a tick bite. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05173-2.
Collapse
Affiliation(s)
- Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Oliver Tauchmann
- Institute of Infectology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany. .,Department of Biology, University of Greifswald, Domstraße 11, 17489, Greifswald, Germany.
| |
Collapse
|
18
|
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop Med Infect Dis 2022; 7:32. [PMID: 35202227 PMCID: PMC8877226 DOI: 10.3390/tropicalmed7020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories.
Collapse
Affiliation(s)
- Ana Luísa Matos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Pedro Curto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Isaura Simões
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
19
|
Takhampunya R, Sakolvaree J, Chanarat N, Youngdech N, Phonjatturas K, Promsathaporn S, Tippayachai B, Tachavarong W, Srinoppawan K, Poole-Smith BK, McCardle PW, Chaorattanakawee S. The Bacterial Community in Questing Ticks From Khao Yai National Park in Thailand. Front Vet Sci 2021; 8:764763. [PMID: 34881320 PMCID: PMC8645651 DOI: 10.3389/fvets.2021.764763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
Ticks are known vectors for a variety of pathogens including bacteria, viruses, fungi, and parasites. In this study, bacterial communities were investigated in active life stages of three tick genera (Haemaphysalis, Dermacentor, and Amblyomma) collected from Khao Yai National Park in Thailand. Four hundred and thirty-three questing ticks were selected for pathogen detection individually using real-time PCR assays, and 58 of these were subjected to further metagenomics analysis. A total of 62 ticks were found to be infected with pathogenic bacteria, for a 14.3% prevalence rate, with Amblyomma spp. exhibiting the highest infection rate (20.5%), followed by Haemaphysalis spp. (14.5%) and Dermacentor spp. (8.6%). Rickettsia spp. were the most prevalent bacteria (7.9%) found, followed by Ehrlichia spp. (3.2%), and Anaplasma spp. and Borrelia spp. each with a similar prevalence of 1.6%. Co-infection between pathogenic bacteria was only detected in three Haemaphysalis females, and all co-infections were between Rickettsia spp. and Anaplasmataceae (Ehrlichia spp. or Anaplasma spp.), accounting for 4.6% of infected ticks or 0.7% of all examined questing ticks. The prevalence of the Coxiella-like endosymbiont was also investigated. Of ticks tested, 65.8% were positive for the Coxiella-like endosymbiont, with the highest infection rate in nymphs (86.7%), followed by females (83.4%). Among tick genera, Haemaphysalis exhibited the highest prevalence of infection with the Coxiella-like endosymbiont. Ticks harboring the Coxiella-like endosymbiont were more likely to be infected with Ehrlichia spp. or Rickettsia spp. than those without, with statistical significance for Ehrlichia spp. infection in particular (p-values = 0.003 and 0.917 for Ehrlichia spp. and Rickettsia spp., respectively). Profiling the bacterial community in ticks using metagenomics revealed distinct, predominant bacterial taxa in tick genera. Alpha and beta diversities analyses showed that the bacterial community diversity and composition in Haemaphysalis spp. was significantly different from Amblyomma spp. However, when examining bacterial diversity among tick life stages (larva, nymph, and adult) in Haemaphysalis spp., no significant difference among life stages was detected. These results provide valuable information on the bacterial community composition and co-infection rates in questing ticks in Thailand, with implications for animal and human health.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Jira Sakolvaree
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nitima Chanarat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Nittayaphon Youngdech
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Kritsawan Phonjatturas
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Sommai Promsathaporn
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Bousaraporn Tippayachai
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Wirunya Tachavarong
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Kanchit Srinoppawan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Betty K Poole-Smith
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - P Wesley McCardle
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Shih CM, Chao LL. First detection and genetic identification of Rickettsia infection in Rhipicephalus sanguineus (Acari: Ixodidae) ticks collected from Southern Taiwan. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:291-304. [PMID: 34708287 DOI: 10.1007/s10493-021-00669-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The prevalence and genetic identity of Rickettsia infection in Rhipicephalus sanguineus sensu lato (s.l.) ticks were determined in Taiwan. In total 1153 ticks were examined for Rickettsia infection by PCR assay targeting the citrate synthase gene (gltA) of Rickettsia. The prevalence of Rickettsia infection in R. sanguineus s.l. ticks with a general infection rate of 2.2%, and was detected in nymph, male and female stages of R. sanguineus s.l. ticks with an infection rate of 3.1, 2.0 and 1.1%, respectively. Phylogenetic relationships were analyzed by comparing the gltA sequences obtained from four Taiwan strains and 16 other strains representing 13 genospecies of Rickettsia. Phylogenetic analyses reveal that one Taiwan strain was genetically affiliated with the Japan isolate (GRA-1 strain) which belongs to the spotted fever group (R. parkeri/R. honei) and three Taiwan strains were genetically affiliated with the transitional group of Rickettsia (R. felis). Intra- and inter-species analysis also indicated the genetic distance (GD) of the Taiwan strains with a lower level of GD < 0.011, 0.023 and 0.003 as compared with the type strains of R. parkeri, R. honei and R. felis, respectively. Our findings reveal the first detection of Rickettsia infections (R. parkeri/R. honei and R. felis) in R. sanguineus s.l. ticks of Taiwan. These results also highlight the epidemiological significance of diverse Rickettsia species existed in R. sanguineus s.l. ticks and the potential threat for the geographical transmission of Rickettsia infection in Taiwan.
