1
|
Wang X, Liu W, Zhan C, Zhang Y, Li X, Wang Y, Sheng M, Maqsood M, Shen H, Liang A, Shao W. Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway. iScience 2025; 28:111626. [PMID: 39850359 PMCID: PMC11754826 DOI: 10.1016/j.isci.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC. We found that expression of EZH2-A/EZH2-B in tumor tissues and cell lines was significantly higher than in normal tissues. Conversely, EZH2-C expression was lower in tumor tissues and cell lines than in normal tissues. Further functional analysis indicated that unlike full-length EZH2-A that promotes H3K27 methylation, EZH2-C reduced H3K27me3 levels. EZH2-C inhibited proliferation, migration, invasion of HCC cells. Moreover, EZH2-A and EZH2-C regulate the BMP2 signaling pathway oppositely. Mechanistically, EZH2's alternative splicing was mediated by splicing factor SNRPB. In summary, this study revealed that alternative splicing of EZH2 regulates HCC.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weiyi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chunai Zhan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinyu Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yaoyun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Madiha Maqsood
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hang Shen
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Anhui Medical University, Hefei 230000, China
| | - Anmin Liang
- College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
2
|
Liao X, Kang L, Peng Y, Chai X, Xie P, Lin C, Ji H, Jiao Y, Liu J. Multivariate stochastic modeling for transcriptional dynamics with cell-specific latent time using SDEvelo. Nat Commun 2024; 15:10849. [PMID: 39738101 DOI: 10.1038/s41467-024-55146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results. Here, we present SDEvelo, a generative approach to inferring RNA velocity by modeling the dynamics of unspliced and spliced RNAs via multivariate stochastic differential equations (SDE). Uniquely, SDEvelo explicitly models inherent uncertainty in transcriptional dynamics while estimating a cell-specific latent time across genes. Using both simulated and four scRNA-seq and spatial transcriptomics datasets, we show that SDEvelo can model the random dynamic patterns of mature-state cells while accurately detecting carcinogenesis. Additionally, the estimated gene-shared latent time can facilitate many downstream analyses for biological discovery. We demonstrate that SDEvelo is computationally scalable and applicable to both scRNA-seq and sequencing-based spatial transcriptomics data.
Collapse
Affiliation(s)
- Xu Liao
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Lican Kang
- Institute for Math and AI, Wuhan University, Wuhan, China
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Yihao Peng
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China
| | - Xiaoran Chai
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Xie
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yuling Jiao
- School of Artificial Intelligence, Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China.
| | - Jin Liu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China.
| |
Collapse
|
3
|
Meng Q, Shen J, Ren Y, Liu Q, Wang R, Li Q, Jiang W, Wang Q, Zhang Y, Trinidad JC, Lu X, Wang T, Li Y, Yum C, Yi Y, Yang Y, Zhao D, Harris C, Kalantry S, Chen K, Yang R, Niu H, Cao Q. EZH2 directly methylates PARP1 and regulates its activity in cancer. SCIENCE ADVANCES 2024; 10:eadl2804. [PMID: 39602541 PMCID: PMC11601213 DOI: 10.1126/sciadv.adl2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
DNA repair dysregulation is a key driver of cancer development. Understanding the molecular mechanisms underlying DNA repair dysregulation in cancer cells is crucial for cancer development and therapies. Here, we report that enhancer of zeste homolog 2 (EZH2) directly methylates poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1), an essential enzyme involved in DNA repair, and regulates its activity. Functionally, EZH2-catalyzed methylation represses PARP1 catalytic activity, down-regulates the recruitment of x-ray repair cross-complementing group-1 to DNA lesions and its associated DNA damage repair; on the other hand, it protects the cells from nicotinamide adenine dinucleotide overconsumption upon DNA damage formation. Meanwhile, EZH2-mediated methylation regulates PARP1 transcriptional and oncogenic activity, at least in part, through impairing PARP1-E2F1 interaction and E2F1 transcription factor activity. EZH2 and PARP1 inhibitors synergistically suppress prostate cancer growth. Collectively, our findings uncover an insight of EZH2 functions in fine-tuning PARP1 activity during DNA damage repair and cancer progression, which provides a rationale for combinational targeting EZH2 and PARP1 in cancer.
