1
|
Dennis TPW, Essandoh J, Mable BK, Viana MS, Yawson AE, Weetman D. Signatures of adaptation at key insecticide resistance loci in Anopheles gambiae in Southern Ghana revealed by reduced-coverage WGS. Sci Rep 2024; 14:8650. [PMID: 38622230 PMCID: PMC11018624 DOI: 10.1038/s41598-024-58906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.
Collapse
Affiliation(s)
- Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Conservation Biology and Entomology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Barbara K Mable
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mafalda S Viana
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alexander E Yawson
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
2
|
St. Leger RJ. From the Lab to the Last Mile: Deploying Transgenic Approaches Against Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.804066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ingenious exploitation of transgenic approaches to produce malaria resistant or sterile mosquitoes, or hypervirulent mosquito pathogens, has produced many potential solutions to vector borne diseases. However, in spite of technological feasibility, it has not been determined how well these new methods will work, and how they should be tested and regulated. Some self-limiting transgenic fungal pathogens and mosquitoes are almost field ready, and may be easier to regulate than self-sustaining strategies. However, they require repeat sales and so must show business viability; low-cost mass production is just one of a number of technical constraints that are sometimes treated as an afterthought in technology deployment. No transgenic self-sustaining approach to anopheline control has ever been deployed because of unresolved ethical, social and regulatory issues. These overlapping issues include: 1) the transparency challenge, which requires public discourse, particularly in Africa where releases are proposed, to determine what society is willing to risk given the potential benefits; 2) the transboundary challenge, self-sustaining mosquitoes or pathogens are potentially capable of crossing national boundaries and irreversibly altering ecosystems, and 3) the risk assessment challenge. The polarized debate as to whether these technologies will ever be used to save lives is ongoing; they will founder without a political answer as to how do we interpret the precautionary principle, as exemplified in the Cartagena protocol, in the global context of technological changes.
Collapse
|
3
|
Ciubotariu II, Jones CM, Kobayashi T, Bobanga T, Muleba M, Pringle JC, Stevenson JC, Carpi G, Norris DE. Genetic Diversity of Anopheles coustani (Diptera: Culicidae) in Malaria Transmission Foci in Southern and Central Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1782-1792. [PMID: 32614047 PMCID: PMC7899271 DOI: 10.1093/jme/tjaa132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 05/04/2023]
Abstract
Despite ongoing malaria control efforts implemented throughout sub-Saharan Africa, malaria remains an enormous public health concern. Current interventions such as indoor residual spraying with insecticides and use of insecticide-treated bed nets are aimed at targeting the key malaria vectors that are primarily endophagic and endophilic. Anopheles coustani s.l., an understudied vector of malaria, is a species previously thought to exhibit mostly zoophilic behavior. Like many of these understudied species, An. coustani has greater anthropophilic tendencies than previously appreciated, is often both endophagic and exophagic, and carries Plasmodium falciparum sporozoites. The aim of this study was to explore genetic variation of An. coustani mosquitoes and the potential of this species to contribute to malaria parasite transmission in high transmission settings in Zambia and the Democratic Republic of the Congo (DRC). Morphologically identified An. coustani specimens that were trapped outdoors in these study sites were analyzed by PCR and sequencing for species identification and bloodmeal sources, and malaria parasite infection was determined by ELISA and qPCR. Fifty An. coustani s.s. specimens were confirmed by analysis of mitochondrial DNA cytochrome c oxidase subunit I (COI) and ribosomal internal transcribed spacer region 2 (ITS2). Maximum likelihood phylogenetic analysis of COI and ITS2 sequences revealed two distinct phylogenetic groups within this relatively small regional collection. Our findings indicate that both An. coustani groups have anthropophilic and exophagic habits and come into frequent contact with P. falciparum, suggesting that this potential alternative malaria vector might elude current vector control measures in northern Zambia and southern DRC.
Collapse
Affiliation(s)
- Ilinca I Ciubotariu
- The Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Christine M Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Tamaki Kobayashi
- The Department of Epidemiology, Division of Infectious Disease Epidemiology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thierry Bobanga
- The Department of Family Medicine, School of Medicine, Université Protestante au Congo, Kinshasa, Democratic Republic of Congo
- The Department of Tropical Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Julia C Pringle
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jennifer C Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Macha Research Trust, Choma, Zambia
| | - Giovanna Carpi
- The Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
4
|
Sandeu MM, Mulamba C, Weedall GD, Wondji CS. A differential expression of pyrethroid resistance genes in the malaria vector Anopheles funestus across Uganda is associated with patterns of gene flow. PLoS One 2020; 15:e0240743. [PMID: 33170837 PMCID: PMC7654797 DOI: 10.1371/journal.pone.0240743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. METHODS Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. RESULTS Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. CONCLUSION The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.
