1
|
Fang Z, Huang T, Chai X, Zhan J, Zhu Q, Sun P, Zeng D, Liu C, Jiang B, He L, Zhou X, Liu M, Zhang X. Protein methylation characterization using NMR without isotopic labeling. Talanta 2024; 268:125289. [PMID: 37862753 DOI: 10.1016/j.talanta.2023.125289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Protein methylation is crucial in epigenetics, and targeting the involved methyltransferases shows great potential for therapeutic intervention with several inhibitors in clinical trials for oncology indications. Therefore, characterization of protein methylation is essential for understanding the methyltransferase function and discovering chemical inhibitors and antagonists. While NMR has been used to measure methylation rates, isotopic labeling of protein or methyl donors can be costly and cannot characterize demethylation of proteins extracted from natural sources. Our method employs a four-quantum filter 1H-13C experiment that selectively detects methyl groups, providing a simple way to characterize methylation and demethylation features of methyltransferases and demethylases, respectively, without requiring isotopic labeling. In our experiments, we successfully observed the methylation of H3 under lysate from various cells and tissues of mice with cancerous growth. The results revealed that H3 undergoes both mono- and dimethylation in all the tested lysates, but at varying rates and degrees. Significantly lower H3 methylation rates and levels were observed in both cervical tumor and breast tumor lysates compared with the corresponding cancerous cells and healthy cells lysates. These findings highlight the variability of histone H3 methylation patterns among healthy cells, cancerous cells, tumor tissues, and different tumor types, and suggest that this method has great potential in facilitating the development of effective interventions against these diseases. By characterizing the methylation features of suspected tumors or areas of concern, it provides valuable insights into the underlying mechanisms of cancer development and aids in identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhongpei Fang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Huang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Zhan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qinjun Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Sun
- Philips Healthcare, Wuhan, 430071, China
| | - Danyun Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China.
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China; Optics Valley Laboratory, Wuhan, 430074, China.
| |
Collapse
|
2
|
Crone KK, Jomori T, Miller FS, Gralnick JA, Elias MH, Freeman MF. RiPP enzyme heterocomplex structure-guided discovery of a bacterial borosin α- N-methylated peptide natural product. RSC Chem Biol 2023; 4:804-816. [PMID: 37799586 PMCID: PMC10549244 DOI: 10.1039/d3cb00093a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
Amide peptide backbone methylation is a characteristic post-translational modification found in a family of ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) called borosins. Previously, we bioinformatically identified >1500 putative borosin pathways in bacteria; however, none of the pathways were associated with a known secondary metabolite. Through in-depth characterization of a borosin pathway in Shewanella oneidensis MR-1, we have now identified a bacterially derived borosin natural product named Shewanellamide A. Borosin identification was facilitated by the creation and analysis of a series of precursor variants and crystallographic interrogation of variant precursor and methyltransferase complexes. Along with assaying two proteases from S. oneidensis, probable boundaries for proteolytic maturation of the metabolite were projected and confirmed via comparison of S. oneidensis knockout and overexpression strains. All in all, the S. oneidensis natural product was found to be a 16-mer linear peptide featuring two backbone methylations, establishing Shewanellamide A as one of the few borosin metabolites yet identified, and the first from bacteria.