Collapse
Affiliation(s)
- Qingshu Meng
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Yanan Ren
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rui Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaqia Li
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Quan Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Yixiang Zhang
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
- Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | - Jonathan C. Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
| | - Xiaotong Lu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tingyou Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chaehyun Yum
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rendong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Liu N, Zhang J, Chen W, Ma W, Wu T. RBM39 Enhances Cholangiocarcinoma Growth Through EZH2-mediated WNT7B/β-catenin Pathway. Cell Mol Gastroenterol Hepatol 2024; 19:101404. [PMID: 39278404 PMCID: PMC11609384 DOI: 10.1016/j.jcmgh.2024.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND & AIMS The RNA-binding motif protein 39 (RBM39) functions as both an RNA-binding protein and a splicing factor in a variety of cancer types. However, the function of RBM39 in cholangiocarcinoma (CCA) remains undefined. In this study, we aimed to investigate the role of RBM39 in CCA and explore its potential as a therapeutic target. METHODS The expression of RBM39 in CCA was investigated by analyzing human CCA tumor specimens. CRISPR/Cas9 or shRNA-mediated depletion of RBM39 was performed in vitro and in vivo to document the oncogenic role of RBM39 in CCA. The anti-tumor effect of the RBM39 inhibitor, Indisulam, in combination with the EZH2 degrader MS177 was assessed in vitro and in vivo. RESULTS RBM39 is significantly increased in human CCA tissues and associated with a poor prognosis in patients with CCA. Depletion of RBM39 by CRISPR/Cas9 or shRNA inhibited CCA cell proliferation in vitro and prevented CCA development and tumor growth in mice. Mechanistically, our results showed that depletion of RBM39 suppressed EZH2 expression via disrupting its mRNA splicing. RBM39-regulated EZH2 controls WNT7B/β-catenin activity. Pharmacological co-targeting of RBM39 (with Indisulam) and EZH2 (with MS177) resulted in a synergistic antitumor effect, both in vitro and in vivo. CONCLUSION This study discloses a novel RBM39-EZH2-β-catenin signaling axis that is crucial for CCA growth. Our findings suggest that simultaneous inhibition of RBM39 and EZH2 presents a promising therapeutic strategy for CCA treatment.
Collapse
Affiliation(s)
- Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
5
|
Doria-Borrell P, Pérez-García V. Understanding the intersection between placental development and cancer: Lessons from the tumor suppressor BAP1. Commun Biol 2024; 7:1053. [PMID: 39191942 PMCID: PMC11349880 DOI: 10.1038/s42003-024-06689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The placenta, a pivotal organ in mammalian reproduction, allows nutrient exchange and hormonal signaling between the mother and the developing fetus. Understanding its molecular intricacies is essential for deciphering normal embryonic development and pathological conditions such as tumorigenesis. Here, we explore the multifaceted role of the tumor suppressor BRCA1-associated protein 1 (BAP1) in cancer and placentation. Initially recognized for its tumor-suppressive properties, BAP1 has emerged as a key regulator at the intersection of tumorigenesis and placental development. BAP1 influences crucial cellular processes such as cell death, proliferation, metabolism, and response to hypoxic conditions. By integrating insights from tumor and developmental biology, we illuminate the complex molecular pathways orchestrated by BAP1. This perspective highlights BAP1's significant impact on both cancer and placental development, and suggests novel therapeutic strategies that could improve outcomes for pregnancy disorders and cancer.
Collapse
Affiliation(s)
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
6
|
Sánchez-Ceinos J, Hussain S, Khan AW, Zhang L, Almahmeed W, Pernow J, Cosentino F. Repressive H3K27me3 drives hyperglycemia-induced oxidative and inflammatory transcriptional programs in human endothelium. Cardiovasc Diabetol 2024; 23:122. [PMID: 38580969 PMCID: PMC10998410 DOI: 10.1186/s12933-024-02196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.
Collapse
Affiliation(s)
- Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shafaat Hussain
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Abdul Waheed Khan
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Liang Zhang
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - John Pernow
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Chauhan M, Arshi SA, Narayanan N, Arfin HU, Sharma A. A mechanistic insight on how Compromised Hydrolysis of Triacylglycerol 7 (CHT7) restrains the involvement of it's CXC domain from quiescence repression. Int J Biol Macromol 2024; 265:130844. [PMID: 38484809 DOI: 10.1016/j.ijbiomac.2024.130844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
CHT7 is a regulator of quiescence repression in Chlamydomonas reinhardtii. Initially, CHT7's repression activity was thought to be managed by its DNA-binding CXC domain. Later, it was found that the CHT7-CXC domain is dispensable for CHT7's activities. Rather, CHT7's predicted protein domains were proposed to be involved in regulation activities by binding to other repressors in the cell. Yet, it remains unclear why and how CHT7 refrains its CXC domain from participating in any transcriptional activities. The question becomes more intriguing, since CXC binding regions are available in promoter regions of some of the misregulated genes in CHT7 mutant (cht7). Through biophysical experiments and molecular dynamics approaches, we studied the DNA recognition behavior of CHT7-CXC. The results indicate that this domain possesses sequence selectivity due to the differential binding abilities of its subdomains. Further, to understand if the case is that CXC loses its DNA binding capabilities in the vicinity of other repressors, we examined CHT7-CXC's DNA binding stability under the spatial constraint conditions created through fusing CHT7-CXC with AsLOV2. The results show limited ability of CHT7-CXC to withstand steric forces and provide insights to why and how algal cells may hold back CHT7-CXC's indulgence in quiescence repression. CLASSIFICATIONS: Biological Sciences, Biophysics and Computational Biology.
