1
|
Shi JF, Cheng MH, Zhou W, Zeng MZ, Chen Y, Yang JX, Wu H, Ye QH, Tang H, Zhang Q, Fu KY, Guo WC. Crucial roles of specialized chitinases in elytral and hindwing cuticles construction in Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2024; 80:4437-4449. [PMID: 38656531 DOI: 10.1002/ps.8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major potato (Solanum tuberosum) pest, infesting over 16 million km2 and causing substantial economic losses. The insect cuticle forms an apical extracellular matrix (ECM) envelope covering exposed organs to direct morphogenesis and confer structural protection. While select chitinase (Cht) genes have proven essential for larval development, their potential activities directing ECM remodeling underlying adult wing maturation remain undefined. RESULTS We investigated the expression patterns and performed an oral RNA interference (RNAi) screen targeting 19 LdChts in late-instar L. decemlineata larvae. Subsequently, we assessed their effects on adult eclosion and wing characteristics. Knockdown of LdCht5, LdCht7, LdCht10, LdIDGF2, and LdIDGF4, as well as others from Group IV (LdCht15, LdCht12, LdCht17, and LdCht13) and Groups VII-X (LdCht2, LdCht11, LdCht1, and LdCht3), resulting in shrunken, misshapen elytra with reduced areal density, as well as transverse wrinkling and impaired wing-tip folding in hindwings. Scanning electron micrographs revealed eroded elytral ridges alongside thinned, ruptured hindwing veins, indicative of mechanical fragility post-LdCht suppression. Spectroscopic analysis uncovered biomolecular alterations underlying the elytral anomalies, including decreases in peaks representing chitin, proteins, and lipids. This loss of essential ECM components provides evidence for the fragility, wrinkling, and shrinkage observed in the RNAi groups. CONCLUSION Our findings elucidate the crucial role of chitinases in the turnover of chitinous cuticles on beetle wings, offering insights into RNAi-based control strategies against this invasive pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji-Feng Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Man-Hong Cheng
- Chongqing College of Humanities, Science and Technology, Chongqing, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Mu-Zi Zeng
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Chen
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Jia-Xin Yang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hao Wu
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qiu-Hong Ye
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Tang
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Kai-Yun Fu
- Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Urumqi, China
| | - Wen-Chao Guo
- Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Urumqi, China
| |
Collapse
|
2
|
Fu TY, Ji SS, Tian YL, Lin YG, Chen YM, Zhong QE, Zheng SC, Xu GF. Methyl-CpG binding domain (MBD)2/3 specifically recognizes and binds to the genomic mCpG site with a β-sheet in the MBD to affect embryonic development in Bombyx mori. INSECT SCIENCE 2023; 30:1607-1621. [PMID: 36915030 DOI: 10.1111/1744-7917.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in β1-β6 or α1 in the MBD showed that β2-β3-turns in the β-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, β4-β6 and an α-helix, play a role in stabilizing the β-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without β4-β6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact β-sheet structure in its MBD, thus ensuring silkworm embryonic development.
Collapse
Affiliation(s)
- Tong-Yu Fu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuang-Shun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu-Lin Tian
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu-Mei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-En Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
de Carvalho CF. Epigenetic effects of climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101029. [PMID: 37028647 DOI: 10.1016/j.cois.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Climate change has been causing severe modifications to the environment that are predicted to aggravate in the future, which create critical challenges for insects to cope. Populations can respond to the changes depending on the standing genetic variation. Additionally, they could potentially rely on epigenetic mechanisms as a source of phenotypic variation. These mechanisms can influence gene regulation and can respond to the external environment, being implicated in phenotypic plasticity. Thus, epigenetic variation could be advantageous in changing, unpredictable environments. However, little is known about causal relationships between epigenetic marks and insects' phenotypes, and whether the effects are truly beneficial to the fitness. Empirical studies are now urgent to better understand whether epigenetic variation can help or hinder insect populations facing climate change.
Collapse
Affiliation(s)
- Clarissa F de Carvalho
- Dep. de Ecologia e Biologia Evolutiva, Federal University of São Paulo, Diadema 09972-270, Brazil.