Collapse
Affiliation(s)
- Chien-Ming Shih
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, Republic of China
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Li-Lian Chao
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, Republic of China.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
21
|
Lesiczka PM, Hrazdilová K, Majerová K, Fonville M, Sprong H, Hönig V, Hofmannová L, Papežík P, Růžek D, Zurek L, Votýpka J, Modrý D. The Role of Peridomestic Animals in the Eco-Epidemiology of Anaplasma phagocytophilum. MICROBIAL ECOLOGY 2021; 82:602-612. [PMID: 33547531 DOI: 10.1007/s00248-021-01704-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Anaplasma phagocytophilum is an important tick-borne zoonotic agent of human granulocytic anaplasmosis (HGA). In Europe, the Ixodes ticks are the main vector responsible for A. phagocytophilum transmission. A wide range of wild animals is involved in the circulation of this pathogen in the environment. Changes in populations of vertebrates living in different ecosystems impact the ecology of ticks and the epidemiology of tick-borne diseases. In this study, we investigated four species, Western European hedgehog (Erinaceus europaeus), northern white-breasted hedgehog (Erinaceus roumanicus), Eurasian red squirrel (Sciurus vulgaris), and the common blackbird (Turdus merula), to describe their role in the circulation of A. phagocytophilum in urban and periurban ecosystems. Ten different tissues were collected from cadavers of the four species, and blood and ear/skin samples from live blackbirds and hedgehogs. Using qPCR, we detected a high rate of A. phagocytophilum: Western European hedgehogs (96.4%), northern white-breasted hedgehogs (92.9%), Eurasian red squirrels (60%), and common blackbirds (33.8%). In the groEL gene, we found nine genotypes belonging to three ecotypes; seven of the genotypes are associated with HGA symptoms. Our findings underline the role of peridomestic animals in the ecology of A. phagocytophilum and indicate that cadavers are an important source of material for monitoring zoonotic pathogens. Concerning the high prevalence rate, all investigated species play an important role in the circulation of A. phagocytophilum in municipal areas; however, hedgehogs present the greatest anaplasmosis risk for humans. Common blackbirds and squirrels carry different A. phagocytophilum variants some of which are responsible for HGA.
Collapse
Affiliation(s)
- Paulina Maria Lesiczka
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
| | - Kristýna Hrazdilová
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 1655, /76, Plzeň, Czech Republic
| | - Karolina Majerová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, P.O. Box 1, Bilthoven, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, P.O. Box 1, Bilthoven, The Netherlands
| | - Václav Hönig
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Hudcova, 70, Brno, Czech Republic
| | - Lada Hofmannová
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
| | - Petr Papežík
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
| | - Daniel Růžek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Hudcova, 70, Brno, Czech Republic
| | - Ludek Zurek
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka, 129, Prague, Czech Republic, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University, Zemědělská, 1665, Brno, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic
| | - David Modrý
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1946/1, Brno, Czech Republic.
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská, 31, České Budějovice, Czech Republic.
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
- Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka, 129, Prague, Czech Republic.