Collapse
Affiliation(s)
- K K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - T Jomori
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - F S Miller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - J A Gralnick
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - M H Elias
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - M F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| |
Collapse
|
3
|
Fraser OA, Namitz KEW, Showalter SA. Advances in direct detection of lysine methylation and acetylation by nuclear magnetic resonance using 13C-enriched cofactors. Methods 2023; 218:72-83. [PMID: 37524235 PMCID: PMC10528339 DOI: 10.1016/j.ymeth.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Post-translational modifications (PTMs) are reversible chemical modifications that can modulate protein structure and function. Methylation and acetylation are two such PTMs with integral and well-characterized biological roles, including modulation of chromatin structure; and unknown or poorly understood roles, exemplified by the influence of these PTMs on transcription factor structure and function. The need for biological insights into the function of these PTMs motivates the development of a nondestructive and label-free method that enables pursuit of molecular mechanisms. Here, we present a protocol for implementing nuclear magnetic resonance (NMR) methods that allow for unambiguous detection of methylation and acetylation events and demonstrate their utility by observing these marks on histone H3 tail as a model system. We leverage strategic isotopic enrichment of cofactor and peptide for visualization by [1H, 13C]-HSQC and 13C direct-detect NMR measurements. Finally, we present 13C-labeling schemes that facilitate one-dimensional NMR experiments, which combine reduced measurement time relative to two-dimensional spectroscopy with robust filtering of background signals that would otherwise create spectral crowding or limit detection of low-abundance analytes.
Collapse
Affiliation(s)
- Olivia A Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kevin E W Namitz
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
4
|
Bare A, Thomas J, Etoroma D, Lee SG. Functional analysis of phosphoethanolamine N-methyltransferase in plants and parasites: Essential S-adenosylmethionine-dependent methyltransferase in choline and phospholipid metabolism. Methods Enzymol 2023; 680:101-137. [PMID: 36710008 DOI: 10.1016/bs.mie.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phospholipids play an essential role as a barrier between cell content and the extracellular environment and regulate various cell signaling processes. Phosphatidylcholine (PtdCho) is one of the most abundant phospholipids in plant, animal, and some prokaryote cell membranes. In plants and some parasites, the biosynthesis of PtdCho begins with the amino acid serine, followed mainly through a phosphoethanolamine N-methyltransferase (PMT)-mediated biosynthetic pathway to phosphocholine (pCho). Because the PMT-mediated pathway, referred to as the phosphobase methylation pathway, produces a series of important primary and specialized metabolites for plant development and stress response, understanding the PMT enzyme is a key aspect of engineering plants with improved stress tolerance and fortified nutrients. Importantly, given the very limited phylogenetic distribution of PMTs, functional analysis and the identification of inhibitors targeting PMTs have potential and positive impacts in humans and in veterinary and agricultural fields. Here, we describe detailed basic knowledge and practical research methods to enable the systematic study of the biochemical and biophysical functions of PMT. The research methods described in this chapter are also applicable to the studies of other ubiquitous S-adenosyl-l-methionine (SAM)-dependent methyltransferases in all kingdoms.
Collapse
Affiliation(s)
- Alex Bare
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Jaime Thomas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Etoroma
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States.
| |
Collapse
|
5
|
Simon‐Baram H, Roth S, Niedermayer C, Huber P, Speck M, Diener J, Richter M, Bershtein S. A High-Throughput Continuous Spectroscopic Assay to Measure the Activity of Natural Product Methyltransferases. Chembiochem 2022; 23:e202200162. [PMID: 35785511 PMCID: PMC9542197 DOI: 10.1002/cbic.202200162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Natural product methyltransferases (NPMTs) represent an emerging class of enzymes that can be of great use for the structural and functional diversification of bioactive compounds, such as the strategic modification of C-, N-, O- and S-moieties. To assess the activity and the substrate scope of the ever-expanding repertoire of NPMTs, a simple, fast, and robust assay is needed. Here, we report a continuous spectroscopic assay, in which S-adenosyl-L-methionine-dependent methylation is linked to NADH oxidation through the coupled activities of S-adenosyl-L-homocysteine (SAH) deaminase and glutamate dehydrogenase. The assay is highly suitable for a high-throughput evaluation of small molecule methylation and for determining the catalytic parameters of NPMTs under conditions that remove the potent inhibition by SAH. Through the modular design, the assay can be extended to match the needs of different aspects of methyltransferase cascade reactions and respective applications.