Collapse
Affiliation(s)
- Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Syeda Amna Arshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, NCR-Cluster Faridabad, Haryana 121001, India
| | - Haseeb Ul Arfin
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
8
|
Arecco N, Mocavini I, Blanco E, Ballaré C, Libman E, Bonnal S, Irimia M, Di Croce L. Alternative splicing decouples local from global PRC2 activity. Mol Cell 2024; 84:1049-1061.e8. [PMID: 38452766 DOI: 10.1016/j.molcel.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.
Collapse
Affiliation(s)
- Niccolò Arecco
- Systems and Synthetic Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Ivano Mocavini
- Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Cecilia Ballaré
- Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Elina Libman
- Systems and Synthetic Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Sophie Bonnal
- Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Manuel Irimia
- Systems and Synthetic Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Luciano Di Croce
- Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
9
|
Hong R, Wu J, Chen X, Zhang Z, Liu X, Li M, Zuo F, Zhang GW. mRNA-Seq of testis and liver tissues reveals a testis-specific gene and alternative splicing associated with hybrid male sterility in dzo. J Anim Sci 2024; 102:skae091. [PMID: 38551023 PMCID: PMC11135213 DOI: 10.1093/jas/skae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.
Collapse
Affiliation(s)
- Rui Hong
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xining Chen
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Zhenghao Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| |
Collapse
|
10
|
Klein DC, Lardo SM, McCannell KN, Hainer SJ. FACT regulates pluripotency through proximal and distal regulation of gene expression in murine embryonic stem cells. BMC Biol 2023; 21:167. [PMID: 37542287 PMCID: PMC10403911 DOI: 10.1186/s12915-023-01669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kurtis N McCannell
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. Biol Open 2023; 12:bio059955. [PMID: 37283223 PMCID: PMC10259849 DOI: 10.1242/bio.059955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
Affiliation(s)
- Rachel E. Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Christine A. Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Aki K. Braceros
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - J. Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535391. [PMID: 37066147 PMCID: PMC10103960 DOI: 10.1101/2023.04.03.535391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
|
13
|
Liu C, Yu P, Ren Z, Yao F, Wang L, Hu G, Li P, Zhao Q. Rif1 Regulates Self-Renewal and Impedes Mesendodermal Differentiation of Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10525-1. [PMID: 36971904 PMCID: PMC10366267 DOI: 10.1007/s12015-023-10525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Background
RAP1 interacting factor 1 (Rif1) is highly expressed in mice embryos and mouse embryonic stem cells (mESCs). It plays critical roles in telomere length homeostasis, DNA damage, DNA replication timing and ERV silencing. However, whether Rif1 regulates early differentiation of mESC is still unclear.
Methods
In this study, we generated a Rif1 conditional knockout mouse embryonic stem (ES) cell line based on Cre-loxP system. Western blot, flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), RNA high-throughput sequencing (RNA-Seq), chromatin immunoprecipitation followed high-throughput sequencing (ChIP-Seq), chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment.
Results
Rif1 plays important roles in self-renewal and pluripotency of mESCs and loss of Rif1 promotes mESC differentiation toward the mesendodermal germ layers. We further show that Rif1 interacts with histone H3K27 methyltransferase EZH2, a subunit of PRC2, and regulates the expression of developmental genes by directly binding to their promoters. Rif1 deficiency reduces the occupancy of EZH2 and H3K27me3 on mesendodermal gene promoters and activates ERK1/2 activities.
Conclusion
Rif1 is a key factor in regulating the pluripotency, self-renewal, and lineage specification of mESCs. Our research provides new insights into the key roles of Rif1 in connecting epigenetic regulations and signaling pathways for cell fate determination and lineage specification of mESCs.