| |
Collapse
|
22
|
Bertola M, Montarsi F, Obber F, Da Rold G, Carlin S, Toniolo F, Porcellato E, Falcaro C, Mondardini V, Ormelli S, Ravagnan S. Occurrence and Identification of Ixodes ricinus Borne Pathogens in Northeastern Italy. Pathogens 2021; 10:1181. [PMID: 34578213 PMCID: PMC8470124 DOI: 10.3390/pathogens10091181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
In Europe, Ixodes ricinus is the main vector for tick-borne pathogens (TBPs), the most common tick species in Italy, particularly represented in pre-alpine and hilly northern areas. From 2011 to 2017, ticks were collected by dragging in Belluno province (northeast Italy) and analyzed by molecular techniques for TBP detection. Several species of Rickettsia spp. and Borrelia spp. Anaplaspa phagocitophilum, Neoerlichia mikurensis and Babesia venatorum, were found to be circulating in the study area carried by I. ricinus (n = 2668, all stages). Overall, 39.1% of screened pools were positive for at least one TBP, with a prevalence of 12.25% and 29.2% in immature stages and adults, respectively. Pathogens were detected in 85% of the monitored municipalities, moreover the presence of TBPs varied from one to seven different pathogens in the same year. The annual TBPs prevalence fluctuations observed in each municipality highlights the necessity of performing continuous tick surveillance. In conclusion, the observation of TBPs in ticks remains an efficient strategy for monitoring the circulation of tick-borne diseases (TBDs) in a specific area.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Elena Porcellato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | | | - Silvia Ormelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| |
Collapse
|
23
|
Alafaci A, Crépin A, Beaubert S, Berjeaud JM, Delafont V, Verdon J. Exploring the Individual Bacterial Microbiota of Questing Ixodes ricinus Nymphs. Microorganisms 2021; 9:microorganisms9071526. [PMID: 34361961 PMCID: PMC8303981 DOI: 10.3390/microorganisms9071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Ixodes ricinus is the most common hard tick species in Europe and an important vector of pathogens of human and animal health concerns. The rise of high-throughput sequencing has facilitated the identification of many tick-borne pathogens and, more globally, of various microbiota members depending on the scale of concern. In this study, we aimed to assess the bacterial diversity of individual I. ricinus questing nymphs collected in France using high-throughput 16S gene metabarcoding. From 180 dragging-collected nymphs, we identified more than 700 bacterial genera, of which about 20 are abundantly represented (>1% of total reads). Together with 136 other genera assigned, they constitute a core internal microbiota in this study. We also identified 20 individuals carrying Borreliella. The most abundant species is B. afzelii, known to be one of the bacteria responsible for Lyme disease in Europe. Co-detection of up to four Borreliella genospecies within the same individual has also been retrieved. The detection and co-detection rate of Borreliella in I. ricinus nymphs is high and raises the question of interactions between these bacteria and the communities constituting the internal microbiota.
Collapse
|
24
|
Molecular Detection and Genetic Identification of Rickettsia Infection in Ixodes granulatus Ticks, an Incriminated Vector for Geographical Transmission in Taiwan. Microorganisms 2021; 9:microorganisms9061309. [PMID: 34208514 PMCID: PMC8233880 DOI: 10.3390/microorganisms9061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Tick-borne Rickettsia pathogens have become an emerging source of zoonotic infections and have a major impact on human health worldwide. In this study, the prevalence and genetic identity of Rickettsia infections in Ixodes granulatus ticks was firstly determined in Kinmen Island of Taiwan. A total of 247 I. granulatus ticks were examined for Rickettsia infection by nested-PCR assay targeting the citrate synthase (gltA) gene of Rickettsia. The Rickettsia infection was detected with a general infection rate of 4.86%, and was detected in nymph, male and female stages with an infection rate of 3.81%, 0% and 6.84%, respectively. Phylogenetic relationships were analyzed by comparing the gltA sequences obtained from four Taiwan strains and 19 other strains representing 13 genospecies of Rickettsia. Phylogenetic analyses reveal that all Taiwan strains were genetically affiliated to the genospecies of spotted fever (R. parkeri) and transitional (R. felis) groups of Rickettsia. Our findings reveal the first detection of R. parkeri-like and R. felis in I. granulatus ticks from Kinmen Island. As a tourist island between Taiwan and mainland China, these results demonstrate the epidemiological significance of diverse Rickettsia species existed in I. granulatus ticks and highlight the potential threat of geographical transmission among humans in the Taiwan area.