Collapse
Affiliation(s)
- Hadas Simon‐Baram
- Department of Life SciencesBen-Gurion University of the NegevBen-Gurion blvd 18410501Beer-ShevaIsrael
| | - Steffen Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Christina Niedermayer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Patricia Huber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Julia Diener
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Branch BioCatSchulgasse 11a94315StraubingGermany
| | - Shimon Bershtein
- Department of Life SciencesBen-Gurion University of the NegevBen-Gurion blvd 18410501Beer-ShevaIsrael
| |
Collapse
|
6
|
Idigo NJ, Voigt P. Detection and Quantification of Histone Methyltransferase Activity In Vitro. Methods Mol Biol 2022; 2529:43-61. [PMID: 35733009 DOI: 10.1007/978-1-0716-2481-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues in histone as well as nonhistone substrates. In vitro histone methyltransferase assays have been instrumental in identifying HMTs, and they continue to be invaluable tools for the study of these important enzymes, revealing novel substrates and modes of regulation.Here we describe a universal protocol to examine HMT activity in vitro that can be adapted to a range of HMTs, substrates, and experimental objectives. We provide protocols for the detection of activity based on incorporation of 3H-labeled methyl groups from S-adenosylmethionine (SAM), methylation-specific antibodies, and quantification of the reaction product S-adenosylhomocysteine (SAH).
Collapse
Affiliation(s)
- Nwamaka J Idigo
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Usher ET, Namitz KEW, Cosgrove MS, Showalter SA. Probing multiple enzymatic methylation events in real time with NMR spectroscopy. Biophys J 2021; 120:4710-4721. [PMID: 34592262 PMCID: PMC8595733 DOI: 10.1016/j.bpj.2021.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Post-translational modification (PTM) of proteins is of critical importance to the regulation of many cellular processes in eukaryotic organisms. One of the most well-studied protein PTMs is methylation, wherein an enzyme catalyzes the transfer of a methyl group from a cofactor to a lysine or arginine side chain. Lysine methylation is especially abundant in the histone tails and is an important marker for denoting active or repressed genes. Given their relevance to transcriptional regulation, the study of methyltransferase function through in vitro experiments is an important stepping stone toward understanding the complex mechanisms of regulated gene expression. To date, most methyltransferase characterization strategies rely on the use of radioactive cofactors, detection of a methyl transfer byproduct, or discontinuous-type assays. Although such methods are suitable for some applications, information about multiple methylation events and kinetic intermediates is often lost. Herein, we describe the use of two-dimensional NMR to monitor mono-, di-, and trimethylation in a single reaction tube. To do so, we incorporated 13C into the donor methyl group of the enzyme cofactor S-adenosyl methionine. In this way, we may study enzymatic methylation by monitoring the appearance of distinct resonances corresponding to mono-, di-, or trimethyl lysine without the need to isotopically enrich the substrate. To demonstrate the capabilities of this method, we evaluated the activity of three lysine methyltransferases, Set7, MWRAD2 (MLL1 complex), and PRDM9, toward the histone H3 tail. We monitored mono- or multimethylation of histone H3 tail at lysine 4 through sequential short two-dimensional heteronuclear single quantum coherence experiments and fit the resulting progress curves to first-order kinetic models. In summary, NMR detection of PTMs in one-pot, real-time reaction using facile cofactor isotopic enrichment shows promise as a method toward understanding the intricate mechanisms of methyltransferases and other enzymes.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology
| | - Kevin E W Namitz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania
| | - Michael S Cosgrove
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, Syracuse, New York
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
8
|
Miller FS, Crone KK, Jensen MR, Shaw S, Harcombe WR, Elias MH, Freeman MF. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis. Nat Commun 2021; 12:5355. [PMID: 34504067 PMCID: PMC8429565 DOI: 10.1038/s41467-021-25575-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
Peptide backbone α-N-methylations change the physicochemical properties of amide bonds to provide structural constraints and other favorable characteristics including biological membrane permeability to peptides. Borosin natural product pathways are the only known ribosomally encoded and posttranslationally modified peptides (RiPPs) pathways to incorporate backbone α-N-methylations on translated peptides. Here we report the discovery of type IV borosin natural product pathways (termed 'split borosins'), featuring an iteratively acting α-N-methyltransferase and separate precursor peptide substrate from the metal-respiring bacterium Shewanella oneidensis. A series of enzyme-precursor complexes reveal multiple conformational states for both α-N-methyltransferase and substrate. Along with mutational and kinetic analyses, our results give rare context into potential strategies for iterative maturation of RiPPs.
