1
|
Feng D, Liu B, Chen Z, Xu J, Geng M, Duan W, Ai J, Zhang H. Discovery of hematopoietic progenitor kinase 1 inhibitors using machine learning-based screening and free energy perturbation. J Biomol Struct Dyn 2025; 43:4152-4164. [PMID: 38198294 DOI: 10.1080/07391102.2024.2301754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a key negative regulator of T-cell receptor (TCR) signaling and a promising target for cancer immunotherapy. The development of novel HPK1 inhibitors is challenging yet promising. In this study, we used a combination of machine learning (ML)-based virtual screening and free energy perturbation (FEP) calculations to identify novel HPK1 inhibitors. ML-based screening yielded 10 potent HPK1 inhibitors (IC50 < 1 μM). The FEP-guided modification of the in-house false-positive hit, DW21302, revealed that a single key atom change could trigger activity cliffs. The resulting DW21302-A was a potent HPK1 inhibitor (IC50 = 2.1 nM) and potently inhibited cellular HPK1 signaling and enhanced T-cell function. Molecular dynamics (MD) simulations and ADME predictions confirmed DW21302-A as candidate compound. This study provides new strategies and chemical scaffolds for HPK1 inhibitor development.
Collapse
Affiliation(s)
- Dazhi Feng
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Bo Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hefeng Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Qian L, Lu X, Haris P, Zhu J, Li S, Yang Y. Enhancing clinical trial outcome prediction with artificial intelligence: a systematic review. Drug Discov Today 2025; 30:104332. [PMID: 40097090 DOI: 10.1016/j.drudis.2025.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Clinical trials are pivotal in drug development yet fraught with uncertainties and resource-intensive demands. The application of AI models to forecast trial outcomes could mitigate failures and expedite the drug discovery process. This review discusses AI methodologies that impact clinical trial outcomes, focusing on clinical text embedding, trial multimodal learning, and prediction techniques, while addressing practical challenges and opportunities.
Collapse
Affiliation(s)
- Long Qian
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK
| | - Xin Lu
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK
| | - Parvez Haris
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | | | - Shuo Li
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK
| | - Yingjie Yang
- Faculty of Computing Engineering Media, De Montfort University, Leicester, UK.
| |
Collapse
|
3
|
Ambreen S, Umar M, Noor A, Jain H, Ali R. Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine. Eur J Med Chem 2025; 284:117164. [PMID: 39721292 DOI: 10.1016/j.ejmech.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing. Generative adversarial networks (GANs) and variational autoencoders (VAEs) aid de novo drug design by creating novel drug-like compounds with desired properties. Case studies, such as DDR1 kinase inhibitors designed using generative models and CDK20 inhibitors developed via structure-based methods, highlight AI's ability to produce highly specific therapeutics. Models like SNF-CVAE and DeepDR further advance drug repurposing by uncovering new therapeutic applications for existing drugs. Advanced ML algorithms enhance precision in predicting drug efficacy, toxicity, and ADME-Tox properties, reducing development costs and improving drug-target interactions. AI also supports polypharmacology by optimizing multi-target drug interactions and enhances combination therapy through predictions of drug synergies and antagonisms. In nanomedicine, AI models like CURATE.AI and the Hartung algorithm optimize personalized treatments by predicting toxicological risks and real-time dosing adjustments with high accuracy. Despite its potential, challenges like data quality, model interpretability, and ethical concerns must be addressed. High-quality datasets, transparent models, and unbiased algorithms are essential for reliable AI applications. As AI continues to evolve, it is poised to revolutionize drug discovery and personalized medicine, advancing therapeutic development and patient care.
Collapse
Affiliation(s)
- Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Aaisha Noor
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Himangini Jain
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
4
|
Zhang Q, Yin W, Chen X, Zhou A, Zhang G, Zhao Z, Li Z, Zhang Y, Bunu SJ, Shen J, Zhu W, Jiang X, Xu Z. F-CPI: A Multimodal Deep Learning Approach for Predicting Compound Bioactivity Changes Induced by Fluorine Substitution. J Med Chem 2025; 68:706-718. [PMID: 39707149 DOI: 10.1021/acs.jmedchem.4c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Fluorine (F) substitution is a common method of drug discovery and development. However, there are no accurate approaches available for predicting the bioactivity changes after F-substitution, as the effect of substitution on the interactions between compounds and proteins (CPI) remains a mystery. In this study, we constructed a data set with 111,168 pairs of fluorine-substituted and nonfluorine-substituted compounds. We developed a multimodal deep learning model (F-CPI). In comparison with traditional machine learning and popular CPI task models, the accuracy, precision, and recall of F-CPI (∼90, ∼79, and ∼45%) were higher than those of GraphDTA (∼86, ∼58, and ∼40%). The application of the F-CPI for the structural optimization of hit compounds against SARS-CoV-2 3CLpro by F-substitution achieved a more than 100-fold increase in bioactivity (IC50: 0.23 μM vs 28.19 μM). Therefore, the multimodal deep learning model F-CPI would be a veritable and effective tool in the context of drug discovery and design.
Collapse
Affiliation(s)
- Qian Zhang
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai 200241, China
| | - Wenhai Yin
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai 200241, China
| | - Xinyao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Aimin Zhou
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai 200241, China
| | - Guixu Zhang
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai 200241, China
| | - Zhi Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Yangtze Delta Drug Advanced Research Institute and Yangtze Delta Pharmaceutical College, Nantong 226133, China
| | - Zhiqiang Li
- Vigonvita Life Sciences Co., Ltd., Suzhou 215021, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Gharebaghi A, Afshar S, Tapak L, Ranjbar H, Saidijam M, Dinu I. Utilizing an In-silico Approach to Pinpoint Potential Biomarkers for Enhanced Early Detection of Colorectal Cancer. Cancer Inform 2024; 23:11769351241307163. [PMID: 39687502 PMCID: PMC11648020 DOI: 10.1177/11769351241307163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Colorectal cancer (CRC) is a prevalent disease characterized by significant dysregulation of gene expression. Non-invasive tests that utilize microRNAs (miRNAs) have shown promise for early CRC detection. This study aims to determine the association between miRNAs and key genes in CRC. Methods Two datasets (GSE106817 and GSE23878) were extracted from the NCBI Gene Expression Omnibus database. Penalized logistic regression (PLR) and artificial neural networks (ANN) were used to identify relevant miRNAs and evaluate the classification accuracy of the selected miRNAs. The findings were validated through bipartite miRNA-mRNA interactions. Results Our analysis identified 3 miRNAs: miR-1228, miR-6765-5p, and miR-6787-5p, achieving a total accuracy of over 90%. Based on the results of the mRNA-miRNA interaction network, CDK1 and MAD2L1 were identified as target genes of miR-6787-5p. Conclusions Our results suggest that the identified miRNAs and target genes could serve as non-invasive biomarkers for diagnosing colorectal cancer, pending laboratory confirmation.