Collapse
|
25
|
Knoll S, Springer A, Hauck D, Schunack B, Pachnicke S, Strube C. Regional, seasonal, biennial and landscape-associated distribution of Anaplasma phagocytophilum and Rickettsia spp. infections in Ixodes ticks in northern Germany and implications for risk assessment at larger spatial scales. Ticks Tick Borne Dis 2021; 12:101657. [PMID: 33524939 DOI: 10.1016/j.ttbdis.2021.101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Tick-associated Rickettsiales are important pathogens with relevance for public and animal health; therefore, knowledge regarding their distribution is essential for risk assessment and disease prevention. To investigate the prevalence of Anaplasma phagocytophilum and Rickettsia spp. in northern Germany, Ixodes ticks were flagged monthly from April to October in 2018 and 2019 at three collection sites each in the regions of Bremen, Emsland, Hanover, Kassel and Uelzen. A total of 3150 ticks (1052 females, 1048 males and 1050 nymphs) were individually examined for rickettsial infections using probe-based quantitative real-time PCR. Overall prevalence of A. phagocytophilum was 6.4 % (202/3150; 6.7 % [71/1052] in females, 7.5 % [79/1048] in males and 5.0 % [52/1050] in nymphs). For Rickettsia spp., the overall prevalence was 29.6 % (931/3150; 33.4 % [351/1052] in females, 28.3 % [297/1048] in males and 27.0 % [283/1050] in nymphs). Rickettsia species identification by real-time pyrosequencing on a subset of 409 positive samples was successful in 407 cases (99.5 %). Rickettsia helvetica was the predominant species with a detection rate of 99.8 % (406/407). Additionally, Rickettsia monacensis was detected in one tick (0.2 %). Generalized linear mixed models showed significant regional as well as monthly differences regarding the prevalence of both pathogens. In addition, the prevalence of both pathogens was significantly higher in 2018 (A. phagocytophilum: 8.0 % [126/1575], Rickettsia spp.: 35.4 % [558/1575]) than in 2019 (A. phagocytophilum: 4.8 % [76/1575], Rickettsia spp.: 23.9 % [373/1575]). In contrast, no effect of landscape type on pathogen prevalence was found. As Rickettsia spp.-detection was based on the single-copy gene gltA, it was possible to calculate the individual pathogen load per tick, which was significantly higher in female ticks than in nymphs (mean values: 8.19 × 104 vs. 9.58 × 103). Regional, seasonal and biennial prevalence differences of tick-transmitted Rickettsiales show the necessity to investigate ticks from multiple locations, over several months and in more than one year to reliably assess the infection risk on a larger geographical scale.
Collapse
Affiliation(s)
- Steffen Knoll
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Bettina Schunack
- Bayer Animal Health GmbH (Part of Elanco Animal Health), 51373, Leverkusen, Germany
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
26
|
Hauck D, Springer A, Chitimia-Dobler L, Strube C. Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover, Germany). Ticks Tick Borne Dis 2020; 11:101464. [PMID: 32723659 DOI: 10.1016/j.ttbdis.2020.101464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Ticks may transmit a variety of human and animal pathogens. Prevalence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in ticks has been monitored in the city of Hanover, Germany, since 2005. However, to determine the infection risk for humans and animals, not only pathogen prevalence, but also tick abundance and seasonality need to be taken into account. Therefore, the aim of this study was to investigate tick abundance at ten different collection sites in the city of Hanover, Germany. Collection of questing ticks was performed by the flagging method in the first and second half of each month during the tick season (April-October) in 2017 and 2018. At each 200 m² collection site, one of four 50 m² fields was sampled per visit on a rotational basis, resulting in 100 m² sampled per month. In addition, data on weather conditions, near-ground temperature, relative humidity and vegetation composition were noted at each collection event. In 2017, a total of 1770 ticks were collected, while 1866 ticks were collected in 2018. Ixodes ricinus was the most prevalent species (97.0 % of all ticks, 98.0 % of nymphs, 91.6 % of adults) followed by I. inopinatus (2.3 % of all ticks, 1.1 % of nymphs, 8.0 % of adults), I. frontalis (0.6 % of all ticks, 0.6 % of nymphs, 0.3 % of adults) and I. hexagonus (0.03 % of all ticks, 0.03 % of nymphs, 0.0 % of adults). Using generalized linear mixed modeling, density of I. ricinus and I. inopinatus in 2017 was significantly higher than in 2018. Regarding different landscape types, ticks were significantly more abundant in mixed forests than in parks, with more than 50 ticks/100 m² on average in both years. In urban parks, average tick density amounted to 15 ticks/100 m² in 2017 and 11 ticks/100 m² in 2018 and in broad-leaved forests average tick density was 13 and 18 ticks/100 m² in 2017 and 2018, respectively. Tick density showed a marked peak in June 2017 and in May 2018 at most sites, whereas a less pronounced peak was recognizable in September. Tick density varied considerably between collection sites. However, no statistically significant effect of (micro-)climatic variables, including near-ground temperature, relative humidity and saturation deficit, was found. Thus, further factors, such as the abundance of wildlife hosts, need to be considered in future studies to explain the differences between collection sites.
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
27
|
Grochowska A, Milewski R, Pancewicz S, Dunaj J, Czupryna P, Milewska AJ, Róg-Makal M, Grygorczuk S, Moniuszko-Malinowska A. Comparison of tick-borne pathogen prevalence in Ixodes ricinus ticks collected in urban areas of Europe. Sci Rep 2020; 10:6975. [PMID: 32332817 PMCID: PMC7181685 DOI: 10.1038/s41598-020-63883-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Tick-borne diseases are a major threat to human and animal health. An increasing number of natural habitats have been transformed into urban areas by human activity; hence, the number of reported tick bites in urban and suburban areas has risen. This retrospective analysis evaluated 53 scientific reports concerning infections of Ixodes ricinus ticks collected from urban and suburban areas of Europe between 1991 and 2017. The results indicate significant differences in many variables, including a higher number of Anaplasma phagocytophilum infections in Eastern Europe than in Western Europe. The opposite result was observed for Candidatus Neoehrlichia mikurensis infections. A comparison of climate zones revealed that Borrelia burgdorferi s.l. infections have the greatest median incidence rate in subtropical climate zones. No statistical significance was found when comparing other tick-borne pathogens (TBPs), such as Borrelia miyamotoi, Rickettsia spp., Babesia spp., Bartonella spp., Ehrlichia spp., Coxiella burnetii and Francisella tularensis. The analysis also showed significant differences in the overall prevalence of TBPs according to average temperatures and rainfall across Europe. This retrospective study contributes to the knowledge on the occurrence and prevalence of TBPs in urbanized areas of Europe and their dependence on the habitats and geographical distributions of ticks. Due to the increased risk of tick bites, it is of great importance to investigate infections in ticks from urban and suburban areas.
