1
|
Bai H, Collins LB, André MR, Breitschwerdt EB, Islam Williams T. Bottom-Up Proteomics Workflow for Studying Multi-organism Systems. Methods Mol Biol 2025; 2884:119-141. [PMID: 39716001 DOI: 10.1007/978-1-0716-4298-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In recent years, discovery proteomics has emerged as a pivotal tool in biological research, especially when studying the intricate relationships among multiple organisms. To delve deeper into these interactions, we pioneered a bottom-up proteomics workflow. Using nanoLC-MS/MS and a label-free quantification method, this work specifically examines the differential protein expression in fleas (Ctenocephalides felis felis) that have been experimentally infected with Bartonella henselae, the causative agent of cat scratch disease (CSD). Our detailed methodology, from protein cleanup to data analysis using the Proteome Discoverer software, is meticulously outlined to aid other researchers in adopting and adapting this workflow for their own multi-organism studies. This versatile protocol serves as a foundational guide for examining multiple proteomes from varied taxonomic lineages, exemplified in our cat-flea-bacterium investigation.
Collapse
Affiliation(s)
- Hongxia Bai
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Leonard B Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA
| | - Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Pathology, Reproduction and One Health, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP, Brazil
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Danchenko M, Macaluso KR. Salivary glands of the cat flea, Ctenocephalides felis: Dissection and microscopy guide. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100080. [PMID: 38623392 PMCID: PMC11016963 DOI: 10.1016/j.cris.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Fleas are morphologically unique ectoparasites that are hardly mistaken for any other insect. Most flea species that feed on humans and their companion animals, including the cat flea (Ctenocephalides felis), have medical and veterinary importance. Besides facilitating blood acquisition, salivary biomolecules can modulate pathogen transmission. Thus, dissection of salivary glands is essential for comprehensive studies on disease vectors like the cat flea. Herein, we present the pictorial dissection protocol assisting future research targeting individual flea organs, for revealing their roles in vector competence and physiology. We provide a comprehensive guide, allowing researchers, even with limited practical experience, to successfully perform microdissection for collecting cat flea salivary glands. Furthermore, the protocol does not require expensive, sophisticated equipment and can be accomplished with routinely available tools. We illustrated expected results with morphological changes of salivary glands upon blood feeding as well as fluorescently stained these organs.
Collapse
Affiliation(s)
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, University of South Alabama Frederick P. Whiddon College of Medicine, 610 Clinic Dr, Mobile, AL, 36688, United States
| |
Collapse
|
3
|
André MR, Neupane P, Lappin M, Herrin B, Smith V, Williams TI, Collins L, Bai H, Jorge GL, Balbuena TS, Bradley J, Maggi RG, Breitschwerdt EB. Using Proteomic Approaches to Unravel the Response of Ctenocephalides felis felis to Blood Feeding and Infection With Bartonella henselae. Front Cell Infect Microbiol 2022; 12:828082. [PMID: 35155282 PMCID: PMC8831700 DOI: 10.3389/fcimb.2022.828082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 01/19/2023] Open
Abstract
Among the Ctenocephalides felis felis-borne pathogens, Bartonella henselae, the main aetiological agent of cat scratch disease (CSD), is of increasing comparative biomedical importance. Despite the importance of B. henselae as an emergent pathogen, prevention of the diseases caused by this agent in cats, dogs and humans mostly relies on the use of ectoparasiticides. A vaccine targeting both flea fitness and pathogen competence is an attractive choice requiring the identification of flea proteins/metabolites with a dual effect. Even though recent developments in vector and pathogen -omics have advanced the understanding of the genetic factors and molecular pathways involved at the tick-pathogen interface, leading to discovery of candidate protective antigens, only a few studies have focused on the interaction between fleas and flea-borne pathogens. Taking into account the period of time needed for B. henselae replication in flea digestive tract, the present study investigated flea-differentially abundant proteins (FDAP) in unfed fleas, fleas fed on uninfected cats, and fleas fed on B. henselae-infected cats at 24 hours and 9 days after the beginning of blood feeding. Proteomics approaches were designed and implemented to interrogate differentially expressed proteins, so as to gain a better understanding of proteomic changes associated with the initial B. henselae transmission period (24 hour timepoint) and a subsequent time point 9 days after blood ingestion and flea infection. As a result, serine proteases, ribosomal proteins, proteasome subunit α-type, juvenile hormone epoxide hydrolase 1, vitellogenin C, allantoinase, phosphoenolpyruvate carboxykinase, succinic semialdehyde dehydrogenase, glycinamide ribotide transformylase, secreted salivary acid phosphatase had high abundance in response of C. felis blood feeding and/or infection by B. henselae. In contrast, high abundance of serpin-1, arginine kinase, ribosomal proteins, peritrophin-like protein, and FS-H/FSI antigen family member 3 was strongly associated with unfed cat fleas. Findings from this study provide insights into proteomic response of cat fleas to B. henselae infected and uninfected blood meal, as well as C. felis response to invading B. henselae over an infection time course, thus helping understand the complex interactions between cat fleas and B. henselae at protein levels.