Collapse
Affiliation(s)
- Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Charles Mulamba
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Gareth D. Weedall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
5
|
Bergey CM, Lukindu M, Wiltshire RM, Fontaine MC, Kayondo JK, Besansky NJ. Assessing connectivity despite high diversity in island populations of a malaria mosquito. Evol Appl 2020; 13:417-431. [PMID: 31993086 PMCID: PMC6976967 DOI: 10.1111/eva.12878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Documenting isolation is notoriously difficult for species with vast polymorphic populations. High proportions of shared variation impede estimation of connectivity, even despite leveraging information from many genetic markers. We overcome these impediments by combining classical analysis of neutral variation with assays of the structure of selected variation, demonstrated using populations of the principal African malaria vector Anopheles gambiae. Accurate estimation of mosquito migration is crucial for efforts to combat malaria. Modeling and cage experiments suggest that mosquito gene drive systems will enable malaria eradication, but establishing safety and efficacy requires identification of isolated populations in which to conduct field testing. We assess Lake Victoria islands as candidate sites, finding one island 30 km offshore is as differentiated from mainland samples as populations from across the continent. Collectively, our results suggest sufficient contemporary isolation of these islands to warrant consideration as field-testing locations and illustrate shared adaptive variation as a useful proxy for connectivity in highly polymorphic species.
Collapse
Affiliation(s)
- Christina M. Bergey
- Department of Biological SciencesUniversity of Notre DameNotre DameINUSA
- Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
- Department of GeneticsRutgers UniversityPiscatawayNJUSA
- Departments of Anthropology and BiologyPennsylvania State UniversityUniversity ParkPAUSA
| | - Martin Lukindu
- Department of Biological SciencesUniversity of Notre DameNotre DameINUSA
- Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
| | - Rachel M. Wiltshire
- Department of Biological SciencesUniversity of Notre DameNotre DameINUSA
- Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
| | - Michael C. Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- MIVEGECIRDCNRSUniversity of MontpellierMontpellierFrance
| | | | - Nora J. Besansky
- Department of Biological SciencesUniversity of Notre DameNotre DameINUSA
- Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
| |
Collapse
|
6
|
Chen YA, Lien JC, Tseng LF, Cheng CF, Lin WY, Wang HY, Tsai KH. Effects of indoor residual spraying and outdoor larval control on Anopheles coluzzii from São Tomé and Príncipe, two islands with pre-eliminated malaria. Malar J 2019; 18:405. [PMID: 31806029 PMCID: PMC6896513 DOI: 10.1186/s12936-019-3037-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Vector control is a key component of malaria prevention. Two major vector control strategies have been implemented in São Tomé and Príncipe (STP), indoor residual spraying (IRS) and outdoor larval control using Bacillus thuringiensis israelensis (Bti). This study evaluated post-intervention effects of control strategies on vector population density, composition, and knockdown resistance mutation, and their implications for malaria epidemiology in STP. Methods Mosquitoes were collected by indoor and outdoor human landing catches and mosquito light traps in seven districts. Mosquito density was calculated by numbers of captured adult mosquitoes/house/working hour. Mitochondrial cytochrome c oxidase subunit I (COI) was PCR amplified and sequenced to understand the spatial–temporal population composition of malaria vector in STP. Knockdown resistance L1014F mutation was detected using allele-specific PCR. To estimate the malaria transmission risks in STP, a negative binomial regression model was constructed. The response variable was monthly incidence, and the explanatory variables were area, rainfall, entomological inoculation rate (EIR), and kdr mutation frequency. Results Malaria vector in STP is exophilic Anopheles coluzzii with significant population differentiation between Príncipe and São Tomé (mean FST = 0.16, p < 0.001). Both vector genetic diversity and knockdown resistance mutation were relatively low in Príncipe (mean of kdr frequency = 15.82%) compared to São Tomé (mean of kdr frequency = 44.77%). Annual malaria incidence rate in STP had been rapidly controlled from 37 to 2.1% by three rounds of country-wide IRS from 2004 to 2007. Long-term application of Bti since 2007 kept the mosquito density under 10 mosquitoes/house/hr/month, and malaria incidence rate under 5% after 2008, except for a rising that occurred in 2012 (incidence rate = 6.9%). Risk factors of area (São Tomé compared to Príncipe), rainfall, outdoor EIR, and kdr mutation frequency could significantly increase malaria incidence by 9.33–11.50, 1.25, 1.07, and 1.06 fold, respectively. Conclusions Indoor residual spraying could rapidly decrease Anopheles density and malaria incidence in STP. Outdoor larval control using Bti is a sustainable approach for controlling local vector with exophilic feature and insecticide resistance problem. Vector control interventions should be intensified especially at the north-eastern part of São Tomé to minimize impacts of outbreaks.