| |
Collapse
|
4
|
Yang Q, Jin L, Ding Q, Hu W, Zou H, Xiao M, Chen K, Yu Y, Shang J, Huang X, Zhu Y. Novel Therapeutic Mechanism of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis via Upregulation of BTG2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9252319. [PMID: 36299602 PMCID: PMC9590117 DOI: 10.1155/2022/9252319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating and degenerative joint disease, which is characterized by progressive destruction of articular cartilage. Mesenchymal stem cells (MSCs) have been implicated in the treatment of OA. However, the function of adipose-derived MSCs (AD-MSCs) in OA and its underlying mechanism remain obscure. AIM We aimed to explore the function of AD-MSCs in OA and investigate its potential regulatory mechanism. METHODS A guinea pig model of OA was constructed. AD-MSCs injected into the articular cavity of OA guinea pigs were viewed by in vivo bioluminescence imaging. The effect of AD-MSCs on the gonarthritis of OA guinea pigs was evaluated through both macroscopic and microscopic detections. The detailed molecular mechanism was predicted by GEO databases and bioinformatics tools and then verified via mechanism experiments, including ChIP assay, DNA pulldown assay, and luciferase reporter assay. RESULTS AD-MSCs had a significant positive therapeutic effect on the gonarthritis of the OA model, and the overall effects of it was better than that of sodium hyaluronate (SH). B-cell translocation gene 2 (BTG2) was significantly downregulated in the articular cartilage of the OA guinea pigs. Furthermore, BTG2 was positively regulated by Krüppel-like factor 4 (KLF4) in AD-MSCs at the transcriptional level. AD-MSCs performed an effect on KLF4 expression at the transcriptional levels. CONCLUSION AD-MSCs suppresses OA progression through KLF4-induced transcriptional activation of BTG2. Our findings revealed an AD-MSCs-dominated therapeutic method for OA.
Collapse
Affiliation(s)
- Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - HaiBo Zou
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Mingming Xiao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Jin Shang
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Xiaolun Huang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
- Department of Hepatabiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
5
|
Shen Y, Zeng X, Chen G, Wu X. Comparative transcriptome analysis reveals regional specialization of gene expression in larval silkworm (Bombyx mori) midgut. INSECT SCIENCE 2022; 29:1329-1345. [PMID: 34997945 DOI: 10.1111/1744-7917.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Insect midgut plays a central role in food digestion and nutrition absorption. Larval silkworm midgut could be divided into 3 distinct regions based on their morphological colors. However, it remains rudimentary of regional gene expression and physiological function in larval silkworm midgut. Through transcriptome sequencing of 3 midgut compartments, a comprehensive analysis of gene expression atlas along the anterior-posterior axis was conducted. Posterior midgut was found transcriptionally divergent from anterior and middle midgut. Differentially expressed gene analysis revealed the regional specialization of digestive enzyme production, transmembrane transport, chitin metabolism, and hormone regulation in different midgut regions. In addition, gene subsets of pan-midgut and region-specific transcription factors (TFs) along the length of midgut were also identified. The results suggested that homeobox TFs might play an essential role in transcriptional variations across the midgut. Altogether, our study provided the first fundamental resource to investigate physiological function and regulation mechanism in larval midgut compartmentalization.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Du J, Zhao P, Wang J, Ma S, Yao L, Zhu X, Yang X, Zhang X, Sun Z, Liang S, Xing D, Duan J. Pupal Diapause Termination and Transcriptional Response of Antheraea pernyi (Lepidoptera: Saturniidae) Triggered by 20-Hydroxyecdysone. Front Physiol 2022; 13:888643. [PMID: 35721532 PMCID: PMC9204484 DOI: 10.3389/fphys.2022.888643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
The pupal diapause of univoltine Antheraea pernyi hampers sericultural and biotechnological applications, which requires a high eclosion incidence after artificial diapause termination to ensure production of enough eggs. The effect of pupal diapause termination using 20-hydroxyecdysone (20E) on the eclosion incidence has not been well-documented in A. pernyi. Here, the dosage of injected 20E was optimized to efficiently terminate pupal diapause of A. pernyi, showing that inappropriate dosage of 20E can cause pupal lethality and a low eclosion incidence. The optimal ratio of 20E to 1-month-old pupae was determined as 6 μg/g. Morphological changes showed visible tissue dissociation at 3 days post-injection (dpi) and eye pigmentation at 5 dpi. Comprehensive transcriptome analysis identified 1,355/1,592, 494/203, 584/297, and 1,238/1,404 upregulated and downregulated genes at 1, 3, 6, and 9 dpi, respectively. The 117 genes enriched in the information processing pathways of “signal transduction” and “signaling molecules and interaction” were upregulated at 1 and 3 dpi, including the genes involved in FOXO signaling pathway. One chitinase, three trehalase, and five cathepsin genes related to energy metabolism and tissue dissociation showed high expression levels at the early stage, which were different from the upregulated expression of four other chitinase genes at the later stage. Simultaneously, the expression of several genes involved in molting hormone biosynthesis was also activated between 1 and 3 dpi. qRT-PCR further verified the expression patterns of two ecdysone receptor genes (EcRB1 and USP) and four downstream response genes (E93, Br-C, βFTZ-F1, and cathepsin L) at the pupal and pharate stages, respectively. Taken together, these genes serve as a resource for unraveling the mechanism underlying pupal-adult transition; these findings facilitate rearing of larvae more than once a year and biotechnological development through efficient termination of pupal diapause in A. pernyi in approximately half a month.