Graphical abstract
Collapse
|
14
|
Guo SM, Liu XP, Tian Q, Fei CF, Zhang YR, Li ZM, Yin Y, He X, Zhou LQ. Regulatory roles of alternative splicing at Ezh2 gene in mouse oocytes. Reprod Biol Endocrinol 2022; 20:99. [PMID: 35791029 PMCID: PMC9254527 DOI: 10.1186/s12958-022-00962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enhancer of zeste homologue 2 (EZH2), the core member of polycomb repressive complex 2 (PRC2), has multiple splicing modes and performs various physiological functions. However, function and mechanism of alternative splicing at Ezh2 exon 3 in reproduction are unknown. METHODS We generated Ezh2Long and Ezh2Short mouse models with different point mutations at the Ezh2 exon 3 alternative splicing site, and each mutant mouse model expressed either the long or the short isoform of Ezh2. We examined mutant mouse fertility and oocyte development to assess the function of Ezh2 alternative splicing at exon 3 in the reproductive system. RESULTS We found that Ezh2Long female mice had normal fertility. However, Ezh2Short female mice had significantly decreased fertility and obstructed oogenesis, with compromised mitochondrial function in Ezh2Short oocytes. Interestingly, increased EZH2 protein abundance and accumulated H3K27me3 were observed in Ezh2Short oocytes. CONCLUSIONS Our results demonstrate that correct Ezh2 alternative splicing at exon 3 is important for mouse oogenesis.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing-Ping Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Tian
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Ming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Bighetti-Trevisan RL, Almeida LO, Castro-Raucci LMS, Gordon JAR, Tye CE, Stein GS, Lian JB, Stein JL, Rosa AL, Beloti MM. Titanium with nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by regulating histone methylation. BIOMATERIALS ADVANCES 2022; 134:112548. [PMID: 35012895 PMCID: PMC9098699 DOI: 10.1016/j.msec.2021.112548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
The bone remodeling process is crucial for titanium (Ti) osseointegration and involves the crosstalk between osteoclasts and osteoblasts. Considering the high osteogenic potential of Ti with nanotopography (Ti Nano) and that osteoclasts inhibit osteoblast differentiation, we hypothesized that nanotopography attenuate the osteoclast-induced disruption of osteoblast differentiation. Osteoblasts were co-cultured with osteoclasts on Ti Nano and Ti Control and non-co-cultured osteoblasts were used as control. Gene expression analysis using RNAseq showed that osteoclasts downregulated the expression of osteoblast marker genes and upregulated genes related to histone modification and chromatin organization in osteoblasts grown on both Ti surfaces. Osteoclasts also inhibited the mRNA and protein expression of osteoblast markers, and such effect was attenuated by Ti Nano. Also, osteoclasts increased the protein expression of H3K9me2, H3K27me3 and EZH2 in osteoblasts grown on both Ti surfaces. ChIP assay revealed that osteoclasts increased accumulation of H3K27me3 that represses the promoter regions of Runx2 and Alpl in osteoblasts grown on Ti Control, which was reduced by Ti Nano. In conclusion, these data show that despite osteoclast inhibition of osteoblasts grown on both Ti Control and Ti Nano, the nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by preventing the increase of H3K27me3 accumulation that represses the promoter regions of some key osteoblast marker genes. These findings highlight the epigenetic mechanisms triggered by nanotopography to protect osteoblasts from the deleterious effects of osteoclasts, which modulate the process of bone remodeling and may benefit the osseointegration of Ti implants.
Collapse
Affiliation(s)
- Rayana L. Bighetti-Trevisan
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana O. Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Jonathan A. R. Gordon
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Coralee E. Tye
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adalberto L. Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M. Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil,Corresponding author at: School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-904 Ribeiraõ Preto, SP, Brazil. (M.M. Beloti)
| |
Collapse
|
16
|
|
17
|
Yang HL, Xu C, Yang YK, Tang WQ, Hong M, Pan L, Chen HY. ZNF750 exerted its Antitumor Action in Oral Squamous Cell Carcinoma by regulating E2F2. J Cancer 2022; 12:7266-7276. [PMID: 35003347 PMCID: PMC8734408 DOI: 10.7150/jca.63919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Cell cycle activator E2F transcription factor 2 (E2F2) play a key role in tumor development and metastasis. Previous RNA sequence analysis (GSE134835) revealed E2F2 was significantly reduced by Zinc-finger protein 750 (ZNF750) in oral squamous cell carcinoma (OSCC). This study was aimed to determine the involvement of E2F2 in antitumor action of ZNF750. The nude mouse xenograft model was established by subcutaneously injection of stable cell line CAL-27oeZNF750 or CAL-27shZNF750. Xenograft tumor volume and tumor weight was measured. The expression of E2F2, transcriptional repressors such as enhancer of zeste 2 (Ezh2), PHD finger protein 19 (PHF19), and the genes related to cell proliferation or metastasis was studied in vivo or in vitro. Luciferase assay was performed to investigate regulation effect of ZNF750 on E2F2 luciferase activity. The involvement of E2F2 in the antitumor action of ZNF750 was studied by cotransduced ZNF750 with E2F2 lentivirus. The tumor growth and metastasis was repressed by ZNF750 manifested by reduced tumor size, tumor weight and the genes related to cell proliferation and metastasis. However, all of these were reversed by knockdown of the ZNF750 gene. Furthermore, E2F2 luciferase activity was inhibited by ZNF750. E2F2 partly blocked the antitumor action of ZNF750 manifested by increased self-renewal, invasion, migration, elevated Ezh2 and MMP13 protein expression in ZNF750 + E2F2 groups. However, silenced E2F2 further enhanced the antitumor action of ZNF750. ZNF750 depressed E2F2 activity and played a critical role in regulating transcriptional repressors for inhibiting the OSCC growth and metastasis in OSCC.
