1
|
Feng T, Tong H, Zhang F, Zhang Q, Zhang H, Zhou X, Ruan H, Wu Q, Dai J. Transcriptome study reveals tick immune genes restrict Babesia microti infection. INSECT SCIENCE 2024. [PMID: 38837613 DOI: 10.1111/1744-7917.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
A systems biology approach was employed to gain insight into tick biology and interactions between vectors and pathogens. Haemaphysalis longicornis serves as one of the primary vectors of Babesia microti, significantly impacting human and animal health. Obtaining more information about their relationship is crucial for a comprehensive understanding of tick and pathogen biology, pathogen transmission dynamics, and potential control strategies. RNA sequencing of uninfected and B. microti-infected ticks resulted in the identification of 15 056 unigenes. Among these, 1 051 were found to be differentially expressed, with 796 being upregulated and 255 downregulated (P < 0.05). Integrated transcriptomics datasets revealed the pivotal role of immune-related pathways, including the Toll, Janus kinase/signal transducer and activator of transcription (JAK-STAT), immunodeficiency, and RNA interference (RNAi) pathways, in response to infection. Consequently, 3 genes encoding critical transcriptional factor Dorsal, Relish, and STAT were selected for RNAi experiments. The knockdown of Dorsal, Relish, and STAT resulted in a substantial increase in Babesia infection levels compared to the respective controls. These findings significantly advanced our understanding of tick-Babesia molecular interactions and proposed novel tick antigens as potential vaccine targets against tick infestations and pathogen transmission.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Feihu Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Heng Zhang
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hang Ruan
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Koonyosying P, Srichairatanakool S, Tiwananthagorn S, Sthitmatee N. Inhibitory effects on bovine babesial infection by iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2-methylpyridin-4-one (CM1), and antimalarial drugs. Vet Parasitol 2023; 324:110055. [PMID: 37931475 DOI: 10.1016/j.vetpar.2023.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 μM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 μM, artefenomel 2.56 ± 0.67 μM, chloroquine 2.14 ± 0.76 μM, primaquine 22.61 ± 6.72 μM, dihydroarthemisinine 4.65 ± 0.22 μM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 μM, and diminazine aceturate 0.42 ± 0.01 μM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.
Collapse
Affiliation(s)
- Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saruda Tiwananthagorn
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
3
|
Si W, Zhao Y, Qin X, Huang Y, Yu J, Liu X, Li Y, Yan X, Zhang Q, Sun J. What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence? Parasit Vectors 2023; 16:421. [PMID: 37974285 PMCID: PMC10652512 DOI: 10.1186/s13071-023-06024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.
Collapse
Affiliation(s)
- Wenwen Si
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuemeng Zhao
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xixi Qin
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yixuan Huang
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jing Yu
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiao Liu
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yanna Li
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoli Yan
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qingfeng Zhang
- School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Jun Sun
- School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Batte A, Shahrin L, Claure-Del Granado R, Luyckx VA, Conroy AL. Infections and Acute Kidney Injury: A Global Perspective. Semin Nephrol 2023; 43:151466. [PMID: 38158245 DOI: 10.1016/j.semnephrol.2023.151466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Globally, there are an estimated 13.3 million cases of acute kidney injury (AKI) annually. Although infections are a common cause of AKI globally, most infection-associated AKI occurs in low- and lower-middle-income countries. There are marked differences in the etiology of infection-associated AKI across age groups, populations at risk, and geographic location. This article provides a global overview of different infections that are associated commonly with AKI, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus, malaria, dengue, leptospirosis, tick-borne illnesses, and viral hemorrhagic fevers. Further discussion focuses on infectious conditions associated with AKI including sepsis, diarrheal diseases and pregnancy, peripartum and neonatal AKI. This article also discusses the future of infection-associated AKI in the framework of climate change. It explores how increased investment in achieving the sustainable development goals may contribute to the International Society of Nephrology's 0 by 25 objective to curtail avoidable AKI-related fatalities by 2025.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda; Global Health Uganda, Kampala, Uganda.
| | - Lubaba Shahrin
- Clinical and Diagnostic Services, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rolando Claure-Del Granado
- Division of Nephrology, Hospital Obrero No 2, Caja Nacional de Salud, Cochabamba, Bolivia; Instituto de Investigaciones Biomédicas e Investigación Social (IIBISMED), Facultad de Medicina, Universidad Mayor de San Simon, Cochabamba, Bolivia
| | - Valerie A Luyckx
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Diseases, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; Center for Global Health, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|