Collapse
Affiliation(s)
- Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jiazhen Wang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Xuwei Zhu
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou, China
| | - Xinfeng Yang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou, China
| | - Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Zhenbo Sun
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
7
|
Montaño-Campaz ML, Dias LG, Bacca T, Toro-Restrepo B, Oliveira EE. Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology. CHEMOSPHERE 2022; 296:134042. [PMID: 35202668 DOI: 10.1016/j.chemosphere.2022.134042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Sublethal exposure to insecticides can trigger unintended responses in non-target insects that may disrupt reproductive and developmental performances of these organisms. Here, we assessed whether sublethal exposure to the pyrethroid insecticide deltamethrin in early life had sublethal and transgenerational effects on the reproduction (i.e., fecundity and fertility) and wing morphology of Chironomus columbiensis, an aquatic insect used as a water quality indicator. We first conducted concentration-response bioassays to evaluate the susceptibility of C. columbiensis larvae to deltamethrin. Our results revealed that deltamethrin toxicity was approximately 7-fold higher when C. columbiensis larvae where exposed to 96 h (LC50 = 0.17 [0.15-0.20] μg/L) than to 24 h (LC50 = 1.17 [0.97-1.43] μg/L). Furthermore, the sublethal exposures (at LC1 = 0.02 μg/L or LC10 = 0.05 μg/L) of immature C. columbiensis resulted in lower fecundity (e.g., reduced eggs production) and morphometric variation wing shapes. Further reduction in fertility rates (quantity of viable eggs) occurred at deltamethrin LC10 (0.05 μg/L). Almost 80% of the fecundity was recovered with only a single recovery generation; however, two subsequent recovery generations were not sufficient to fully recover fecundity in C. columbiensis. Specimens recovered from 98.5% of wing morphometric variation after two consecutive generations without deltamethrin exposure. Collectively, our findings demonstrates that sublethal exposure to synthetic pyrethroids such as deltamethrin detrimentally affect the reproduction and wing shape of C. columbiensis, but also indicate that proper management of these compounds (e.g., concentration and frequency of application) would suffice for these insects' population recovery.
Collapse
Affiliation(s)
- Milton L Montaño-Campaz
- Programa de Doctorado, Facultad de Ciencias Agropecuarias, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia; Programa de Pós-Graduação Em Ecologia, Universidade Federal do Viçosa (UFV), 36570-900, Viçosa, MG, Brazil
| | - Lucimar G Dias
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Y Naturales, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
| | - Tito Bacca
- Facultad de Ingeniería Agronómica, Universidad del Tolima., Tolima, Colombia
| | - Beatriz Toro-Restrepo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Y Naturales, Grupo de Investigación Bionat, Universidad de Caldas, Caldas, Colombia
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
8
|
Dai ML, Ye WT, Jiang XJ, Feng P, Zhu QY, Sun HN, Li FC, Wei J, Li B. Effect of Tachinid Parasitoid Exorista japonica on the Larval Development and Pupation of the Host Silkworm Bombyx mori. Front Physiol 2022; 13:824203. [PMID: 35250625 PMCID: PMC8889078 DOI: 10.3389/fphys.2022.824203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
The Tachinidae are natural enemies of many lepidopteran and coleopteran pests of crops, forests, and fruits. However, host-tachinid parasitoid interactions have been largely unexplored. In this study, we investigated the effects of tachinids on host biological traits, using Exorista japonica, a generalist parasitoid, and the silkworm Bombyx mori, its lepidopteran host, as models. We observed that E. japonica parasitoidism did not affect silkworm larval body weight gain and cocooning rate, whereas they caused shortened duration of molting from the final instar to the pupal stage, abnormal molting from larval to pupal stages, and a subsequent decrease in host emergence rate. Moreover, a decrease in juvenile hormone (JH) titer and an increase in 20-hydroxyecdysone (20E) titer in the hemolymph of parasitized silkworms occurred. The transcription of JH and 20E responsive genes was downregulated in mature parasitized hosts, but upregulated in parasitized prepupae while Fushi tarazu factor 1 (Ftz-f1), a nuclear receptor essential in larval ecdysis, showed dramatically reduced expression in parasitized hosts at both the mature and prepupal stages. Moreover, the transcriptional levels of BmFtz-f1 and its downstream target genes encoding cuticle proteins were downregulated in epidermis of parasitized hosts. Meanwhile, the content of trehalose was decreased in the hemolymph, while chitin content in the epidermis was increased in parasitized silkworm prepupae. These data reveal that the host may fine-tune JH and 20E synthesis to shorten developmental duration to combat established E. japonica infestation, while E. japonica silences BmFtz-f1 transcription to inhibit host pupation. This discovery highlights the novel target mechanism of tachinid parasitoids and provides new clues to host/tachinid parasitoid relationships.