Collapse
Affiliation(s)
- Hong-Li Yang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, 252000, P.R. China
| | - Cong Xu
- Central laboratory of Liaocheng People's Hospital, Liaocheng, 252000, P.R. China
| | - Yi-Kun Yang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, 252000, P.R. China
| | - Wen-Qiang Tang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, 252000, P.R. China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Li Pan
- Central laboratory of Liaocheng People's Hospital, Liaocheng, 252000, P.R. China
| | - Hai-Ying Chen
- Central laboratory of Liaocheng People's Hospital, Liaocheng, 252000, P.R. China
| |
Collapse
|
18
|
Gopalan S, Wang Y, Harper NW, Garber M, Fazzio TG. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell 2021; 81:4736-4746.e5. [PMID: 34637755 PMCID: PMC8604773 DOI: 10.1016/j.molcel.2021.09.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here, we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell-type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different chromatin proteins.
Collapse
Affiliation(s)
- Sneha Gopalan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuqing Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas W Harper
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Blümli S, Wiechens N, Wu MY, Singh V, Gierlinski M, Schweikert G, Gilbert N, Naughton C, Sundaramoorthy R, Varghese J, Gourlay R, Soares R, Clark D, Owen-Hughes T. Acute depletion of the ARID1A subunit of SWI/SNF complexes reveals distinct pathways for activation and repression of transcription. Cell Rep 2021; 37:109943. [PMID: 34731603 PMCID: PMC8578704 DOI: 10.1016/j.celrep.2021.109943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
The ARID1A subunit of SWI/SNF chromatin remodeling complexes is a potent tumor suppressor. Here, a degron is applied to detect rapid loss of chromatin accessibility at thousands of loci where ARID1A acts to generate accessible minidomains of nucleosomes. Loss of ARID1A also results in the redistribution of the coactivator EP300. Co-incident EP300 dissociation and lost chromatin accessibility at enhancer elements are highly enriched adjacent to rapidly downregulated genes. In contrast, sites of gained EP300 occupancy are linked to genes that are transcriptionally upregulated. These chromatin changes are associated with a small number of genes that are differentially expressed in the first hours following loss of ARID1A. Indirect or adaptive changes dominate the transcriptome following growth for days after loss of ARID1A and result in strong engagement with cancer pathways. The identification of this hierarchy suggests sites for intervention in ARID1A-driven diseases. Degradation of ARID1A disrupts nucleosomes flanking pluripotency transcription factors EP300 is rapidly redistributed with increased occupancy adjacent to upregulated genes These changes are associated with misregulation of a few hundred genes within 2 h During subsequent days, widespread indirect changes mimic a premalignant state
Collapse
Affiliation(s)
- Seraina Blümli
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola Wiechens
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Meng-Ying Wu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vijender Singh
- Computational Core, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA
| | - Marek Gierlinski
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gabriele Schweikert
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | | | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Renata Soares
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - David Clark
- Division of Developmental Biology, National Institute of Child Health and Human Development, NIH, Building 6A, 6 Centre Drive, Bethesda, MD 20892, USA
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Yi X, He S, Wang S, Zhao H, Wu M, Liu S, Pan Y, Zhang Y, Sun X. Expression of different genotypes of bovine TRDMT1 gene and its polymorphisms association with body measures in Qinchuan cattle (Bos Taurus). Anim Biotechnol 2021:1-11. [PMID: 34629027 DOI: 10.1080/10495398.2021.1984248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA methyltransferase 2 (DNMT2) was renamed as tRNA aspartic acid methyltransferase 1 (TRDMT1) by catalyzing the methylation of tRNAAsp anti-codon loop C38. The development of sequencing of nucleic acids and protein detection techniques have prompted the demonstration that TRDMT1 mediated tRNA modification affects protein synthesis efficiency. This process affects the growth and development of animals. The DNA of 224 Qinchuan cattles aged 2-4 years old was collected in this experiment. The genetic variations of TRDMT1 exon and some intron regions were detected by mixed pool sequencing technology. qRT-PCR and Western Blot were used to detect the expression levels of mRNA and protein produced with the combination of different genetic variant loci. Three haplotypes were detected and the distribution ratios were different. Muscle tissue mRNA and protein testing showed that there were differences in mRNA expression levels among different genotypes (P < 0.05) and the protein expression levels between different genotypes show the same trend as mRNA. This study provides potential molecular materials for the improvement of Qinchuan cattle reproductivity and provides theoretical support for studying the effects of livestock TRDMT1 on animal growth and development.