Collapse
Affiliation(s)
- Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Ranjbar
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Irina Dinu
- School of Public Health, Health Academy, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Ghazal H, El-Absawy ESA, Ead W, Hasan ME. Machine learning-guided differential gene expression analysis identifies a highly-connected seven-gene cluster in triple-negative breast cancer. Biomedicine (Taipei) 2024; 14:15-35. [PMID: 39777114 PMCID: PMC11703398 DOI: 10.37796/2211-8039.1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background One of the most challenging cancers is triple-negative breast cancer, which is subdivided into many molecular subtypes. Due to the high degree of heterogeneity, the role of precision medicine remains challenging. With the use of machine learning (ML)-guided gene selection, the differential gene expression analysis can be optimized, and eventually, the process of precision medicine can see great advancement through biomarker discovery. Purpose Enhancing precision medicine in the oncology field by identification of the most representative differentially-expressed genes to be used as biomarkers or as novel drug targets. Methods By utilizing data from the Gene Expression Omnibus (GEO) repository and The Cancer Genome Atlas (TCGA), we identified the differentially expressed genes using the linear model for microarray analysis (LIMMA) and edgeR algorithms, and applied ML-based feature selection using several algorithms. Results A total of 27 genes were selected by merging features identified with both LIMMA and ML-based feature selection methods. The models with the highest area under the curve (AUC) are CatBoost, Extreme Gradient Boosting (XGBoost), Random Forest, and Multi-Layer Perceptron classifiers. ESR1, FOXA1, GATA3, XBP1, GREB1, AR, and AGR2 were identified as hub genes in a highly interconnected cluster. Conclusion ML-based gene selection shows a great impact on the identification of hub genes. The ML models built can improve precision oncology in diagnosis and prognosis. The identified hub genes can serve as biomarkers and warrant further research for potential drug target development.
Collapse
Affiliation(s)
- Hany Ghazal
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City,
Egypt
| | - El-Sayed A. El-Absawy
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City,
Egypt
| | - Waleed Ead
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef,
Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City,
Egypt
| |
Collapse
|
7
|
Yau AWN, Chu SYC, Yap WH, Wong CL, Chia AYY, Tang YQ. Phage display screening in breast cancer: From peptide discovery to clinical applications. Life Sci 2024; 357:123077. [PMID: 39332485 DOI: 10.1016/j.lfs.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ashlyn Wen Ning Yau
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Sylvester Yee Chun Chu
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Chuan Loo Wong
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Funct Integr Genomics 2024; 24:166. [PMID: 39294509 DOI: 10.1007/s10142-024-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.
Collapse
Affiliation(s)
- Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prinsa R Nagar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Kaushikkumar A Bhakhar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Srivatsava Naidu
- Center of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
9
|
Riaz IB, Khan MA, Haddad TC. Potential application of artificial intelligence in cancer therapy. Curr Opin Oncol 2024; 36:437-448. [PMID: 39007164 DOI: 10.1097/cco.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW This review underscores the critical role and challenges associated with the widespread adoption of artificial intelligence in cancer care to enhance disease management, streamline clinical processes, optimize data retrieval of health information, and generate and synthesize evidence. RECENT FINDINGS Advancements in artificial intelligence models and the development of digital biomarkers and diagnostics are applicable across the cancer continuum from early detection to survivorship care. Additionally, generative artificial intelligence has promised to streamline clinical documentation and patient communications, generate structured data for clinical trial matching, automate cancer registries, and facilitate advanced clinical decision support. Widespread adoption of artificial intelligence has been slow because of concerns about data diversity and data shift, model reliability and algorithm bias, legal oversight, and high information technology and infrastructure costs. SUMMARY Artificial intelligence models have significant potential to transform cancer care. Efforts are underway to deploy artificial intelligence models in the cancer practice, evaluate their clinical impact, and enhance their fairness and explainability. Standardized guidelines for the ethical integration of artificial intelligence models in cancer care pathways and clinical operations are needed. Clear governance and oversight will be necessary to gain trust in artificial intelligence-assisted cancer care by clinicians, scientists, and patients.
Collapse
Affiliation(s)
- Irbaz Bin Riaz
- Department of AI and Informatics, Mayo Clinic, Minnesota
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Tufia C Haddad
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
López-Cortés A, Cabrera-Andrade A, Echeverría-Garcés G, Echeverría-Espinoza P, Pineda-Albán M, Elsitdie N, Bueno-Miño J, Cruz-Segundo CM, Dorado J, Pazos A, Gonzáles-Díaz H, Pérez-Castillo Y, Tejera E, Munteanu CR. Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses. Sci Rep 2024; 14:19359. [PMID: 39169044 PMCID: PMC11339426 DOI: 10.1038/s41598-024-68565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
The druggable proteome refers to proteins that can bind to small molecules with appropriate chemical affinity, inducing a favorable clinical response. Predicting druggable proteins through screening and in silico modeling is imperative for drug design. To contribute to this field, we developed an accurate predictive classifier for druggable cancer-driving proteins using amino acid composition descriptors of protein sequences and 13 machine learning linear and non-linear classifiers. The optimal classifier was achieved with the support vector machine method, utilizing 200 tri-amino acid composition descriptors. The high performance of the model is evident from an area under the receiver operating characteristics (AUROC) of 0.975 ± 0.003 and an accuracy of 0.929 ± 0.006 (threefold cross-validation). The machine learning prediction model was enhanced with multi-omics approaches, including the target-disease evidence score, the shortest pathways to cancer hallmarks, structure-based ligandability assessment, unfavorable prognostic protein analysis, and the oncogenic variome. Additionally, we performed a drug repurposing analysis to identify drugs with the highest affinity capable of targeting the best predicted proteins. As a result, we identified 79 key druggable cancer-driving proteins with the highest ligandability, and 23 of them demonstrated unfavorable prognostic significance across 16 TCGA PanCancer types: CDKN2A, BCL10, ACVR1, CASP8, JAG1, TSC1, NBN, PREX2, PPP2R1A, DNM2, VAV1, ASXL1, TPR, HRAS, BUB1B, ATG7, MARK3, SETD2, CCNE1, MUTYH, CDKN2C, RB1, and SMARCA4. Moreover, we prioritized 11 clinically relevant drugs targeting these proteins. This strategy effectively predicts and prioritizes biomarkers, therapeutic targets, and drugs for in-depth studies in clinical trials. Scripts are available at https://github.com/muntisa/machine-learning-for-druggable-proteins .
Collapse
Affiliation(s)
- Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador.