Collapse
Affiliation(s)
- Anna Grochowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland.
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Magdalena Róg-Makal
- Department of Invasive Cardiology, Medical University of Białystok, M. Skłodowskiej-Curie 24 A, 15-276, Białystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
28
|
Hauck D, Jordan D, Springer A, Schunack B, Pachnicke S, Fingerle V, Strube C. Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasit Vectors 2020; 13:176. [PMID: 32264920 PMCID: PMC7140504 DOI: 10.1186/s13071-020-04049-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Ixodes ricinus constitutes the main European vector tick for the Lyme borreliosis pathogen Borrelia burgdorferi (sensu lato), the relapsing fever borrelia Borrelia miyamotoi, as well as Anaplasma phagocytophilum and several Rickettsia species. Under laboratory conditions, a transovarial transmission to the next tick generation is described for Rickettsia spp. and Borrelia spp., especially regarding B. miyamotoi, whereas the efficiency of transovarial transfer under field conditions is largely unstudied. Methods In order to better estimate the potential infection risk by tick larvae for humans and animals, 1500 I. ricinus larvae from 50 collected “nests” (larvae adhering to the flag in a clumped manner) were individually examined for Borrelia, Rickettsia and A. phagocytophilum DNA using quantitative real-time PCR (qPCR). Results Thirty-nine of 50 nests each (78.0%, 95% CI: 64.0–88.5%) were positive for Borrelia spp. and Rickettsia spp. DNA, and in three nests (6.0%, 95% CI: 1.3–16.5%) A. phagocytophilum DNA was detected. Overall, DNA from at least one pathogen could be detected in 90.0% (45/50, 95% CI: 78.2–96.7%) of the nests. Of the 1500 larvae, 137 were positive for Borrelia spp. DNA (9.1%, 95% CI: 7.7–10.7%), 341 for Rickettsia spp. DNA (22.7%, 95% CI: 20.6–24.9%) and three for A. phagocytophilum DNA (0.2%, 95% CI: 0–0.6%). Quantity of Borrelia spp. and Anaplasma spp. DNA in positive larvae was low, with 2.7 × 100Borrelia 5S-23S gene copies and 2.4 × 101A. phagocytophilum msp2/p44 gene copies detected on average, while Rickettsia-positive samples contained on average 5.4 × 102gltA gene copies. Coinfections were found in 66.0% (33/50, 95% CI: 51.2–78.8%) of the nests and 8.6% (38/443, 95% CI: 6.1–11.6%) of positive larvae. In fact, larvae had a significantly higher probability of being infected with Borrelia spp. or Rickettsia spp. when both pathogens were present in the nest. Conclusions This study provides evidence for transovarial transmission of Rickettsia spp. and Borrelia spp. in I. ricinus under field conditions, possibly facilitating pathogen persistence in the ecosystem and reducing the dependence on the presence of suitable reservoir hosts. Further studies are needed to prove transovarial transmission and to explain the surprisingly high proportion of nests containing Rickettsia and/or Borrelia DNA-positive larvae compared to infection rates in adult ticks commonly reported in other studies.![]()
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | | | - Volker Fingerle
- National Reference Centre for Borrelia, Veterinaerstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
29
|
Borrelia prevalence and species distribution in ticks removed from humans in Germany, 2013-2017. Ticks Tick Borne Dis 2019; 11:101363. [PMID: 31987819 DOI: 10.1016/j.ttbdis.2019.101363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