Collapse
Affiliation(s)
- Fredarla S Miller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Matthew R Jensen
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA
- Science Department, Concordia University-St. Paul, St. Paul, MN, USA
| | - Sudipta Shaw
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - William R Harcombe
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Mikael H Elias
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| | - Michael F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| |
Collapse
|
9
|
Zhang C, Sultan SA, T R, Chen X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. BIORESOUR BIOPROCESS 2021; 8:72. [PMID: 38650197 PMCID: PMC10992897 DOI: 10.1186/s40643-021-00425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022] Open
Abstract
In the biosynthesis of natural products, methylation is a common and essential transformation to alter molecules' bioavailability and bioactivity. The main methylation reaction is performed by S-adenosylmethionine (SAM)-dependent methyltransferases (MTs). With advancements in genomic and chemical profiling technologies, novel MTs have been discovered to accept complex substrates and synthesize industrially valuable natural products. However, to achieve a high yield of small molecules in microbial hosts, many methyltransferase activities have been reported to be insufficient. Moreover, inadequate co-factor supplies and feedback inhibition of the by-product, S-adenosylhomocysteine (SAH), further limit MTs' activities. Here, we review recent advances in SAM-dependent MTs to produce and diversify natural products. First, we surveyed recently identified novel methyltransferases in natural product biosynthesis. Second, we summarized enzyme engineering strategies to improve methyltransferase activity, with a particular focus on high-throughput assay design and application. Finally, we reviewed innovations in co-factor regeneration and diversification, both in vitro and in vivo. Noteworthily, many MTs are able to accept multiple structurally similar substrates. Such promiscuous methyltransferases are versatile and can be tailored to design de novo pathways to produce molecules whose biosynthetic pathway is unknown or non-existent in nature, thus broadening the scope of biosynthesized functional molecules.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stella Amelia Sultan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
10
|
Mudgal R, Mahajan S, Tomar S. Inhibition of Chikungunya virus by an adenosine analog targeting the SAM-dependent nsP1 methyltransferase. FEBS Lett 2019; 594:678-694. [PMID: 31623018 PMCID: PMC7164056 DOI: 10.1002/1873-3468.13642] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023]
Abstract
Alphaviruses, including Chikungunya (CHIKV) and Venezuelan equine encephalitis virus (VEEV), are among the leading causes of recurrent epidemics all over the world. Alphaviral nonstructural protein 1 (nsP1) orchestrates the capping of nascent viral RNA via its S-adenosyl methionine-dependent N-7-methyltransferase (MTase) and guanylyltransferase activities. Here, we developed and validated a novel capillary electrophoresis (CE)-based assay for measuring the MTase activity of purified VEEV and CHIKV nsP1. We employed the assay to assess the MTase inhibition efficiency of a few adenosine analogs and identified 5-iodotubercidin (5-IT) as an inhibitor of nsP1. The antiviral potency of 5-IT was evaluated in vitro using a combination of cell-based assays, which suggest that 5-IT is efficacious against CHIKV in cell culture (EC50 : 0.409 µm).