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Micaela Pineda-Albán
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Nicole Elsitdie
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - José Bueno-Miño
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Carlos M Cruz-Segundo
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Tecnológico de Estudios Superiores de Jocotitlán, Jocotitlán, Mexico
| | - Julian Dorado
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), University of A Coruna, A Coruña, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), University of A Coruna, A Coruña, Spain
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
| | - Humberto Gonzáles-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, Biscay, Spain
| | | | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), University of A Coruna, A Coruña, Spain
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
| |
Collapse
|
11
|
Duo L, Liu Y, Ren J, Tang B, Hirst JD. Artificial intelligence for small molecule anticancer drug discovery. Expert Opin Drug Discov 2024; 19:933-948. [PMID: 39074493 DOI: 10.1080/17460441.2024.2367014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The transition from conventional cytotoxic chemotherapy to targeted cancer therapy with small-molecule anticancer drugs has enhanced treatment outcomes. This approach, which now dominates cancer treatment, has its advantages. Despite the regulatory approval of several targeted molecules for clinical use, challenges such as low response rates and drug resistance still persist. Conventional drug discovery methods are costly and time-consuming, necessitating more efficient approaches. The rise of artificial intelligence (AI) and access to large-scale datasets have revolutionized the field of small-molecule cancer drug discovery. Machine learning (ML), particularly deep learning (DL) techniques, enables the rapid identification and development of novel anticancer agents by analyzing vast amounts of genomic, proteomic, and imaging data to uncover hidden patterns and relationships. AREA COVERED In this review, the authors explore the important landmarks in the history of AI-driven drug discovery. They also highlight various applications in small-molecule cancer drug discovery, outline the challenges faced, and provide insights for future research. EXPERT OPINION The advent of big data has allowed AI to penetrate and enable innovations in almost every stage of medicine discovery, transforming the landscape of oncology research through the development of state-of-the-art algorithms and models. Despite challenges in data quality, model interpretability, and technical limitations, advancements promise breakthroughs in personalized and precision oncology, revolutionizing future cancer management.
Collapse
Affiliation(s)
- Lihui Duo
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Yu Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jianfeng Ren
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Bencan Tang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham University Park, Nottingham, UK
| |
Collapse
|
12
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Du P, Fan R, Zhang N, Wu C, Zhang Y. Advances in Integrated Multi-omics Analysis for Drug-Target Identification. Biomolecules 2024; 14:692. [PMID: 38927095 PMCID: PMC11201992 DOI: 10.3390/biom14060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
As an essential component of modern drug discovery, the role of drug-target identification is growing increasingly prominent. Additionally, single-omics technologies have been widely utilized in the process of discovering drug targets. However, it is difficult for any single-omics level to clearly expound the causal connection between drugs and how they give rise to the emergence of complex phenotypes. With the progress of large-scale sequencing and the development of high-throughput technologies, the tendency in drug-target identification has shifted towards integrated multi-omics techniques, gradually replacing traditional single-omics techniques. Herein, this review centers on the recent advancements in the domain of integrated multi-omics techniques for target identification, highlights the common multi-omics analysis strategies, briefly summarizes the selection of multi-omics analysis tools, and explores the challenges of existing multi-omics analyses, as well as the applications of multi-omics technology in drug-target identification.
Collapse
Affiliation(s)
- Peiling Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (P.D.); (R.F.); (N.Z.); (C.W.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (P.D.); (R.F.); (N.Z.); (C.W.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (P.D.); (R.F.); (N.Z.); (C.W.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (P.D.); (R.F.); (N.Z.); (C.W.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (P.D.); (R.F.); (N.Z.); (C.W.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Das AP, Agarwal SM. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Mol Divers 2024; 28:901-925. [PMID: 36670282 PMCID: PMC9859751 DOI: 10.1007/s11030-022-10590-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Phytocompounds are a well-established source of drug discovery due to their unique chemical and functional diversities. In the area of cancer therapeutics, several phytocompounds have been used till date to design and develop new drugs. One of the desired interests of pharmaceutical companies and researchers globally is that new anti-cancer leads are discovered, for which phytocompounds can be considered a valuable source. Simultaneously, in recent years, the growth of computational approaches like virtual screening (VS), molecular dynamics (MD), pharmacophore modelling, Quantitative structure-activity relationship (QSAR), Absorption Distribution Metabolism Excretion and Toxicity (ADMET), network biology, and machine learning (ML) has gained importance due to their efficiency, reduced time-consuming nature, and cost-effectiveness. Therefore, the present review amalgamates the information on plant-based molecules identified for cancer lead discovery from in silico approaches. The mandate of this review is to discuss studies published in the last 5-6 years that aim to identify the phytomolecules as leads against cancer with the help of traditional computational approaches as well as newer techniques like network pharmacology and ML. This review also lists the databases and webservers available in the public domain for phytocompounds related information that can be harnessed for drug discovery. It is expected that the present review would be useful to pharmacologists, medicinal chemists, molecular biologists, and other researchers involved in the development of natural products (NPs) into clinically effective lead molecules.
Collapse
Affiliation(s)
- Agneesh Pratim Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
15
|
Tu G, Wang X, Xia R, Song B. m6A-TCPred: a web server to predict tissue-conserved human m 6A sites using machine learning approach. BMC Bioinformatics 2024; 25:127. [PMID: 38528499 PMCID: PMC10962094 DOI: 10.1186/s12859-024-05738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic cells that plays a crucial role in regulating various biological processes, and dysregulation of m6A status is involved in multiple human diseases including cancer contexts. A number of prediction frameworks have been proposed for high-accuracy identification of putative m6A sites, however, none have targeted for direct prediction of tissue-conserved m6A modified residues from non-conserved ones at base-resolution level. RESULTS We report here m6A-TCPred, a computational tool for predicting tissue-conserved m6A residues using m6A profiling data from 23 human tissues. By taking advantage of the traditional sequence-based characteristics and additional genome-derived information, m6A-TCPred successfully captured distinct patterns between potentially tissue-conserved m6A modifications and non-conserved ones, with an average AUROC of 0.871 and 0.879 tested on cross-validation and independent datasets, respectively. CONCLUSION Our results have been integrated into an online platform: a database holding 268,115 high confidence m6A sites with their conserved information across 23 human tissues; and a web server to predict the conserved status of user-provided m6A collections. The web interface of m6A-TCPred is freely accessible at: www.rnamd.org/m6ATCPred .
Collapse
Affiliation(s)
- Gang Tu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Xuan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Rong Xia
- Department of Financial and Actuarial Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
16
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
17
|
Yu L, He X, Fang X, Liu L, Liu J. Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening. J Chem Inf Model 2023; 63:6501-6514. [PMID: 37882338 DOI: 10.1021/acs.jcim.3c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Structure-based virtual screening has been a crucial tool in drug discovery for decades. However, as the chemical space expands, the existing structure-based virtual screening techniques based on molecular docking and scoring struggle to handle billion-entry ultralarge libraries due to the high computational cost. To address this challenge, people have resorted to machine learning techniques to enhance structure-based virtual screening for efficiently exploring the vast chemical space. In those cases, compounds are usually treated as sequential strings or two-dimensional topology graphs, limiting their ability to incorporate three-dimensional structural information for downstream tasks. We herein propose a novel deep learning protocol, GEM-Screen, which utilizes the geometry-enhanced molecular representation of the compounds docking to a specific target and is trained on docking scores of a small fraction of a library through an active learning strategy to approximate the docking outcome for yet nontraining entries. This protocol is applied to virtual screening campaigns against the AmpC and D4 targets, demonstrating that GEM-Screen enriches more than 90% of the hit scaffolds for AmpC in the top 4% of model predictions and more than 80% of the hit scaffolds for D4 in the same top-ranking size of library. GEM-Screen can be used in conjunction with traditional docking programs for docking of only the top-ranked compounds to avoid the exhaustive docking of the whole library, thus allowing for discovering top-scoring compounds from billion-entry libraries in a rapid yet accurate fashion.