Collapse
Affiliation(s)
- Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Pathology, Reproduction and One Health, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, Brazil
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Pradeep Neupane
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Michael Lappin
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, CO, United States
| | - Brian Herrin
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Vicki Smith
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Leonard Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Hongxia Bai
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Gabriel Lemes Jorge
- Departmento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, Brazil
| | - Tiago Santana Balbuena
- Departmento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, Brazil
| | - Julie Bradley
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ricardo G. Maggi
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Edward B. Breitschwerdt,
| |
Collapse
|
4
|
Lam SD, Ashford P, Díaz-Sánchez S, Villar M, Gortázar C, de la Fuente J, Orengo C. Arthropod Ectoparasites Have Potential to Bind SARS-CoV-2 via ACE. Viruses 2021; 13:v13040708. [PMID: 33921873 PMCID: PMC8073597 DOI: 10.3390/v13040708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK;
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (S.D.L.); (J.d.l.F.); (C.O.)
| | - Paul Ashford
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK;
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
- Regional Centre for Biomedical Research (CRIB), Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.D.-S.); (M.V.); (C.G.)
- Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (S.D.L.); (J.d.l.F.); (C.O.)
| | - Christine Orengo
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, UK;
- Correspondence: (S.D.L.); (J.d.l.F.); (C.O.)
| |
Collapse
|
5
|
Kumar S, Gupta S, Mohmad A, Fular A, Parthasarathi BC, Chaubey AK. Molecular tools-advances, opportunities and prospects for the control of parasites of veterinary importance. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2021; 41:33-42. [PMID: 32837530 PMCID: PMC7387080 DOI: 10.1007/s42690-020-00213-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The recent advancement in genome sequencing facilities, proteomics, transcriptomics, and metabolomics of eukaryotes have opened door for employment of molecular diagnostic techniques for early detection of parasites and determining target molecules for formulating control strategies. It further leads to the introduction of several purified vaccines in the field of veterinary parasitology. Earlier, the conventional diagnostic methods was entirely based upon morphological taxonomy for diagnosis of parasites but nowadays improved molecular techniques help in phylogenetic study and open an another area of molecular taxonomy of parasites with high precision. Control measures based upon targeting endosymbionts in parasites like Dirofilaria immitis is also under exploration in veterinary parasitology. Metagenomics have added an inside story of parasites bionomics which have created havoc in human and animals population since centuries. Omics era is playing a key role in opening the new approaches on parasite biology. Various newer generations of safer vaccines like edible vaccines and subunit vaccines and diagnostic techniques based upon purified immunologically active epitopes have become commercially available against the parasites (helminths, protozoa and arthropod borne diseases). Nowadays, a transgenic and gene knock out studies using RNA interference and CRISPR are also helping in understanding the functions of genes and screening of target genes, which are not available before the advent of molecular tools. Molecular techniques had paramount impact on increasing the sensitivity of diagnostic tools, epidemiological studies and more importantly in controlling these diseases. This review is about the advancements in veterinary parasitology and their impact on the control of these pathogens.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Aquil Mohmad
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashutosh Fular
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - B. C. Parthasarathi
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashok Kumar Chaubey
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| |
Collapse
|
6
|