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Supreeti Mahajan
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| |
Collapse
|
11
|
Levy D. Lysine methylation signaling of non-histone proteins in the nucleus. Cell Mol Life Sci 2019; 76:2873-2883. [PMID: 31123776 PMCID: PMC11105312 DOI: 10.1007/s00018-019-03142-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Lysine methylation, catalyzed by protein lysine methyltransferases (PKMTs), is a central post-translational modification regulating many signaling pathways. It has direct and indirect effects on chromatin structure and transcription. Accumulating evidence suggests that dysregulation of PKMT activity has a fundamental impact on the development of many pathologies. While most of these works involve in-depth analysis of methylation events in the context of histones, in recent years, it has become evident that methylation of non-histone proteins also plays a pivotal role in cell processes. This review highlights the importance of non-histone methylation, with focus on methylation events taking place in the nucleus. Known experimental platforms which were developed to identify new methylation events, as well as examples of specific lysine methylation signaling events which regulate key transcription factors, are presented. In addition, the role of these methylation events in normal and disease states is emphasized.
Collapse
Affiliation(s)
- Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beersheba, Israel.
| |
Collapse
|
12
|
Akhtar MK, Vijay D, Umbreen S, McLean CJ, Cai Y, Campopiano DJ, Loake GJ. Hydrogen Peroxide-Based Fluorometric Assay for Real-Time Monitoring of SAM-Dependent Methyltransferases. Front Bioeng Biotechnol 2018; 6:146. [PMID: 30406092 PMCID: PMC6200863 DOI: 10.3389/fbioe.2018.00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022] Open
Abstract
Methylated chemicals are widely used as key intermediates for the syntheses of pharmaceuticals, fragrances, flavors, biofuels and plastics. In nature, the process of methylation is commonly undertaken by a super-family of S-adenosyl methionine-dependent enzymes known as methyltransferases. Herein, we describe a novel high throughput enzyme-coupled assay for determining methyltransferase activites. Adenosylhomocysteine nucleosidase, xanthine oxidase, and horseradish peroxidase enzymes were shown to function in tandem to generate a fluorescence signal in the presence of S-adenosyl-L-homocysteine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). Since S-adenosyl-L-homocysteine is a key by-product of reactions catalyzed by S-adenosyl methionine-dependent methyltransferases, the coupling enzymes were used to assess the activities of EcoRI methyltransferase and a salicylic acid methyltransferase from Clarkia breweri in the presence of S-adenosyl methionine. For the EcoRI methyltransferase, the assay was sensitive enough to allow the monitoring of DNA methylation in the nanomolar range. In the case of the salicylic acid methyltransferase, detectable activity was observed for several substrates including salicylic acid, benzoic acid, 3-hydroxybenzoic acid, and vanillic acid. Additionally, the de novo synthesis of the relatively expensive and unstable cosubstrate, S-adenosyl methionine, catalyzed by methionine adenosyltransferase could be incorporated within the assay. Overall, the assay offers an excellent level of sensitivity that permits continuous and reliable monitoring of methyltransferase activities. We anticipate this assay will serve as a useful bioanalytical tool for the rapid screening of S-adenosyl methionine-dependent methyltransferase activities.
Collapse
Affiliation(s)
- M Kalim Akhtar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.,Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dhanya Vijay
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris J McLean
- EastChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Dominic J Campopiano
- EastChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Ramachandran S, Loganathan S, Cheeran V, Charles S, Munuswamy-Ramanujan G, Ramasamy M, Raj V, Mala K. Forskolin attenuates doxorubicin-induced accumulation of asymmetric dimethylarginine and s-adenosylhomocysteine via methyltransferase activity in leukemic monocytes. Leuk Res Rep 2018; 9:28-35. [PMID: 29892545 PMCID: PMC5993357 DOI: 10.1016/j.lrr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/15/2017] [Accepted: 02/09/2018] [Indexed: 10/25/2022] Open
Abstract
Doxorubicin (DOX) is an antitumor drug, associated with cardiomyopathy. Strategies to address DOX-cardiomyopathy are scarce. Here, we identify the effect of forskolin (FSK) on DOX-induced-asymmetric-dimethylarginine (ADMA) accumulation in monocytoid cells. DOX-challenge led to i) augmented cytotoxicity, reactive-oxygen-species (ROS) production and methyltransferase-enzyme-activity identified as ADMA and s-adenosylhomocysteine (SAH) accumulation (SAH-A). However, except cytotoxicity, other DOX effects were decreased by metformin and FSK. FSK, did not alter the DOX-induced cytotoxic effect, but, decreased SAH-A by >50% and a combination of three drugs restored physiological methyltransferase-enzyme-activity. Together, protective effect of FSK against DOX-induced SAH-A is associated with mitigated methyltransferase-activity, a one-of-a-kind report.