Collapse
Affiliation(s)
- Ying-An Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jih-Ching Lien
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe.
| | - Lien-Fen Tseng
- Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe
| | - Chien-Fu Cheng
- Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Taiwan Anti-Malaria Advisory Mission, São Tomé, São Tomé and Príncipe. .,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Makanda M, Kemunto G, Wamuyu L, Bargul J, Muema J, Mutunga J. Diversity and Molecular Characterization of Mosquitoes (Diptera: Culicidae) in Selected Ecological Regions in Kenya. F1000Res 2019; 8:262. [PMID: 32518622 PMCID: PMC7255902 DOI: 10.12688/f1000research.18262.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mosquitoes play a predominant role as leading agents in the spread of vector-borne diseases and the consequent mortality in humans. Despite reports on increase of new and recurrent mosquito borne-disease outbreaks such as chikungunya, dengue fever and Rift Valley fever in Kenya, little is known about the genetic characteristics and diversity of the vector species that have been incriminated in transmission of disease pathogens. In this study, mosquito species were collected from Kisumu city, Kilifi town and Nairobi city and we determined their genetic diversity and phylogenetic relationships. PCR was used to amplify the partial cytochrome oxidase subunit 1 (CO1) gene of mosquito samples. Molecular-genetic and phylogenetic analysis of the partial cytochrome oxidase subunit 1 (CO1) gene were employed to identify their relationship with known mosquito species. Fourteen (14) haplotypes belonging to genus
Aedes, nine (9) haplotypes belonging to genus
Anopheles and twelve (12) haplotypes belonging to genus
Culex were identified in this study. Findings from this study revealed a potentially new haplotype belonging to
Anopheles genus and reported the first molecular characterization of
Aedes cumminsii in Kenya. Sequence results revealed variation in mosquito species from Kilifi, Kisumu and Nairobi. Since vector competence varies greatly across species as well as species-complexes and is strongly associated with specific behavioural adaptations, proper species identification is important for vector control programs.
Collapse
Affiliation(s)
- Moni Makanda
- Institute for Basic Sciences Technology and Innovation, Pan African University, Nairobi, P.O. Box 62000-00200, Kenya
| | - Gladys Kemunto
- Zoology Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Lucy Wamuyu
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Joel Bargul
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Jackson Muema
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - James Mutunga
- Biological Sciences Department, Mount Kenya University, Thika, P.O. Box 342-01000, Kenya
| |
Collapse
|
8
|
Wiltshire RM, Bergey CM, Kayondo JK, Birungi J, Mukwaya LG, Emrich SJ, Besansky NJ, Collins FH. Reduced-representation sequencing identifies small effective population sizes of Anopheles gambiae in the north-western Lake Victoria basin, Uganda. Malar J 2018; 17:285. [PMID: 30081911 PMCID: PMC6080216 DOI: 10.1186/s12936-018-2432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. METHODS 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). RESULTS 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480-0.0846). Ne estimates were generally small (124.2-1920.3). CONCLUSIONS A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.
Collapse
Affiliation(s)
- Rachel M Wiltshire
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Christina M Bergey
- Departments of Anthropology and Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jonathan K Kayondo
- Division of Entomology and Vector Biology, Uganda Virus Research Institute, Plot No. 51-59, Nakiwogo Road, Entebbe 49, Uganda
| | - Josephine Birungi
- Division of Entomology and Vector Biology, Uganda Virus Research Institute, Plot No. 51-59, Nakiwogo Road, Entebbe 49, Uganda
| | - Louis G Mukwaya
- Division of Entomology and Vector Biology, Uganda Virus Research Institute, Plot No. 51-59, Nakiwogo Road, Entebbe 49, Uganda
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nora J Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Frank H Collins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|