Rust MK. Recent Advancements in the Control of Cat Fleas. INSECTS 2020; 11:insects11100668. [PMID: 33003488 PMCID: PMC7600267 DOI: 10.3390/insects11100668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary The cat flea Ctenocephalides felis felis is the most important pest of domesticated cats and dogs worldwide. This review covers the recent advancements in the control of cat fleas. Over the years, there has been an interest in using ecologically friendly approaches to control fleas. To date, no biological, natural, or cultural means have been discovered that mitigate flea infestations. The recent registration of novel topical and oral therapies promises a new revolution in the control of fleas and ticks and the diseases associated with them. Abstract With the advent of imidacloprid and fipronil spot-on treatments and the oral ingestion of lufenuron, the strategies and methods to control cat fleas dramatically changed during the last 25 years. New innovations and new chemistries have highlighted this progress. Control strategies are no longer based on the tripartite approach of treating the pet, the indoor environment, and outdoors. The ability of modern therapies to break the cat flea life cycle and prevent reproduction has allowed for the stand-alone treatments that are applied or given to the pet. In doing so, we have not only controlled the cat flea, but we have prevented or reduced the impact of many of the diseases associated with ectoparasites and endoparasites of cats and dogs. This review provides an update of newer and non-conventional approaches to control cat fleas.
Collapse
Affiliation(s)
- Michael K Rust
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Villar M, Fernández de Mera IG, Artigas-Jerónimo S, Contreras M, Gortázar C, de la Fuente J. Coronavirus in cat flea: findings and questions regarding COVID-19. Parasit Vectors 2020; 13:409. [PMID: 32778178 PMCID: PMC7416815 DOI: 10.1186/s13071-020-04292-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Recent evidence raised the question about the possibility that cats may be a domestic host for SARS-CoV-2 with unknown implications in disease dissemination. Based on the fact that the domestic cat flea, Ctenocephalides felis, are abundant ectoparasites infesting humans, companion animals and wildlife and that coronavirus-like agents have been identified in the ectoparasite tick vector, Ixodes uriae of seabirds, herein we considered the presence of coronaviruses in general and SARS-CoV-2 in particular in C. felis. We identified coronavirus-derived and cell receptor angiotensin-converting enzyme RNA/proteins in C. felis. Although current evidence suggests that pets are probably dead-end-hosts with small risk of transmission to humans, our results suggested that cat flea may act as biological and/or mechanical vectors of SARS-CoV. Although preliminary, these results indicate a possibility of ectoparasites acting as reservoirs and vectors of SARS-CoV and related beta-coronavirus although with little disease risk due to systemic transmission route, low viremia, virus attenuation or other unknown factors. These results support the need to further study the role of animal SARS-CoV-2 hosts and their ectoparasite vectors in COVID-19 disease spread.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.,Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain. .,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
8
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
9
|
Contreras M, Karlsen M, Villar M, Olsen RH, Leknes LM, Furevik A, Yttredal KL, Tartor H, Grove S, Alberdi P, Brudeseth B, de la Fuente J. Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines (Basel) 2020; 8:vaccines8010032. [PMID: 31963779 PMCID: PMC7157638 DOI: 10.3390/vaccines8010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Infestation with the salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) affects Atlantic salmon (Salmo salar L.) production in European aquaculture. Furthermore, high levels of salmon lice in farms significantly increase challenge pressure against wild salmon populations. Currently, available control methods for salmon louse have limitations, and vaccination appears as an attractive, environmentally sound strategy. In this study, we addressed one of the main limitations for vaccine development, the identification of candidate protective antigens. Based on recent advances in tick vaccine research, herein, we targeted the salmon louse midgut function and blood digestion for the identification of candidate target proteins for the control of ectoparasite infestations. The results of this translational approach resulted in the identification and subsequent evaluation of the new candidate protective antigens, putative Toll-like receptor 6 (P30), and potassium chloride, and amino acid transporter (P33). Vaccination with these antigens provided protection in Atlantic salmon by reducing adult female (P33) or chalimus II (P30) sea lice infestations. These results support the development of vaccines for the control of sea lice infestations.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Marius Karlsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Rolf Hetlelid Olsen
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Lisa Marie Leknes
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Anette Furevik
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Karine Lindmo Yttredal
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
| | - Haitham Tartor
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
| | - Soren Grove
- Norwegian Veterinary Institute, 0106 Oslo, Norway; (H.T.); (S.G.)