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuai He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shirong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Bitirim CV, Ozer ZB, Akcali KC. Estrogen receptor alpha regulates the expression of adipogenic genes genetically and epigenetically in rat bone marrow-derived mesenchymal stem cells. PeerJ 2021; 9:e12071. [PMID: 34595066 PMCID: PMC8436959 DOI: 10.7717/peerj.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Regulation of the efficacy of epigenetic modifiers is regarded as an important control mechanism in the determination and differentiation of stem cell fate. Studies are showing that the effect of estrogen is important in the differentiation of mesenchymal stem cells (MSCs) into adipocytes, osteocytes, and chondrocytes. Activation of certain transcription factors and epigenetic modifications in related genes play an active role in the initiation and completion of adipogenic differentiation. Understanding the role of estrogen in diseases such as obesity, which increases with the onset of menopause, will pave the way for more effective use of estrogen as a therapeutic option. Demonstration of the differentiation tendencies of MSCs change in the presence/absence of estrogen, especially the evaluation of reversible epigenetic changes, will provide valuable information for clinical applications. In this study, the effect of estrogen on the expression of genes involved in adipogenic differentiation of MSCs and accompanying epigenetic modifications was investigated. Our results showed that estrogen affects the expression of adipogenesis-related transcription factors such as PPARy, C/EBPα and Adipsin. In addition, after estrogen treatment, increased accumulation of estrogen receptor alpha (ERα) and repressive epigenetic markers such as H3K27me2 and H3K27me3 were observed on the promoter of given transcription factors. By using co-immunoprecipitation experiments we were also able to show that ERα physically interacts with the zeste homolog 2 (EZH2) H3K27 methyltransferase in MSCs. We propose that the increase of H3K27me2 and H3K27me3 markers on adipogenic genes upon estrogen treatment may be mediated by the direct interaction of ERα and EZH2. Taken together, these findings suggest that estrogen has a role as an epigenetic switcher in the regulation of H3K27 methylation leading to suppression of adipogenic differentiation of MSC.
Collapse
Affiliation(s)
| | - Zeynep B Ozer
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Kamil C Akcali
- Stem Cell Institute, Ankara University, Ankara, Turkey.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
22
|
Lin YH, Wu MH, Liu YC, Lyu PC, Yeh CT, Lin KH. LINC01348 suppresses hepatocellular carcinoma metastasis through inhibition of SF3B3-mediated EZH2 pre-mRNA splicing. Oncogene 2021; 40:4675-4685. [PMID: 34140643 DOI: 10.1038/s41388-021-01905-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNA) play crucial roles in hepatocellular carcinoma (HCC) progression. However, the specific functions of lncRNAs in alternative splicing (AS) and the metastatic cascade in liver cancer remain largely unclear. In this study, we identified a novel lncRNA, LINC01348, which was significantly downregulated in HCC and correlated with survival functions in HCC patients. Ectopic expression of LINC01348 induced marked inhibition of cell growth, and metastasis in vitro and in vivo. Conversely, these phenotypes were reversed upon knockdown of LINC01348. Mechanistically, LINC01348 complexed with splicing factor 3b subunit 3 (SF3B3) acted as a modulator of EZH2 pre-mRNA AS, and induced alterations in JNK/c-Jun activity and expression of Snail. Notably, C-terminal truncated HBx (Ct-HBx) negatively regulated LINC01348 through c-Jun signaling. Our data collectively highlight those novel regulatory associations involving LINC01348/SF3B3/EZH2/JNK/c-Jun/Snail are an important determinant of metastasis in HCC cells and support the potential utility of targeting LINC01348 as a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chung Liu
- Institute of Population Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Simeone N, Frezza AM, Zaffaroni N, Stacchiotti S. Tazemetostat for advanced epithelioid sarcoma: current status and future perspectives. Future Oncol 2020; 17:1253-1263. [PMID: 33289402 DOI: 10.2217/fon-2020-0781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelioid sarcoma (ES) is an aggressive ultra-rare soft-tissue sarcoma marked by SMARCB1/INI1 deficiency. SMARCB1/INI1 deficiency leads to elevated expression of EZH2, a component of polycomb repressive complex 2, which mediates gene silencing by catalyzing H3K27me3. Tazemetostat is an oral, SAM-competitive inhibitor of EZH2, whose blockade prevents the methylation of histone H3K27, thus decreasing the growth of EZH2 mutated or over-expressing cancer cells. Tazemetostat has been approved for the treatment of patients aged 16 years and older with metastatic or advanced ES not eligible for complete resection, based on the positive results of a single-arm Phase II basket study. Tazemetostat though represents a new treatment option for ES patients, although clinical/molecular predictors of response are still to be identified. The combination of tazemetostat with other drugs like doxorubicin and immunotherapeutic agents is currently under investigation in ES patients.