Collapse
Affiliation(s)
- Min-Li Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Wen-Tao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | | | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qing-Yu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Hai-Na Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Fan-Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- *Correspondence: Jing Wei,
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
- Sericulture Institute of Soochow University, Suzhou, China
- Bing Li,
| |
Collapse
|
9
|
Moon Y, Patel M, Um S, Lee HJ, Park S, Park SB, Cha SS, Jeong B. Folic acid pretreatment and its sustained delivery for chondrogenic differentiation of MSCs. J Control Release 2022; 343:118-130. [PMID: 35051494 DOI: 10.1016/j.jconrel.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Dietary uptake of folic acid (FA) improves cartilage regeneration. In this work, we discovered that three days of FA treatment is highly effective for promoting chondrogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs). In a three-dimensional pellet culture, the levels of typical chondrogenic biomarkers, sulfated glycosaminoglycan, proteoglycan, type II collagen (COL II), SRY box transcription factor 9 (SOX 9), cartilage oligomeric matrix protein (COMP), and aggrecan (ACAN) increased significantly in proportion to FA concentration up to 30 μM. At the mRNA expression level, COL II, SOX 9, COMP, and ACAN increased 3.6-6.0-fold with FA treatment at 30 μM compared with the control system that did not receive FA treatment, and the levels with FA treatment were 1.6-2.5 times greater than those in the kartogenin-treated positive control system. FA treatment did not increase type I collagen α1 (COL I α1), an osteogenic biomarker which is a concern with most chondrogenic promoters. At the high FA concentration of 100 μM, significant decreases in chondrogenic biomarkers were observed, which might be related to DNA methylation. A thermogel system incorporating TMSCs and FA provided sustained release of FA over several days, similar to the FA treatment. The thermogel system confirmed the efficacy of FA in promoting chondrogenic promotion of TMSCs. The increased nuclear translocation of core-binding factor β subunit (CBFβ) and the runt-related transcription factor 1 (RUNX1) expression after FA treatment, together with molecular docking studies, suggest that the chondrogenic enhancement mechanism of FA is mediated by CBFβ and RUNX1.
Collapse
Affiliation(s)
- Yuna Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Soyoun Um
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Soo-Bong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
10
|
Chemical and Molecular Composition of the Chrysalis Reveals Common Chitin-rich Structural Framework for Monarchs and Swallowtails. J Mol Biol 2022; 434:167456. [PMID: 35045329 DOI: 10.1016/j.jmb.2022.167456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022]
Abstract
The metamorphosis of a caterpillar into a butterfly is an awe-inspiring example of how extraordinary functions are made possible through specific chemistry in nature's complex systems. The chrysalis exoskeleton is revealed and shed as a caterpillar transitions to butterfly form. We employed solid-state NMR to evaluate the chemical composition and types of biomolecules in the chrysalides from which Monarch and Swallowtail butterflies emerged. The chrysalis composition was remarkably similar between Monarch and Swallowtail. Chitin is the major polysaccharide component, present together with proteins and catechols or catechol-type linkages in each chrysalis. The high chitin content is comparable to the highest chitin-containing insect exoskeletons. Proteomics analysis of associated soluble proteins indicated the presence of chitinases that could be involved in synthesis and remodeling of the chrysalis as well as key cuticular proteins which play a role in the structural integrity of the chrysalis. The nearly identical 13C CPMAS NMR spectra of each chrysalis and similar structural proteins supports the presence of underlying design principles integrating chitin and protein partners to elaborate the chrysalis.