Lyme borreliosis caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex is the most common tick-borne disease in Europe. In addition, the relapsing-fever spirochaete Borrelia miyamotoi, which has been associated with febrile illness and meningoencephalitis in immunocompromised persons, is present in Europe. This study investigated Borrelia prevalence and species distribution in ticks removed from humans and sent as diagnostic material to the Institute for Parasitology, University of Veterinary Medicine Hannover, in 2013-2017. A probe-based real-time PCR was carried out and Borrelia-positive samples were subjected to species determination by reverse line blot (RLB), including a B. miyamotoi-specific probe. The overall Borrelia-infection rate as determined by real-time PCR was 20.02 % (510/2547, 95 % CI: 18.48-21.63 %), with annual prevalences ranging from 17.17 % (90/524, 95 % CI: 14.04-20.68 %) in 2014 to 24.12 % (96/398, 95 % CI: 19.99-28.63 %) in 2015. In total, 271/475 (57.1 %) positive samples available for RLB were successfully differentiated. Borrelia afzelii was detected in 30.53 % of cases (145/475, 95 % CI: 26.41-34.89), followed by B. garinii/B. bavariensis (13.26 % [63/475], 95 % CI: 10.34-16.65). Borrelia valaisiana occurred in 5.89 % (28/475, 95 % CI: 3.95-8.41), B. spielmanii in 4.63 % (22/475, 95 % CI: 2.93-6.93), B. burgdorferi sensu stricto (s.s.)/B. carolinensis in 2.32 % (11/475, 95 % CI: 1.16-4.11), B. lusitaniae in 0.63 % (3/475, 95 % CI: 0.13-1.83) and B. bisettiae in 0.42 % (2/475, 95 % CI: 0.05-1.51) of positive ticks. Borrelia kurtenbachii was not detected, while B. miyamotoi was identified in 7.37 % (35/475, 95 % CI: 5.19-10.10) of real-time PCR-positive samples. Sanger sequencing of B. garinii/B. bavariensis-positive ticks revealed that the majority were B. garinii-infections (50/52 successfully amplified samples), while only 2 ticks were infected with B. bavariensis. Furthermore, 6/12 B. burgdorferi s.s./B. carolinensis-positive samples could be differentiated; all of them were identified as B. burgdorferi sensu stricto. Thirty-nine ticks (8.21 %, 95 % CI: 5.90-11.05) were coinfected with two different species. Comparison of the species distribution between ticks removed from humans in 2015 and questing ticks collected in the same year and the same area revealed a significantly higher B. afzelii-prevalence in diagnostic tick samples than in questing ticks, confirming previous observations. The obtained data indicate that Borrelia prevalence fluctuated in the same range as observed in a previous study, analysing the period from 2006 to 2012. Detection of B. miyamotoi in 7.37 % of Borrelia-positive samples points to the fact that clinicians should be aware of this pathogen as a differential diagnosis in cases of febrile illness.
Collapse
|
30
|
Hauck D, Springer A, Pachnicke S, Schunack B, Fingerle V, Strube C. Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitol Res 2019; 118:3205-3216. [PMID: 31720842 DOI: 10.1007/s00436-019-06506-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
In 2014, a new tick species, Ixodes inopinatus, was described, which is closely related to Ixodes ricinus. So far, I. inopinatus has been found in Tunisia, Morocco, Spain, Portugal, Romania, Austria, and southern Germany. No data is yet available regarding occurrence of I. inopinatus in northern Germany and the potential role of I. inopinatus as a vector for tick-borne pathogens. Therefore, 3845 DNA samples from Ixodes ticks collected for prevalence studies on Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum during the years 2010-2015 in the northern German cities of Hamburg and Hanover were differentiated into I. ricinus or I. inopinatus by sequencing a part of the 16S rRNA gene. In total, 4% (137/3845) of the sequenced ticks were assigned to the species I. inopinatus and 96% (3708/3845) to I. ricinus. The prevalence of Borrelia spp., Rickettsia spp., and A. phagocytophilum DNA in I. inopinatus was 34% (46/137), 46% (63/137), and 3% (4/137), respectively, whereas the prevalence of these bacteria in I. ricinus was 25% (919/3708), 47% (1729/3708), and 4% (135/3708), respectively. Compared with I. ricinus, significantly more I. inopinatus ticks tested positive for Borrelia. To the best of our knowledge, this is the first report of I. inopinatus in northern Germany. Detection of the DNA of Borrelia spp., Rickettsia spp., and A. phagocytophilum in questing I. inopinatus indicates a potential role of this tick species as a vector of these pathogens, which needs to be confirmed by transmission experiments.