Collapse
Affiliation(s)
- Noemi Simeone
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Anna Maria Frezza
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| |
Collapse
|
24
|
Cai Q, Wen K, Ma M, Chen W, Mo D, He Z, Chen Y, Cong P. EZH2 is essential for spindle assembly regulation and chromosomal integrity during porcine oocyte meiotic maturation†. Biol Reprod 2020; 104:562-577. [PMID: 33246325 DOI: 10.1093/biolre/ioaa214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) has been extensively investigated to participate in diverse biological processes, including carcinogenesis, the cell cycle, X-chromosome inactivation, and early embryonic development. However, the functions of this protein during mammalian oocyte meiotic maturation remain largely unexplored. Here, combined with RNA-Seq, we provided evidence that EZH2 is essential for oocyte meiotic maturation in pigs. First, EZH2 protein expression increased with oocyte progression from GV to MII stage. Second, the siRNA-mediated depletion of EZH2 led to accelerated GVBD and early occurrence of the first polar body extrusion. Third, EZH2 knockdown resulted in defective spindle assembly, abnormal SAC activity, and unstable K-MT attachment, which was concomitant with the increased rate of aneuploidy. Finally, EZH2 silencing exacerbated oxidative stress by increasing ROS levels and disrupting the distribution of active mitochondria in porcine oocytes. Furthermore, parthenogenetic embryonic development was impaired following the depletion of EZH2 at GV stage. Taken together, we concluded that EZH2 is necessary for porcine oocyte meiotic progression through regulating spindle organization, maintaining chromosomal integrity, and mitochondrial function.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miao Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Identification and Expression Pattern of EZH2 in Pig Developing Fetuses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5315930. [PMID: 33083470 PMCID: PMC7557918 DOI: 10.1155/2020/5315930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
The proper methylation status of histones is essential for appropriate cell lineage and organogenesis. EZH2, a methyltransferase catalyzing H3K27me3, has been abundantly studied in human and mouse embryonic development. The pig is an increasing important animal model for molecular study and pharmaceutical research. However, the transcript variant and temporal expression pattern of EZH2 in the middle and late porcine fetus are still unknown. Here, we identified the coding sequence of the EZH2 gene and characterized its expression pattern in fetal tissues of Duroc pigs at 65- and 90-day postcoitus (dpc). Our results showed that the coding sequence of EZH2 was 2241 bp, encoding 746 amino acids. There were 9 amino acid insertions and an amino acid substitution in this transcript compared with the validated reference sequence in NCBI. EZH2 was ubiquitously expressed in the fetal tissues of two time points with different expression levels. These results validated a different transcript in pigs and characterized its expression profile in fetal tissues of different gestation stages, which indicated that EZH2 played important roles during porcine embryonic development.