Collapse
Affiliation(s)
- Lan Yu
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Xiaomin Fang
- Baidu International Technology (Shenzhen) Co., Ltd., Shenzhen 518063, China
| | - Lihang Liu
- Baidu International Technology (Shenzhen) Co., Ltd., Shenzhen 518063, China
| | - Jinfeng Liu
- School of Science, China Pharmaceutical University, Nanjing 210009, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Cunningham M, Pins D, Dezső Z, Torrent M, Vasanthakumar A, Pandey A. PINNED: identifying characteristics of druggable human proteins using an interpretable neural network. J Cheminform 2023; 15:64. [PMID: 37468968 PMCID: PMC10354961 DOI: 10.1186/s13321-023-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The identification of human proteins that are amenable to pharmacologic modulation without significant off-target effects remains an important unsolved challenge. Computational methods have been devised to identify features which distinguish between "druggable" and "undruggable" proteins, finding that protein sequence, tissue and cellular localization, biological role, and position in the protein-protein interaction network are all important discriminant factors. However, many prior efforts to automate the assessment of protein druggability suffer from low performance or poor interpretability. We developed a neural network-based machine learning model capable of generating druggability sub-scores based on each of four distinct categories, combining them to form an overall druggability score. The model achieves an excellent performance in separating drugged and undrugged proteins in the human proteome, with an area under the receiver operating characteristic (AUC) of 0.95. Our use of multiple sub-scores allows the assessment of potential protein targets of interest based on distinct contributors to druggability, leading to a more interpretable and holistic model to identify novel targets.
Collapse
Affiliation(s)
- Michael Cunningham
- Genomics Research Center, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA.
| | - Danielle Pins
- Information Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Zoltán Dezső
- Genomics Research Center, AbbVie Inc., 1000 Gateway Boulevard, South San Francisco, CA, 94080, USA
| | - Maricel Torrent
- Small Molecule Therapeutics and Platform Technologies, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Aparna Vasanthakumar
- Genomics Research Center, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Abhishek Pandey
- Information Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| |
Collapse
|
19
|
Zhang Z, Wei X. Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Semin Cancer Biol 2023; 90:57-72. [PMID: 36796530 DOI: 10.1016/j.semcancer.2023.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The rapid development of artificial intelligence (AI) technologies in the context of the vast amount of collectable data obtained from high-throughput sequencing has led to an unprecedented understanding of cancer and accelerated the advent of a new era of clinical oncology with a tone of precision treatment and personalized medicine. However, the gains achieved by a variety of AI models in clinical oncology practice are far from what one would expect, and in particular, there are still many uncertainties in the selection of clinical treatment options that pose significant challenges to the application of AI in clinical oncology. In this review, we summarize emerging approaches, relevant datasets and open-source software of AI and show how to integrate them to address problems from clinical oncology and cancer research. We focus on the principles and procedures for identifying different antitumor strategies with the assistance of AI, including targeted cancer therapy, conventional cancer therapy, and cancer immunotherapy. In addition, we also highlight the current challenges and directions of AI in clinical oncology translation. Overall, we hope this article will provide researchers and clinicians with a deeper understanding of the role and implications of AI in precision cancer therapy, and help AI move more quickly into accepted cancer guidelines.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Carneiro J, Magalhães RP, de la Oliva Roque VM, Simões M, Pratas D, Sousa SF. TargIDe: a machine-learning workflow for target identification of molecules with antibiofilm activity against Pseudomonas aeruginosa. J Comput Aided Mol Des 2023; 37:265-278. [PMID: 37085636 DOI: 10.1007/s10822-023-00505-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Bacterial biofilms are a source of infectious human diseases and are heavily linked to antibiotic resistance. Pseudomonas aeruginosa is a multidrug-resistant bacterium widely present and implicated in several hospital-acquired infections. Over the last years, the development of new drugs able to inhibit Pseudomonas aeruginosa by interfering with its ability to form biofilms has become a promising strategy in drug discovery. Identifying molecules able to interfere with biofilm formation is difficult, but further developing these molecules by rationally improving their activity is particularly challenging, as it requires knowledge of the specific protein target that is inhibited. This work describes the development of a machine learning multitechnique consensus workflow to predict the protein targets of molecules with confirmed inhibitory activity against biofilm formation by Pseudomonas aeruginosa. It uses a specialized database containing all the known targets implicated in biofilm formation by Pseudomonas aeruginosa. The experimentally confirmed inhibitors available on ChEMBL, together with chemical descriptors, were used as the input features for a combination of nine different classification models, yielding a consensus method to predict the most likely target of a ligand. The implemented algorithm is freely available at https://github.com/BioSIM-Research-Group/TargIDe under licence GNU General Public Licence (GPL) version 3 and can easily be improved as more data become available.
Collapse
Affiliation(s)
- João Carneiro
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto, 4450-208, Portugal.
| | - Rita P Magalhães
- Faculty of Medicine, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4200-319, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, BioSIM, Porto, 4200-319, Portugal
| | - Victor M de la Oliva Roque
- Faculty of Medicine, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4200-319, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, BioSIM, Porto, 4200-319, Portugal
| | - Manuel Simões
- Faculty of Engineering, LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal
- Faculty of Engineering, ALiCE-Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Diogo Pratas
- Institute of Electronics and Informatics Engineering of Aveiro, IEETA, University of Aveiro, Aveiro, Portugal
- Department of Electronics, Telecommunications and Informatics, DETI, University of Aveiro, Aveiro, Portugal
- Department of Virology, DoV, University of Helsinki, Helsinki, Finland
| | - Sérgio F Sousa
- Faculty of Medicine, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4200-319, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, BioSIM, Porto, 4200-319, Portugal
| |
Collapse
|
21
|
Zhou XJ, Zhong XH, Duan LX. Integration of artificial intelligence and multi-omics in kidney diseases. FUNDAMENTAL RESEARCH 2023; 3:126-148. [PMID: 38933564 PMCID: PMC11197676 DOI: 10.1016/j.fmre.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022] Open
Abstract
Kidney disease is a leading cause of death worldwide. Currently, the diagnosis of kidney diseases and the grading of their severity are mainly based on clinical features, which do not reveal the underlying molecular pathways. More recent surge of ∼omics studies has greatly catalyzed disease research. The advent of artificial intelligence (AI) has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically actionable knowledge. This review discusses how AI and multi-omics can be applied and integrated, to offer opportunities to develop novel diagnostic and therapeutic means in kidney diseases. The combination of new technology and novel analysis pipelines can lead to breakthroughs in expanding our understanding of disease pathogenesis, shedding new light on biomarkers and disease classification, as well as providing possibilities of precise treatment.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Xu-Hui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li-Xin Duan
- The Big Data Research Center, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
22
|
Voitalov I, Zhang L, Kilpatrick C, Withers JB, Saleh A, Akmaev VR, Ghiassian SD. The module triad: a novel network biology approach to utilize patients' multi-omics data for target discovery in ulcerative colitis. Sci Rep 2022; 12:21685. [PMID: 36522454 PMCID: PMC9755270 DOI: 10.1038/s41598-022-26276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor-[Formula: see text] inhibitors (TNFi) have been a standard treatment in ulcerative colitis (UC) for nearly 20 years. However, insufficient response rate to TNFi therapies along with concerns around their immunogenicity and inconvenience of drug delivery through injections calls for development of UC drugs targeting alternative proteins. Here, we propose a multi-omic network biology method for prioritization of protein targets for UC treatment. Our method identifies network modules on the Human Interactome-a network of protein-protein interactions in human cells-consisting of genes contributing to the predisposition to UC (Genotype module), genes whose expression needs to be modulated to achieve low disease activity (Response module), and proteins whose perturbation alters expression of the Response module genes to a healthy state (Treatment module). Targets are prioritized based on their topological relevance to the Genotype module and functional similarity to the Treatment module. We demonstrate utility of our method in UC and other complex diseases by efficiently recovering the protein targets associated with compounds in clinical trials and on the market . The proposed method may help to reduce cost and time of drug development by offering a computational screening tool for identification of novel and repurposing therapeutic opportunities in UC and other complex diseases.