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | | | - Volker Fingerle
- German National Reference Centre for Borrelia, Veterinärstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
31
|
Borawski K, Dunaj J, Czupryna P, Pancewicz S, Świerzbińska R, Żebrowska A, Moniuszko-Malinowska A. Prevalence of Spotted Fever Group Rickettsia in North-Eastern Poland. Infect Dis (Lond) 2019; 51:810-814. [PMID: 31496338 DOI: 10.1080/23744235.2019.1660800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose: The north-eastern Poland is an endemic region of tick-borne diseases. The aim of the study is to assess the prevalence of anti-Rickettsia antibodies in the inhabitants of the north-eastern Poland and to assess the risk of acute infection (rickettsiosis) after a tick bite. Other aim was to assess the risk of co-infection with other pathogens after a tick bite. Methods: Two types of examinations were performed: serological and molecular. Serological analysis was performed in 82 foresters and 82 farmers with a history of tick bite. The molecular study was performed in 540 patients with various symptoms after a tick bite. The control group consisted of 20 honorary blood donors with no tick bites in anamnesis. Anti-Rickettsia spp. antibodies titres were determined by ELISA: Rickettsia SFG IgG ELISA (DRG International Inc. USA). PCR tests were performed towards Rickettsia spp. Borrelia burgdorferi, Anaplasma phagocytophilum. Results: In 64 (39.02%) farmers and foresters, anti-Rickettsia IgG antibodies were detected. The presence of anti-Rickettsia IgG antibodies was confirmed in 42 foresters (51.22%) and in 22 farmers (26.83%). In control group, results of all tests were negative. Rickettsia spp. DNA has not been confirmed in any out of 540 (0%) symptomatic patients. Conclusions: Seroprevalence of Rickettsia spp. infection in north-eastern Poland is high, especially in people often bitten by ticks, which makes this pathogen potentially dangerous for humans. Prevalence of anti-Rickettsia IgG antibodies in foresters is higher than in farmers. Symptomatic infection with Rickettsia spp. in humans in north-eastern Poland is uncommon.
Collapse
Affiliation(s)
- Karol Borawski
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok , Bialystok , Poland
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok , Bialystok , Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok , Bialystok , Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok , Bialystok , Poland
| | - Renata Świerzbińska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok , Bialystok , Poland
| | | | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
32
|
Kowalec M, Szewczyk T, Welc-Falęciak R, Siński E, Karbowiak G, Bajer A. Rickettsiales Occurrence and Co-occurrence in Ixodes ricinus Ticks in Natural and Urban Areas. MICROBIAL ECOLOGY 2019; 77:890-904. [PMID: 30327827 PMCID: PMC6478632 DOI: 10.1007/s00248-018-1269-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/02/2018] [Indexed: 05/19/2023]
Abstract
Bacteria of Rickettsiaceae and Anaplasmataceae families include disease agents spread by Ixodes ricinus ticks, the most common tick vector in Europe. The aim of the study was to compare the prevalence and co-infection prevalence of particular tick-transmitted Rickettsiales members: Rickettsia spp. (further referred as Rs), Anaplasma phagocytophilum (Ap), and "Candidatus Neoehrlichia mikurensis" (CNM) in I. ricinus ticks in two types of areas, different in terms of human impact: natural and urban. Using additional data, we aimed at investigating co-occurrence of these Rickettsiales with Borreliella spp. A total of 4189 tick specimens, 2363 from the urban area (Warsaw park and forests) and 1826 from the natural area (forests and park in the vicinity of National Parks), were tested for the presence of Rickettsiales DNA by PCRs. The prevalence of selected Rickettsiales was twice higher in urban than natural areas (13.2% vs. 6.9%, respectively). In total ticks, the prevalence of Rs, Ap, and CNM was 6.5%, 5.3%, and 3.6% in urban areas vs. 4.4%, 1.1%, and 2.1% in natural areas, respectively. Co-infections of Rickettsiales were also more prevalent in urban areas (2.6% vs. 0.3%, respectively). The most common Rs was R. helvetica; also R. monacensis and novel "Candidatus Rickettsia mendelii" were detected. Positive association between Ap and CNM infections was discovered. Rickettsiales bacteria occurrence was not associated with Borreliella occurrence, but co-infections with these two groups were more common in ticks in urban areas. In conclusion, three groups of Rickettsiales constituted the important part of the tick pathogen community in Poland, especially in the urbanized central Poland (Mazovia). In the Warsaw agglomeration, there is a greater risk of encountering the I. ricinus tick infected with Rickettsiales and co-infected with Lyme spirochaetes, in comparison to natural areas. This finding raises the question whether cities might in fact be the hot spots for TBDs.