Collapse
Key Words
- ADMA, asymmetric dimethylarginine
- CT, chemotherapy
- CVD, cardiovascular disease
- Cancer
- Cardiovascular disease
- DDAH, dimethylarginine diaminohydrolase
- DOX, doxorubicin
- Endothelial dysfunction
- FSK, forskolin
- Forskolin
- HCY, homocysteine
- HTRF, homogenous time-resolved fluorescence
- L-arg, L-arginine
- L-cit, L-citrulline
- MET, metformin
- Metformin
- Methyltransferase
- NAD+, nicotinamide adenine dinucleotide
- OS, oxidative stress
- PRMT1, protein arginine methyltransferase1
- ROS, reactive oxygen species
- SAH, s-adenosylhomocysteine;
- SAH-A, SAH accumulation
- SAHH, s-adenosylhomocysteine hydrolase
- SAM, s-adenosylmethionine
- SIRT1, sirtuin1
- cAMP, cyclic AMP
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Sandhiya Ramachandran
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, India
| | - Swetha Loganathan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, India
| | - Vinnie Cheeran
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur 603203, India
| | - Soniya Charles
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, India.,Medical College Hospital and Research Center, SRM University, Kattankulathur 603203, India
| | | | - Mohankumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur 603203, India
| | - Vijay Raj
- Medical College Hospital and Research Center, SRM University, Kattankulathur 603203, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Kattankulathur 603203, India
| |
Collapse
|
14
|
Abstract
Protein arginine methyltransferases (PRMTs) are crucial epigenetic regulators in eukaryotic organisms that serve as histone writers for chromatin remodeling. PRMTs also methylate a variety of non-histone protein substrates to modulate their function and activity. The development of potent PRMT inhibitors has become an emerging and imperative research area in the drug discovery field to provide novel therapeutic agents for treating diseases and as tools to investigate the biological functions of PRMTs. PRMT1 is the major type I enzyme that catalyzes the formation of asymmetric dimethyl arginine, and PRMT1 plays important regulatory roles in signal transduction, transcriptional activation, RNA splicing, and DNA repair. Aberrant expression of PRMT1 is found in many types of cancers, pulmonary diseases, cardiovascular disease, diabetes, and renal diseases. PRMT1 is a highly promising target for therapeutic development. We created a stopped flow fluorescence-based assay for PRMT1 inhibitor detection and characterization that has the advantages of being homogeneous, nonradioactive, and mix-and-measure in nature, allowing for continuous measurement of the methylation reaction and its inhibition. To our knowledge, this is the first continuous assay for PRMT1 reaction detection and inhibitor characterization. The approach is not only capable of quantitatively determining the potency (IC50) of PRMT1 inhibitors but can also distinguish cofactor-competitive inhibitors, substrate-competitive inhibitors, and mixed-type inhibitors.