Collapse
Affiliation(s)
- Ivan Voitalov
- Scipher Medicine Corporation, 221 Crescent St Suite 103A, Waltham, MA 02453 USA
| | - Lixia Zhang
- Scipher Medicine Corporation, 221 Crescent St Suite 103A, Waltham, MA 02453 USA
| | - Casey Kilpatrick
- Scipher Medicine Corporation, 221 Crescent St Suite 103A, Waltham, MA 02453 USA
| | - Johanna B. Withers
- Scipher Medicine Corporation, 221 Crescent St Suite 103A, Waltham, MA 02453 USA
| | - Alif Saleh
- Scipher Medicine Corporation, 221 Crescent St Suite 103A, Waltham, MA 02453 USA
| | | | | |
Collapse
|
23
|
Sahayasheela VJ, Lankadasari MB, Dan VM, Dastager SG, Pandian GN, Sugiyama H. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep 2022; 39:2215-2230. [PMID: 36017693 PMCID: PMC9931531 DOI: 10.1039/d2np00035k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
| | - Manendra B Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Syed G Dastager
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Pandiyan S, Wang L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Comput Biol Med 2022; 150:106140. [PMID: 36179510 DOI: 10.1016/j.compbiomed.2022.106140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
Through the revolutionization of artificial intelligence (AI) technologies in clinical research, significant improvement is observed in diagnosis of cancer. Utilization of these AI technologies, such as machine and deep learning, is imperative for the discovery of novel anticancer drugs and improves existing/ongoing cancer therapeutics. However, building a model for complicated cancers and their types remains a challenge due to lack of effective therapeutics that hinder the establishment of effective computational tools. In this review, we exploit recent approaches and state-of-the-art in implementing AI methods for anticancer drug discovery, and discussed how advances in these applications need to be considered in the current cancer therapeutics. Considering the immense potential of AI, we explore molecular docking and their interactions to recognize metabolic activities that support drug design. Finally, we highlight corresponding strategies in applying machine and deep learning methods to various types of cancer with their pros and cons.
Collapse
Affiliation(s)
- Sanjeevi Pandiyan
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China.
| |
Collapse
|
25
|
Liu Z, Li H, Jin Z, Li Y, Guo F, He Y, Liu X, Qi Y, Yuan L, He F, Li D. Exploration of Target Spaces in the Human Genome for Protein and Peptide Drugs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:780-794. [PMID: 35338014 PMCID: PMC9881050 DOI: 10.1016/j.gpb.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
After decades of development, protein and peptide drugs have now grown into a major drug class in the marketplace. Target identification and validation are crucial for the discovery of protein and peptide drugs, and bioinformatics prediction of targets based on the characteristics of known target proteins will help improve the efficiency and success rate of target selection. However, owing to the developmental history in the pharmaceutical industry, previous systematic exploration of the target spaces has mainly focused on traditional small-molecule drugs, while studies related to protein and peptide drugs are lacking. Here, we systematically explore the target spaces in the human genome specifically for protein and peptide drugs. Compared with other proteins, both successful protein and peptide drug targets have many special characteristics, and are also significantly different from those of small-molecule drugs in many aspects. Based on these features, we develop separate effective genome-wide target prediction models for protein and peptide drugs. Finally, a user-friendly web server, Predictor Of Protein and PeptIde drugs' therapeutic Targets (POPPIT) (http://poppit.ncpsb.org.cn/), is established, which provides not only target prediction specifically for protein and peptide drugs but also abundant annotations for predicted targets.
Collapse
Affiliation(s)
- Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China,College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China,Corresponding authors.
| | - Honglei Li
- Suzhou Geneworks Technology Co., Ltd., Suzhou 215028, China
| | - Zhaoyu Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yangzhige He
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xinyue Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yaning Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China,College of Life Sciences, Hebei University, Baoding 071002, China
| | - Liying Yuan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China,Corresponding authors.
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China,Corresponding authors.
| |
Collapse
|
26
|
Jung YL, Yoo HS, Hwang J. Artificial intelligence-based decision support model for new drug development planning. EXPERT SYSTEMS WITH APPLICATIONS 2022; 198:116825. [PMID: 35283560 PMCID: PMC8902892 DOI: 10.1016/j.eswa.2022.116825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
New drug development guarantees a very high return on success, but the success rate is extremely low. Pharmaceutical companies have attempted to use various strategies to increase the success rate of drug development, but this goal has been difficult to achieve. In this study, we developed a model that can guide effective decision-making at the planning stage of new drug development by leveraging machine learning. The Drug Development Recommendation (DDR) model, we present here, is a hybrid model for recommending and/or predicting drug groups suitable for development by individual pharmaceutical companies. It combines association rule learning, collaborative filtering, and content-based filtering approaches for enterprise-customized recommendations. In the case of content-based filtering applying a random forest classification algorithm, the accuracy and area under curve were 78% and 0.74, respectively. In particular, the DDR model was applied to predict the success probability of companies developing Coronavirus disease 2019 (COVID-19) vaccines. It was demonstrated that the higher the predicted score from the DDR model, the more progress in the clinical phase of the COVID-19 vaccine development. Although our approach has limitations that should be improved, it makes scientific as well as industrial contributions in that the DDR model can support rational decision-making prior to initiating drug development by considering not only technical aspects but also company-related variables.
Collapse
Affiliation(s)
- Ye Lim Jung
- Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI), Seoul 02456, Republic of Korea
| | - Hyoung Sun Yoo
- Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI), Seoul 02456, Republic of Korea
- Science and Technology Management Policy, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - JeeNa Hwang
- Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI), Seoul 02456, Republic of Korea
| |
Collapse
|
27
|
Bhattacharya D, Kleeblatt DC, Statt A, Reinhart WF. Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks. SOFT MATTER 2022; 18:5037-5051. [PMID: 35748651 DOI: 10.1039/d2sm00452f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
Collapse
Affiliation(s)
- Debjyoti Bhattacharya
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Devon C Kleeblatt
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Antonia Statt
- Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Wesley F Reinhart
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Khan MF, Rashid RB, Rashid MA. Identification of Natural Compounds with Analgesic and Antiinflammatory Properties Using Machine Learning and Molecular Docking Studies. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210728162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Natural products have been a rich source of compounds for drug discovery. Usually,
compounds obtained from natural sources have little or no side effects, thus searching for new lead
compounds from traditionally used plant species is still a rational strategy.