Collapse
Affiliation(s)
- Maciej Kowalec
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| | - Tomasz Szewczyk
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warszawa, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| | - Edward Siński
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| | - Grzegorz Karbowiak
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warszawa, Poland
| | - Anna Bajer
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| |
Collapse
|
33
|
Akl T, Bourgoin G, Souq ML, Appolinaire J, Poirel MT, Gibert P, Abi Rizk G, Garel M, Zenner L. Detection of tick-borne pathogens in questing Ixodes ricinus in the French Pyrenees and first identification of Rickettsia monacensis in France. ACTA ACUST UNITED AC 2019; 26:20. [PMID: 30943150 PMCID: PMC6447091 DOI: 10.1051/parasite/2019019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/15/2019] [Indexed: 01/08/2023]
Abstract
Ticks are important vectors of several human and animal pathogens. In this study, we estimated the prevalence of important tick-borne infections in questing ticks from an area in Southwestern France (Hautes-Pyrénées) inhabited by Pyrenean chamois (Rupicapra pyrenaica pyrenaica) experiencing high tick burden. We examined adult and nymph ticks collected by the flag dragging method from 8 to 15 sites in the Pic de Bazès during the years 2009, 2011, 2013 and 2015. PCR assays were conducted on selected ticks for the detection of Borrelia burgdorferi s.l., Babesia spp., Rickettsia spp., spotted fever group (SFG) Rickettsia and Anaplasma phagocytophilum. Randomly selected positive samples were submitted for sequence analysis. A total of 1971 questing ticks were collected including 95 males, 101 females and 1775 nymphs. All collected ticks were identified as Ixodes ricinus. Among them, 696 ticks were selected for pathogen detection and overall prevalence was 8.4% for B. burgdorferi s.l.; 0.4% for Babesia spp.; 6.1% for A. phagocytophilum; 17.6% for Rickettsia spp.; and 8.1% for SFG Rickettsia. Among the sequenced pathogens, we detected in this population of ticks the presence of Babesia sp. EU1 and Rickettsia helvetica, as well as Rickettsia monacensis for the first time in France. The detection of these pathogens in the Pic de Bazès highlights the potential infection risks for visitors to this area and the Pyrenean chamois population.
Collapse
Affiliation(s)
- Toufic Akl
- Université Libanaise, Faculté d'Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire, 6573 Beyrouth, Liban
| | - Gilles Bourgoin
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France - Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
| | - Marie-Line Souq
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France
| | - Joël Appolinaire
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, 9 Z.I. Mayencin, 38610 Gières, France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France - Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
| | - Philippe Gibert
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, 9 Z.I. Mayencin, 38610 Gières, France
| | - Georges Abi Rizk
- Université Libanaise, Faculté d'Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire, 6573 Beyrouth, Liban
| | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem, 9 Z.I. Mayencin, 38610 Gières, France
| | - Lionel Zenner
- Université de Lyon, VetAgro Sup - Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire, 1 avenue Bourgelat, BP 83, 69280 Marcy l'Etoile, France - Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
| |
Collapse
|
34
|
Blazejak K, Raulf MK, Janecek E, Jordan D, Fingerle V, Strube C. Shifts in Borrelia burgdorferi (s.l.) geno-species infections in Ixodes ricinus over a 10-year surveillance period in the city of Hanover (Germany) and Borrelia miyamotoi-specific Reverse Line Blot detection. Parasit Vectors 2018; 11:304. [PMID: 29776377 PMCID: PMC5960134 DOI: 10.1186/s13071-018-2882-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lyme borreliosis caused by spirochetes of the Borrelia burgdorferi (sensu lato) complex is still the most common tick-borne disease in Europe, posing a considerable threat to public health. The predominant vector in Europe is the widespread hard tick Ixodes ricinus, which also transmits the relapsing fever spirochete B. miyamotoi as well as pathogenic Rickettsiales (Anaplasma phagocytophilum, Rickettsia spp.). To assess the public health risk, a long-term monitoring of tick infection rates with the named pathogens is indispensable. METHODS The present study is the first German 10-year follow-up monitoring of tick infections with Borrelia spp. and co-infections with Rickettsiales. Furthermore, a specific Reverse Line Blot (RLB) protocol for detection of B. miyamotoi and simultaneous differentiation of B. burgdorferi (s.l.) geno-species was established. RESULTS Overall, 24.0% (505/2100) of ticks collected in the city of Hanover were infected with Borrelia. In detail, 35.4% (203/573) of adult ticks [38.5% females (111/288) and 32.3% males (92/285)] and 19.8% nymphs (302/1527) were infected, representing consistent infection rates over the 10-year monitoring period. Geno-species differentiation using RLB determined B. miyamotoi in 8.9% (45/505) of positive ticks. Furthermore, a significant decrease in B. afzelii and B. spielmanii infection rates from 2010 to 2015 was observed. Co-infections with Rickettsia spp. and A. phagocytophilum increased between 2010 and 2015 (7.3 vs 10.9% and 0.3 vs 1.1%, respectively). CONCLUSIONS Long-term monitoring is an essential part of public health risk assessment to capture data on pathogen occurrence over time. Such data will reveal shifts in pathogen geno-species distribution and help to answer the question whether or not climate change influences tick-borne pathogens.
Collapse
Affiliation(s)
- Katrin Blazejak
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Marie-Kristin Raulf
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.,Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Elisabeth Janecek
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Oberschleißheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|