Collapse
|
15
|
Burgos ES, Walters RO, Huffman DM, Shechter D. A simplified characterization of S-adenosyl-l-methionine-consuming enzymes with 1-Step EZ-MTase: a universal and straightforward coupled-assay for in vitro and in vivo setting. Chem Sci 2017; 8:6601-6612. [PMID: 29449933 PMCID: PMC5676521 DOI: 10.1039/c7sc02830j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/25/2017] [Indexed: 01/02/2023] Open
Abstract
Methyltransferases use S-adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets. Successful assignment of methyltransferases' roles within intricate biological networks relies on (1) the access to enzyme mechanistic insights and (2) the efficient screening of chemical probes against these targets. To characterize methyltransferases in vitro and in vivo, we report a highly-sensitive one-step deaminase-linked continuous assay where the S-adenosyl-l-homocysteine (SAH) enzyme-product is rapidly and quantitatively catabolized to S-inosyl-l-homocysteine (SIH). To highlight the broad capabilities of this assay, we established enzymatic characteristics of two protein arginine methyltransferases (PRMT5 and PRMT7), a histone-lysine N-methyltransferase (DIM-5) and a sarcosine/dimethylglycine N-methyltransferase (SDMT). Since the coupling deaminase TM0936 displays robust activity over a broad pH-range we determined the pH dependence of SDMT reaction rates. TM0936 reactions are monitored at 263 nm, so a drawback may arise when methyl acceptor substrates absorb within this UV-range. To overcome this limitation, we used an isosteric fluorescent SAM-analog: S-8-aza-adenosyl-l-methionine. Most enzymes tolerated this probe and sustained methyltransfers were efficiently monitored through loss of fluorescence at 360 nm. Unlike discontinuous radioactive- and antibody-based assays, our assay provides a simple, versatile and affordable approach towards the characterization of methyltransferases. Supported by three logs of linear dynamic range, the 1-Step EZ-MTase can detect methylation rates as low as 2 μM h-1, thus making it possible to quantify low nanomolar concentrations of glycine N-methyltransferase within crude biological samples. With Z'-factors above 0.75, this assay is well suited to high-throughput screening and may promote the identification of novel therapeutics.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA . ; ; ; Tel: +1-718-430-4120 ; Tel: +1-718-430-4128
| | - Ryan O Walters
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Medicine , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Institute for Aging Research , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA
| | - Derek M Huffman
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Medicine , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA.,Department of Institute for Aging Research , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA
| | - David Shechter
- Department of Biochemistry , Albert Einstein College of Medicine , 1300 Morris Park Avenue , Bronx , New York 10461 , USA . ; ; ; Tel: +1-718-430-4120 ; Tel: +1-718-430-4128
| |
Collapse
|
16
|
Guitot K, Drujon T, Burlina F, Sagan S, Beaupierre S, Pamlard O, Dodd RH, Guillou C, Bolbach G, Sachon E, Guianvarc'h D. A direct label-free MALDI-TOF mass spectrometry based assay for the characterization of inhibitors of protein lysine methyltransferases. Anal Bioanal Chem 2017; 409:3767-3777. [PMID: 28389916 DOI: 10.1007/s00216-017-0319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/27/2022]
Abstract
Histone lysine methylation is associated with essential biological functions like transcription activation or repression, depending on the position and the degree of methylation. This post-translational modification is introduced by protein lysine methyltransferases (KMTs) which catalyze the transfer of one to three methyl groups from the methyl donor S-adenosyl-L-methionine (AdoMet) to the amino group on the side chain of lysines. The regulation of protein lysine methylation plays a primary role not only in the basic functioning of normal cells but also in various pathologies and KMT deregulation is associated with diseases including cancer. These enzymes are therefore attractive targets for the development of new antitumor agents, and there is still a need for direct methodology to screen, identify, and characterize KMT inhibitors. We report here a simple and robust in vitro assay to quantify the enzymatic methylation of KMT by MALDI-TOF mass spectrometry. Following this protocol, we can monitor the methylation events over time on a peptide substrate. We detect in the same spectrum the modified and unmodified substrates, and the ratios of both signals are used to quantify the amount of methylated substrate. We first demonstrated the validity of the assay by determining inhibition parameters of two known inhibitors of the KMT SET7/9 ((R)-PFI-2 and sinefungin). Next, based on structural comparison with these inhibitors, we selected 42 compounds from a chemical library. We applied the MALDI-TOF assay to screen their activity as inhibitors of the KMT SET7/9. This study allowed us to determine inhibition constants as well as kinetic parameters of a series of SET7/9 inhibitors and to initiate a structure activity discussion with this family of compounds. This assay is versatile and can be easily adapted to other KMT substrates and enzymes as well as automatized.