Introduction:
Natural products serve as a useful repository of compounds for new drugs; however, their
use has been decreasing, in part because of technical barriers to screening natural products in highthroughput
assays against molecular targets. To address this unmet demand, we have developed and validated
a high throughput in silico machine learning screening method to identify potential compounds
from natural sources.
Methods:
In the current study, three machine learning approaches, including Support Vector Machine
(SVM), Random Forest (RF) and Gradient Boosting Machine (GBM) have been applied to develop the
classification model. The model was generated using the cyclooxygenase-2 (COX-2) inhibitors reported
in the ChEMBL database. The developed model was validated by evaluating the accuracy, sensitivity,
specificity, Matthews correlation coefficient and Cohen’s kappa statistic of the test set. The molecular
docking study was conducted on AutoDock vina and the results were analyzed in PyMOL.
Results:
The accuracy of the model for SVM, RF and GBM was found to be 75.40 %, 74.97 % and 74.60
%, respectively, which indicates the good performance of the developed model. Further, the model has
demonstrated good sensitivity (61.25 % - 68.60 %) and excellent specificity (77.72 %- 81.41 %). Application
of the model on the NuBBE database, a repository of natural compounds, led us to identify a natural
compound, enhydrin possessing analgesic and anti-inflammatory activities. The ML methods and the
molecular docking study suggest that enhydrin likely demonstrates its analgesic and anti-inflammatory
actions by inhibiting COX-2.
Conclusion:
Our developed and validated in silico high throughput ML screening methods may assist in
identifying drug-like compounds from natural sources.
Collapse
Affiliation(s)
- Mohammad Firoz Khan
- Computational Chemistry and Bioinformatics Laboratory, Department of Pharmacy, State University of Bangladesh,
Dhaka, 1205, Bangladesh
| | - Ridwan Bin Rashid
- Computational Chemistry and Bioinformatics Laboratory, Department of Pharmacy, State University of Bangladesh,
Dhaka, 1205, Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka,
1000, Bangladesh
| |
Collapse
|
29
|
Clarke SL, Parmesar K, Saleem MA, Ramanan AV. Future of machine learning in paediatrics. Arch Dis Child 2022; 107:223-228. [PMID: 34301619 DOI: 10.1136/archdischild-2020-321023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/16/2021] [Indexed: 11/03/2022]
Abstract
Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers to learn without being explicitly programmed, through a combination of statistics and computer science. It encompasses a variety of techniques used to analyse and interpret extremely large amounts of data, which can then be applied to create predictive models. Such applications of this technology are now ubiquitous in our day-to-day lives: predictive text, spam filtering, and recommendation systems in social media, streaming video and e-commerce to name a few examples. It is only more recently that ML has started to be implemented against the vast amount of data generated in healthcare. The emerging role of AI in refining healthcare delivery was recently highlighted in the 'National Health Service Long Term Plan 2019'. In paediatrics, workforce challenges, rising healthcare attendance and increased patient complexity and comorbidity mean that demands on paediatric services are also growing. As healthcare moves into this digital age, this review considers the potential impact ML can have across all aspects of paediatric care from improving workforce efficiency and aiding clinical decision-making to precision medicine and drug development.
Collapse
Affiliation(s)
- Sarah Ln Clarke
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Population Health Sciences, University of Bristol, Bristol, UK
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
| | - Kevon Parmesar
- School of Population Health Sciences, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK
- Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Athimalaipet V Ramanan
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Chato L, Latifi S. Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients. J Pers Med 2021; 11:jpm11121336. [PMID: 34945808 PMCID: PMC8705288 DOI: 10.3390/jpm11121336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma is an aggressive brain tumor with a low survival rate. Understanding tumor behavior by predicting prognosis outcomes is a crucial factor in deciding a proper treatment plan. In this paper, an automatic overall survival time prediction system (OST) for glioblastoma patients is developed on the basis of radiomic features and machine learning (ML). This system is designed to predict prognosis outcomes by classifying a glioblastoma patient into one of three survival groups: short-term, mid-term, and long-term. To develop the prediction system, a medical dataset based on imaging information from magnetic resonance imaging (MRI) and non-imaging information is used. A novel radiomic feature extraction method is proposed and developed on the basis of volumetric and location information of brain tumor subregions extracted from MRI scans. This method is based on calculating the volumetric features from two brain sub-volumes obtained from the whole brain volume in MRI images using brain sectional planes (sagittal, coronal, and horizontal). Many experiments are conducted on the basis of various ML methods and combinations of feature extraction methods to develop the best OST system. In addition, the feature fusions of both radiomic and non-imaging features are examined to improve the accuracy of the prediction system. The best performance was achieved by the neural network and feature fusions.
Collapse
|
31
|
Abedi M, Marateb HR, Mohebian MR, Aghaee-Bakhtiari SH, Nassiri SM, Gheisari Y. Systems biology and machine learning approaches identify drug targets in diabetic nephropathy. Sci Rep 2021; 11:23452. [PMID: 34873190 PMCID: PMC8648918 DOI: 10.1038/s41598-021-02282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has become a massive global health burden. Despite considerable efforts, the underlying mechanisms have not yet been comprehensively understood. In this study, a systematic approach was utilized to identify the microRNA signature in DN and to introduce novel drug targets (DTs) in DN. Using microarray profiling followed by qPCR confirmation, 13 and 6 differentially expressed (DE) microRNAs were identified in the kidney cortex and medulla, respectively. The microRNA-target interaction networks for each anatomical compartment were constructed and central nodes were identified. Moreover, enrichment analysis was performed to identify key signaling pathways. To develop a strategy for DT prediction, the human proteome was annotated with 65 biochemical characteristics and 23 network topology parameters. Furthermore, all proteins targeted by at least one FDA-approved drug were identified. Next, mGMDH-AFS, a high-performance machine learning algorithm capable of tolerating massive imbalanced size of the classes, was developed to classify DT and non-DT proteins. The sensitivity, specificity, accuracy, and precision of the proposed method were 90%, 86%, 88%, and 89%, respectively. Moreover, it significantly outperformed the state-of-the-art (P-value ≤ 0.05) and showed very good diagnostic accuracy and high agreement between predicted and observed class labels. The cortex and medulla networks were then analyzed with this validated machine to identify potential DTs. Among the high-rank DT candidates are Egfr, Prkce, clic5, Kit, and Agtr1a which is a current well-known target in DN. In conclusion, a combination of experimental and computational approaches was exploited to provide a holistic insight into the disorder for introducing novel therapeutic targets.