- Institute of Marine Research, 5005 Bergen, Norway
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
| | - Bjorn Brudeseth
- Pharmaq AS, P.O. Box 267, Skoyen, N-0213 Oslo, Norway; (M.K.); (R.H.O.); (L.M.L.); (A.F.); (K.L.Y.)
- Correspondence: (B.B.); (J.d.l.F.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (M.C.); (M.V.); (P.A.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: (B.B.); (J.d.l.F.)
| |
Collapse
|
10
|
Franco-Martínez L, Villar M, Tvarijonaviciute A, Escribano D, Bernal LJ, Cerón JJ, Thomas MDC, Mateos-Hernández L, Tecles F, de la Fuente J, López MC, Martínez-Subiela S. Serum proteome of dogs at subclinical and clinical onset of canine leishmaniosis. Transbound Emerg Dis 2019; 67:318-327. [PMID: 31512804 DOI: 10.1111/tbed.13354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
Abstract
The objective of this study was to identify changes in serum proteome in dogs that may occur after an experimental infection at subclinical and clinical stages of canine leishmaniosis (CanL). For this purpose, canine pre- and post-infection with Leishmania infantum serum proteomes in the same dogs were analysed by a high-throughput label-based quantitative LC-MS/MS proteomic approach. A total of 169 proteins were identified, and 74 of them including complement C8 alpha chain, adiponectin, transferrin, sphingomyelin phosphodiesterase acid-like 3A and immunoglobulins showed different modulation between the different stages of CanL. These proteins could be considered as potential serum biomarkers of early diagnostic or disease progression in CanL. Additionally, biological pathways modulated during CanL such as blood coagulation or gonadotropin-releasing hormone receptor were revealed, which could help to understand the pathological mechanisms of the disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Luis J Bernal
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - María Del C Thomas
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain.,UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Manuel C López
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
de la Fuente J, Estrada-Peña A. Why New Vaccines for the Control of Ectoparasite Vectors Have Not Been Registered and Commercialized? Vaccines (Basel) 2019; 7:vaccines7030075. [PMID: 31357707 PMCID: PMC6789832 DOI: 10.3390/vaccines7030075] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The prevention and control of vector-borne diseases is a priority for improving global health. Despite recent advances in the characterization of ectoparasite-host-pathogen molecular interactions, vaccines are not available for most ectoparasites and vector-borne diseases that cause millions of deaths yearly. In this paper, in response to the question of why new vaccines for the control of ectoparasite vectors have not been registered and commercialized, and to contribute developing new effective vaccines against ectoparasite vectors, we propose challenges and approaches to be addressed.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
12
|
Contreras M, Villar M, de la Fuente J. A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of Ixodes ricinus and Dermacentor reticulatus Infestations in Companion Animals. Front Physiol 2019; 10:977. [PMID: 31417430 PMCID: PMC6681794 DOI: 10.3389/fphys.2019.00977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023] Open
Abstract
Ticks and tick-borne pathogens affect health and welfare of companion animals worldwide, and some human tick-borne diseases are associated with exposure to domestic animals. Vaccines are the most environmentally friendly alternative to acaracides for the control of tick infestations, and to reduce the risk for tick-borne diseases affecting human and animal health. However, vaccines have not been developed or successfully implemented for most vector-borne diseases. The main limitation for the development of effective vaccines is the identification of protective antigens. To address this limitation, in this study we used an experimental approach combining vaccinomics based on transcriptomics and proteomics data with vaccination trials for the identification of tick protective antigens. The study was focused on Ixodes ricinus and Dermacentor reticulatus that infest humans, companion animals and other domestic and wild animals, and transmit disease-causing pathogens. Tick larvae and adult salivary glands were selected for analysis to target tick organs and developmental stages playing a