Collapse
Affiliation(s)
- Karine Guitot
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Thierry Drujon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabienne Burlina
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandrine Sagan
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandra Beaupierre
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Olivier Pamlard
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Robert H Dodd
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Catherine Guillou
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Gérard Bolbach
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Dominique Guianvarc'h
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France. .,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| |
Collapse
|
17
|
Neelakantan H, Vance V, Wang HYL, McHardy SF, Watowich SJ. Noncoupled Fluorescent Assay for Direct Real-Time Monitoring of Nicotinamide N-Methyltransferase Activity. Biochemistry 2017; 56:824-832. [DOI: 10.1021/acs.biochem.6b01215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harshini Neelakantan
- Department
of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Virginia Vance
- Department
of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hua-Yu Leo Wang
- Center
for Innovative Drug Discovery, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Stanton F. McHardy
- Center
for Innovative Drug Discovery, Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Stanley J. Watowich
- Department
of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
18
|
Wei H, Liang F, Meng G, Nie Z, Zhou R, Cheng W, Wu X, Feng Y, Wang Y. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells. Sci Rep 2016; 6:33402. [PMID: 27624276 PMCID: PMC5022064 DOI: 10.1038/srep33402] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.
Collapse
Affiliation(s)
- Hongying Wei
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Fan Liang
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Ge Meng
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Zhiqing Nie
- Shanghai Jiao Tong University School of Environmental Science and Engineering, Shanghai, 200240, China
| | - Ren Zhou
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Wei Cheng
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Xiaomeng Wu
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Yan Feng
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China
| | - Yan Wang
- Shanghai Jiao Tong University School of Public Health; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200025, China.,Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
19
|
Cohen DO, Duchin S, Feldman M, Zarivach R, Aharoni A, Levy D. Engineering of Methylation State Specific 3xMBT Domain Using ELISA Screening. PLoS One 2016; 11:e0154207. [PMID: 27111853 PMCID: PMC4844143 DOI: 10.1371/journal.pone.0154207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023] Open
Abstract
The ε-amino group of lysine residues may be mono-, di- or tri-methylated by protein lysine methyltransferases. In the past few years it has been highly considered that methylation of both histone and non-histone proteins has fundamental role in development and progression of various human diseases. Thus, the establishment of tools to study lysine methylation that will distinguish between the different states of methylation is required to elucidate their cellular functions. The 3X malignant brain tumor domain (3XMBT) repeats of the Lethal(3)malignant brain tumor-like protein 1 (L3MBTL1) have been utilized in the past as an affinity reagent for the identification of mono- and di-methylated lysine residues on individual proteins and on a proteomic scale. Here, we have utilized the 3XMBT domain to develop an enzyme-linked immunosorbent assay (ELISA) that allows the high-throughput detection of 3XMBT binding to methylated lysines. We demonstrated that this system allows the detection of methylated peptides, methylated proteins and PKMT activity on both peptides and proteins. We also optimized the assay to detect 3XMBT binding in crude E. coli lysates which facilitated the high throughput screening of 3XMBT mutant libraries. We have utilized protein engineering tools and generated a double site saturation 3XMBT library of residues 361 and 411 that were shown before to be important for binding mono and di-methylated substrates and identified variants that can exclusively recognize only di-methylated peptides. Together, our results demonstrate a powerful new approach that will contribute to deeper understanding of lysine methylation biology and that can be utilized for the engineering of domains for specific binders of other post-translational modifications.
Collapse
Affiliation(s)
- Dan Od Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Shai Duchin
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
- * E-mail: (DL); (AA)
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- The National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Be’er Sheva, Israel
- * E-mail: (DL); (AA)
| |
Collapse
|