Collapse
Affiliation(s)
- Maryam Abedi
- grid.411036.10000 0001 1498 685XRegenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Marateb
- grid.411750.60000 0001 0454 365XBiomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran ,grid.6835.80000 0004 1937 028XDepartment of Automatic Control, Biomedical Engineering Research Center, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain
| | - Mohammad Reza Mohebian
- grid.25152.310000 0001 2154 235XDepartment of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Seyed Hamid Aghaee-Bakhtiari
- grid.411583.a0000 0001 2198 6209Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Nassiri
- grid.46072.370000 0004 0612 7950Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Li G, Lin P, Wang K, Gu CC, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer 2021; 8:65-80. [PMID: 34750090 DOI: 10.1016/j.trecan.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
Plants and associated microorganisms are essential sources of natural products against human cancer diseases, partly exemplified by plant-derived anticancer drugs such as Taxol (paclitaxel). Natural products provide diverse mechanisms of action and can be used directly or as prodrugs for further anticancer optimization. Despite the success, major bottlenecks can delay anticancer lead discovery and implementation. Recent advances in sequencing and omics-related technology have provided a mine of information for developing new therapeutics from natural products. Artificial intelligence (AI), including machine learning (ML), has offered powerful techniques for extensive data analysis and prediction-making in anticancer leads discovery. This review presents an overview of current AI-guided solutions to discover anticancer lead compounds, focusing on natural products from plants and associated microorganisms.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China.
| | - Ping Lin
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ke Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Chen-Chen Gu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Souvik Kusari
- Center for Mass Spectrometry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund 44227, Germany.
| |
Collapse
|
33
|
Population pharmacokinetic model selection assisted by machine learning. J Pharmacokinet Pharmacodyn 2021; 49:257-270. [PMID: 34708337 PMCID: PMC8940812 DOI: 10.1007/s10928-021-09793-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/17/2021] [Indexed: 11/02/2022]
Abstract
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.
Collapse
|
34
|
Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol Divers 2021; 26:1893-1913. [PMID: 34686947 PMCID: PMC8536481 DOI: 10.1007/s11030-021-10326-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
The global spread of COVID-19 has raised the importance of pharmaceutical drug development as intractable and hot research. Developing new drug molecules to overcome any disease is a costly and lengthy process, but the process continues uninterrupted. The critical point to consider the drug design is to use the available data resources and to find new and novel leads. Once the drug target is identified, several interdisciplinary areas work together with artificial intelligence (AI) and machine learning (ML) methods to get enriched drugs. These AI and ML methods are applied in every step of the computer-aided drug design, and integrating these AI and ML methods results in a high success rate of hit compounds. In addition, this AI and ML integration with high-dimension data and its powerful capacity have taken a step forward. Clinical trials output prediction through the AI/ML integrated models could further decrease the clinical trials cost by also improving the success rate. Through this review, we discuss the backend of AI and ML methods in supporting the computer-aided drug design, along with its challenge and opportunity for the pharmaceutical industry. From the available information or data, the AI and ML based prediction for the high throughput virtual screening. After this integration of AI and ML, the success rate of hit identification has gained a momentum with huge success by providing novel drugs.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- CADD and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, Tamil Nadu, 630004, India.
| | - Ishwar Chandra
- CADD and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, Tamil Nadu, 630004, India
| | - Sanjeev Kumar Singh
- CADD and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, Tamil Nadu, 630004, India.
| |
Collapse
|
35
|
Mohanty E, Mohanty A. Role of artificial intelligence in peptide vaccine design against RNA viruses. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100768. [PMID: 34722851 PMCID: PMC8536498 DOI: 10.1016/j.imu.2021.100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
RNA viruses have high rate of replication and mutation that help them adapt and change according to their environmental conditions. Many viral mutants are the cause of various severe and lethal diseases. Vaccines, on the other hand have the capacity to protect us from infectious diseases by eliciting antibody or cell-mediated immune responses that are pathogen-specific. While there are a few reviews pertaining to the use of artificial intelligence (AI) for SARS-COV-2 vaccine development, none focus on peptide vaccination for RNA viruses and the important role played by AI in it. Peptide vaccine which is slowly coming to be recognized as a safe and effective vaccination strategy has the capacity to overcome the mutant escape problem which is also being currently faced by SARS-COV-2 vaccines in circulation.Here we review the present scenario of peptide vaccines which are developed using mathematical and computational statistics methods to prevent the spread of disease caused by RNA viruses. We also focus on the importance and current stage of AI and mathematical evolutionary modeling using machine learning tools in the establishment of these new peptide vaccines for the control of viral disease.
Collapse
Affiliation(s)
- Eileena Mohanty
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Anima Mohanty
- School of Biotechnology (KSBT), KIIT University-2, Bhubaneswar, 751024, India
| |
Collapse
|
36
|
Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokinet Pharmacodyn 2021; 49:19-37. [PMID: 34671863 PMCID: PMC8528185 DOI: 10.1007/s10928-021-09790-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex diseases and improve drug development.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
37
|
Deep Learning for Drug Discovery: A Study of Identifying High Efficacy Drug Compounds Using a Cascade Transfer Learning Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this research, we applied deep learning to rank the effectiveness of candidate drug compounds in combating viral cells, in particular, SARS-Cov-2 viral cells. For this purpose, two different datasets from Recursion Pharmaceuticals, a siRNA image dataset (RxRx1), which were used to build and calibrate our model for feature extraction, and a SARS-CoV-2 dataset (RxRx19a) was used to train our model for ranking efficacy of candidate drug compounds. The SARS-CoV-2 dataset contained healthy, uninfected control or “mock” cells, as well as “active viral” cells (cells infected with COVID-19), which were the two cell types used to train our deep learning model. In addition, it contains viral cells treated with different drug compounds, which were the cells not used to train but test our model. We devised a new cascade transfer learning strategy to construct our model. We first trained a deep learning model, the DenseNet, with the siRNA set, a dataset with characteristics similar to the SARS-CoV-2 dataset, for feature extraction. We then added additional layers, including a SoftMax layer as an output layer, and retrained the model with active viral cells and mock cells from the SARS-CoV-2 dataset. In the test phase, the SoftMax layer outputs probability (equivalently, efficacy) scores which allows us to rank candidate compounds, and to study the performance of each candidate compound statistically. With this approach, we identified several compounds with high efficacy scores which are promising for the therapeutic treatment of COVID-19. The compounds showing the most promise were GS-441524 and then Remdesivir, which overlapped with these reported in the literature and with these drugs that are approved by FDA, or going through clinical trials and preclinical trials. This study shows the potential of deep learning in its ability to identify promising compounds to aid rapid responses to future pandemic outbreaks.
Collapse
|
38
|
Abstract
This review provides the feasible literature on drug discovery through ML tools and techniques that are enforced in every phase of drug development to accelerate the research process and deduce the risk and expenditure in clinical trials. Machine learning techniques improve the decision-making in pharmaceutical data across various applications like QSAR analysis, hit discoveries, de novo drug architectures to retrieve accurate outcomes. Target validation, prognostic biomarkers, digital pathology are considered under problem statements in this review. ML challenges must be applicable for the main cause of inadequacy in interpretability outcomes that may restrict the applications in drug discovery. In clinical trials, absolute and methodological data must be generated to tackle many puzzles in validating ML techniques, improving decision-making, promoting awareness in ML approaches, and deducing risk failures in drug discovery.