key role during tick life cycle and pathogen infection and transmission. Two I. ricinus (heme lipoprotein and uncharacterized secreted protein) and five D. reticulatus (glypican-like protein, secreted protein involved in homophilic cell adhesion, sulfate/anion exchanger, signal peptidase complex subunit 3, and uncharacterized secreted protein) proteins were identified as the most effective protective antigens based on the criteria of vaccine E > 80%. The putative function of selected protective antigens, which are involved in different biological processes, resulted in vaccines affecting multiple tick developmental stages. These results suggested that the combination of some of these antigens might be considered to increase vaccine efficacy through antigen synergy for the control of tick infestations and potentially affecting pathogen infection and transmission. These antigens were proposed for commercial vaccine development for the control of tick infestations in companion animals, and potentially in other hosts for these tick species.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
13
|
Salvador E, Pires de Souza G, Cotta Malaquias L, Wang T, Leomil Coelho L. Identification of relevant regions on structural and nonstructural proteins of Zika virus for vaccine and diagnostic test development: an in silico approach. New Microbes New Infect 2019; 29:100506. [PMID: 30858979 PMCID: PMC6396434 DOI: 10.1016/j.nmni.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family and the genus Flavivirus. Infection with ZIKV causes a mild, self-limiting febrile illness called Zika fever. However, ZIKV infection has been recently associated with microcephaly and Guillain-Barré syndrome. Vaccines for the disease are a high priority of World Health Organization. Several studies are currently being conducted to develop a vaccine against ZIKV, but until now there is no licensed ZIKV vaccine. This study used a novel immunoinformatics approach to identify potential T-cell immunogenic epitopes present in the structural and nonstructural proteins of ZIKV. Fourteen T-cell candidate epitopes were identified on ZIKV structural and nonstructural proteins: pr36-50; C61-75; C103-117; E374-382; E477-491; NS2a90-104; NS2a174-188; NS2a179-193; NS2a190-204; NS2a195-209; NS2a200-214; NS3175-189; and NS4a82-96; NS4a99-113. Among these epitopes, only E374-382 is a human leukocyte antigen (HLA) type I restricted epitope. All identified epitopes showed a low similarity with other important flaviviruses but had a high conservation rate among the ZIKV strains and a high population coverage rate. Therefore, these predicted T-cell epitopes are potential candidates targets for development of vaccines to prevent ZIKV infection.
Collapse
Affiliation(s)
- E.A. Salvador
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - G.A. Pires de Souza
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - L.C. Cotta Malaquias
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
| | - T. Wang
- Department of Microbiology & Immunology, Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - L.F. Leomil Coelho
- Institute of Biomedical Sciences, Department of Microbiology and Immunology, Federal University of Alfenas, Minas Gerais, Brazil
- Corresponding author: L. F. Leomil Coelho, Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro, 700 Centro, Alfenasm Minas Gerais, 37130-001, Brazil.
| |
Collapse
|
14
|
de la Fuente J. Controlling ticks and tick-borne diseases…looking forward. Ticks Tick Borne Dis 2018; 9:1354-1357. [PMID: 29656834 DOI: 10.1016/j.ttbdis.2018.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
Tick-borne diseases (TBDs) represent a growing burden for human and animal health worldwide. Several approaches including the use of chemicals with repellency and parasiticidal activity, habitat management, genetic selection of hosts with higher resistance to ticks, and vaccines have been implemented for reducing the risk of TBDs. However, the application of latest gene editing technologies in combination with vaccines likely combining tick and pathogen derived antigens and other control measures should result in the development of effective, safe, and environmentally sound integrated control programs for the prevention and control of TBDs. This paper is not a review of current approaches for the control of ticks and TBDs, but an opinion about future directions in this area.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA, USA.
| |
Collapse
|