Collapse
|
26
|
Mesa AM, Mao J, Nanjappa MK, Medrano TI, Tevosian S, Yu F, Kinkade J, Lyu Z, Liu Y, Joshi T, Wang D, Rosenfeld CS, Cooke PS. Mice lacking uterine enhancer of zeste homolog 2 have transcriptomic changes associated with uterine epithelial proliferation. Physiol Genomics 2020; 52:81-95. [PMID: 31841397 PMCID: PMC7052568 DOI: 10.1152/physiolgenomics.00098.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that suppresses gene expression. Previously, we developed a conditional null model where EZH2 is knocked out in uterus. Deletion of uterine EZH2 increased proliferation of luminal and glandular epithelial cells. Herein, we used RNA-Seq in wild-type (WT) and EZH2 conditional knockout (Ezh2cKO) uteri to obtain mechanistic insights into the gene expression changes that underpin the pathogenesis observed in these mice. Ovariectomized adult Ezh2cKO mice were treated with vehicle (V) or 17β-estradiol (E2; 1 ng/g). Uteri were collected at postnatal day (PND) 75 for RNA-Seq or immunostaining for epithelial proliferation. Weighted gene coexpression network analysis was used to link uterine gene expression patterns and epithelial proliferation. In V-treated mice, 88 transcripts were differentially expressed (DEG) in Ezh2cKO mice, and Bmp5, Crabp2, Lgr5, and Sprr2f were upregulated. E2 treatment resulted in 40 DEG with Krt5, Krt15, Olig3, Crabp1, and Serpinb7 upregulated in Ezh2cKO compared with control mice. Transcript analysis relative to proliferation rates revealed two module eigengenes correlated with epithelial proliferation in WT V vs. Ezh2cKO V and WT E2 vs. Ezh2cKO E2 mice, with a positive relationship in the former and inverse in the latter. Notably, the ESR1, Wnt, and Hippo signaling pathways were among those functionally enriched in Ezh2cKO females. Current results reveal unique gene expression patterns in Ezh2cKO uterus and provide insight into how loss of this critical epigenetic regulator assumingly contributes to uterine abnormalities.
Collapse
Affiliation(s)
- Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
- Grupo de Investigación en Génetica, Mejoramiento y Modelación Animal-GaMMA, Universidad de Antioquia, Medellín, Colombia
| | - Jiude Mao
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Missouri
| | - Jessica Kinkade
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Zhen Lyu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Yang Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia; Missouri
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia; Missouri
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri
| | - Duolin Wang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Cheryl S Rosenfeld
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Biomedical Sciences, University of Missouri, Columbia, Missouri
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Missouri
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Hugues A, Jacobs CS, Roudier F. Mitotic Inheritance of PRC2-Mediated Silencing: Mechanistic Insights and Developmental Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:262. [PMID: 32211012 PMCID: PMC7075419 DOI: 10.3389/fpls.2020.00262] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
Maintenance of gene repression by Polycomb Repressive Complex 2 (PRC2) that catalyzes the trimethylation of histone H3 at lysine 27 (H3K27me3) is integral to the orchestration of developmental programs in most multicellular eukaryotes. Faithful inheritance of H3K27me3 patterns across replication ensures the stability of PRC2-mediated transcriptional silencing over cell generations, thereby safeguarding cellular identities. In this review, we discuss the molecular and mechanistic principles that underlie H3K27me3 restoration after the passage of the replication fork, considering recent advances in different model systems. In particular, we aim at emphasizing parallels and differences between plants and other organisms, focusing on the recycling of parental histones and the replenishment of H3K27me3 patterns post-replication thanks to the remarkable properties of the PRC2 complex. We then discuss the necessity for fine-tuning this genuine epigenetic memory system so as to allow for cell fate and developmental transitions. We highlight recent insights showing that genome-wide destabilization of the H3K27me3 landscape during chromatin replication participates in achieving this flexible stability and provides a window of opportunity for subtle transcriptional reprogramming.
Collapse
Affiliation(s)
- Alice Hugues
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Université de Lyon, Lyon, France
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Chean Sern Jacobs
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Université de Lyon, Lyon, France
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Université de Lyon, Lyon, France
- *Correspondence: François Roudier,
| |
Collapse
|
28
|
Brand M, Nakka K, Zhu J, Dilworth FJ. Polycomb/Trithorax Antagonism: Cellular Memory in Stem Cell Fate and Function. Cell Stem Cell 2019; 24:518-533. [PMID: 30951661 PMCID: PMC6866673 DOI: 10.1016/j.stem.2019.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are continuously challenged with the decision to either self-renew or adopt a new fate. Self-renewal is regulated by a system of cellular memory, which must be bypassed for differentiation. Previous studies have identified Polycomb group (PcG) and Trithorax group (TrxG) proteins as key modulators of cellular memory. In this Perspective, we draw from embryonic and adult stem cell studies to discuss the complex roles played by PcG and TrxG in maintaining cell identity while allowing for microenvironment-mediated alterations in cell fate. Finally, we discuss the potential for targeting these proteins as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6.
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6
| | - Jiayu Zhu
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6.
| |
Collapse
|