Collapse
|
11
|
Yang M, Liang S, Wang F. Differential DNA methylation between long-winged and short-winged adults of Nilaparvata lugens. 3 Biotech 2021; 11:476. [PMID: 34777933 DOI: 10.1007/s13205-021-03026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022] Open
Abstract
Nilaparvata lugens, a catastrophic rice pest in South East Asia, has adults with wing dimorphism. DNA methylation has been proved to play an important role in regulation of phenotype differentiation in insects. In this study, methylation sensitive amplification polymorphism (MSAP) was used to investigate the cytosine methylation state at CCGG sites in macropterous male adults (MMA) and brachypterous male adults (BMA) of brown planthopper. In MMA, the fully methylated ratio was 2.96%, hemi-methylated ratio 3.83% and total methylated ratio 6.79%. In BMA, they were 5.53%, 4.19% and 9.72%, respectively. There were significant differences in the methylation of the target sites (CCGG) between MMA and BMA (ØST = 0.2614, P = 0.0354). Based the PCoA results, a much clear separation were also shown between MMA and BMA along the first coordinate (38.8% of variance explained). We also cloned and got nine satisfactory sequences with different methylation states between MMA and BMA. Two of them have similarity with male-specific sequence in chromosome Y and lipophorin receptor gene in N. lugens, respectively. The result showed that the methylation patterns and levels were different between two wing phenotypes of N. lugens, and will facilitate research on the epigenetic mechanism of insect wing dimorphism.
Collapse
|
12
|
Time-Course Transcriptome Analysis Reveals Global Gene Expression Profiling and Dynamic Developmental Signatures across Complete Life Cycle of Bombyx mori. Processes (Basel) 2021. [DOI: 10.3390/pr9101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: The silkworm (Bombyx mori) is an important lepidopteran model insect worldwide which undergoes a complete metamorphosis developmental process. Although genome sequencing has been long performed, no transcriptome data covering the complete life cycle are available. Methods: Herein, a total of 10 samples were collected consecutively at four different developmental stages, including eggs of 24 h after oviposition (Ed) and eggs of 24 h after artificial egg-hatching (E); larvae from fist to fifth instar (L1–L5); early and late pupa (P4 and P8); and adult moth (M), were subjected to Illumina RNA-Seq and time-course analysis. Results: The summations of the gene expression of the silkworm ten developmental stages show: at Ed stage, eggs develop towards diapause status, the total gene expression level is relatively low; at E stage, after artificial egg-hatching, the expression level improves rapidly; during larval stages from L1–L5, the expression level rises gradually and reaches a peak at L5 stage; during pupae and moth stages, the total gene expression decline stage by stage. The results revealed a dynamical gene expression profile exhibiting significant differential expressions throughout the silkworm life cycle. Moreover, stage-specific key genes were identified at different developmental stages, suggesting their functions mainly characterized in maintaining insect development and immunity homeostasis or driving metamorphosis. GO annotation and KEGG enrichment analysis further revealed the most significantly enriched and fundamentally biological processes during silkworm growth. Conclusion: Collectively, our omics data depicted the first comprehensive landscape of dynamic transcriptome throughout complete developmental processes of B. mori. Our findings also provide valuable references and novel insights into understanding the molecular developmental remodeling events for other Lepidoptera species.
Collapse
|
13
|
Lyu H, Xu G, Peng X, Gong C, Peng Y, Song Q, Feng Q, Zheng S. Interacting C/EBPg and YBP regulate DNA methyltransferase 1 expression in Bombyx mori embryos and ovaries. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103583. [PMID: 34010702 DOI: 10.1016/j.ibmb.2021.103583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
DNA methylation is an important epigenetic modification. DNA methyltransferases (Dnmts), which catalyze the formation of 5-methylcytosine, play a role in ovarian and embryonic development in some insects. However, the underlying mechanism of Dnmt in mediating ovarian and embryonic development remains unclear. In this study, the regulation and function of Bombyx mori Dnmt1 were investigated. By progressively deleting the sequence upstream of Dnmt1, a region located between -580 and -560 region from the transcription initiation site was found to have the most transcriptional activity. Electrophoretic mobility shift assay and chromatin immunoprecipitation demonstrated that transcription factor Y box binding protein (YBP), a homolog of human Y box binding protein 1 (YBX1), bound to the -580 to -560 region. YBP knockdown and overexpression in a Bombyx cell line indicated that YBP activates Dnmt1 expression. Furthermore, GST-pulldown and co-immunoprecipitation demonstrated that YBP and ovarian CCAAT/enhancer binding protein (C/EBPg) could bind each other. Simultaneous knockdown of C/EBPg and YBP was more effective than single-gene RNAi in inhibiting Dnmt1 expression and reducing the hatching rate. These results demonstrated that the interaction of C/EBPg and YBP activated Dnmt1 expression. Correlated with the expression profiles of the studies genes, our results suggest that high-level expression and interaction of C/EBPg and YBP in ovaries and embryos enhance the expression of Dnmt1, thus ensuring high reproduction rate in B. mori.
Collapse
Affiliation(s)
- Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xuezhen Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengcheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|