Collapse
Affiliation(s)
- Suresh Dara
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Swetha Dhamercherla
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR) and Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak, 502313 Telangana India
| | - CH Madhu Babu
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, 302023 Rajasthan India
| |
Collapse
|
39
|
Serrano Nájera G, Narganes Carlón D, Crowther DJ. TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery. Sci Rep 2021; 11:15747. [PMID: 34344904 PMCID: PMC8333311 DOI: 10.1038/s41598-021-94897-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine coverage of human genes by omic-scale research make it difficult to maintain meaningful overviews from which to identify promising new trends. Here we propose an automated yet flexible pipeline that identifies trends in the scientific corpus which align with the specific interests of a researcher and facilitate an initial prioritisation of opportunities. Using a procedure based on co-citation networks and machine learning, genes and diseases are first parsed from PubMed articles using a novel named entity recognition system together with publication date and supporting information. Then recurrent neural networks are trained to predict the publication dynamics of all human genes. For a user-defined therapeutic focus, genes generating more publications or citations are identified as high-interest targets. We also used topic detection routines to help understand why a gene is trendy and implement a system to propose the most prominent review articles for a potential target. This TrendyGenes pipeline detects emerging targets and pathways and provides a new way to explore the literature for individual researchers, pharmaceutical companies and funding agencies.
Collapse
Affiliation(s)
- Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - David Narganes Carlón
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Division of Population Health and Genomics, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Exscientia Ltd, Dundee One, River Court, 5 West Victoria Dock Road, Dundee, DD1 3JT, UK
| | - Daniel J Crowther
- Exscientia Ltd, Dundee One, River Court, 5 West Victoria Dock Road, Dundee, DD1 3JT, UK.
| |
Collapse
|
40
|
Genovesi LA, Millar A, Tolson E, Singleton M, Hassall E, Kojic M, Brighi C, Girard E, Andradas C, Kuchibhotla M, Bhuva DD, Endersby R, Gottardo NG, Bernard A, Adolphe C, Olson JM, Taylor MD, Davis MJ, Wainwright BJ. Systems pharmacogenomics identifies novel targets and clinically actionable therapeutics for medulloblastoma. Genome Med 2021; 13:103. [PMID: 34154646 PMCID: PMC8215804 DOI: 10.1186/s13073-021-00920-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects. METHODS We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB. RESULTS Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB. CONCLUSIONS Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.
Collapse
Affiliation(s)
- Laura A Genovesi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Amanda Millar
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Elissa Tolson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Matthew Singleton
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Emily Hassall
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Marija Kojic
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Caterina Brighi
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emily Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Clara Andradas
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Mani Kuchibhotla
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Dharmesh D Bhuva
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Nicholas G Gottardo
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
| | - Anne Bernard
- QFAB Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christelle Adolphe
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Michael D Taylor
- Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, MSG 1X8, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, MSG 1X8, Canada
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Brandon J Wainwright
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
41
|
A novel screening approach comparing kinase activity of small molecule inhibitors with similar molecular structures and distinct biologic effects in triple-negative breast cancer to identify targetable signaling pathways. Anticancer Drugs 2021; 31:759-775. [PMID: 32796402 DOI: 10.1097/cad.0000000000000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer affects women globally; the majority of breast cancer-related mortalities are due to metastasis. Acquisition of a mesenchymal phenotype has been implicated in the progression of breast cancer cells to an invasive, metastatic state. Triple-negative breast cancer (TNBC) subtypes have high rates of metastases, recurrence, and have poorer prognoses compared to other breast cancer types, partially due to lack of commonly targeted receptors. Kinases have diverse and pivotal functions in metastasis in TNBC, and discovery of new kinase targets for TNBC is warranted. We previously used a screening approach to identify intermediate-synthesis nonpotent, nonselective small-molecule inhibitors from the Published Kinase Inhibitor Set that reversed the mesenchymal phenotype in TNBC cells. Two of these inhibitors (GSK346294A and GSK448459A) are structurally similar, but have unique kinase activity profiles and exhibited differential biologic effects on TNBC cells, specifically on epithelial-to-mesenchymal transition (EMT). Here, we further interrogate these effects and compare activity of these inhibitors on transwell migration, gene (qRT-PCR) and protein (western blot) expressions, and cancer stem cell-like behavior. We incorporated translational patient-derived xenograft models in these studies, and we focused on the lead inhibitor hit, GSK346294A, to demonstrate the utility of our comparative analysis as a screening modality to identify novel kinase targets and signaling pathways to pursue in TNBC. This study introduces a new method for discovering novel kinase targets that reverse the EMT phenotype; this screening approach can be applied to all cancer types and is not limited to breast cancer.
Collapse
|
42
|
Ferreira BI, Santos B, Link W, De Sousa-Coelho AL. Tribbles Pseudokinases in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112825. [PMID: 34198908 PMCID: PMC8201230 DOI: 10.3390/cancers13112825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles' role in colorectal cancer.
Collapse
Affiliation(s)
- Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Serviço de Anatomia Patológica, Centro Hospital Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (W.L.); (A.L.D.S.-C.)
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (W.L.); (A.L.D.S.-C.)
| |
Collapse
|
43
|
Fast screening of covariates in population models empowered by machine learning. J Pharmacokinet Pharmacodyn 2021; 48:597-609. [PMID: 34019213 PMCID: PMC8225540 DOI: 10.1007/s10928-021-09757-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
One of the objectives of Pharmacometry (PMX) population modeling is the identification of significant and clinically relevant relationships between parameters and covariates. Here, we demonstrate how this complex selection task could benefit from supervised learning algorithms using importance scores. We compare various classical methods with three machine learning (ML) methods applied to NONMEM empirical Bayes estimates: random forest, neural networks (NNs), and support vector regression (SVR). The performance of the ML models is assessed using receiver operating characteristic (ROC) curves. The F1 score, which measures test accuracy, is used to compare ML and PMX approaches. Methods are applied to different scenarios of covariate influence based on simulated pharmacokinetics data. ML achieved similar or better F1 scores than stepwise covariate modeling (SCM) and conditional sampling for stepwise approach based on correlation tests (COSSAC). Correlations between covariates and the number of false covariates does not affect the performance of any method, but effect size has an impact. Methods are not equivalent with respect to computational speed; SCM is 30 and 100-times slower than NN and SVR, respectively. The results are validated in an additional scenario involving 100 covariates. Taken together, the results indicate that ML methods can greatly increase the efficiency of population covariate model building in the case of large datasets or complex models that require long run-times. This can provide fast initial covariate screening, which can be followed by more conventional PMX approaches to assess the clinical relevance of selected covariates and build the final model.
Collapse
|
44
|
Terranova N, Venkatakrishnan K, Benincosa LJ. Application of Machine Learning in Translational Medicine: Current Status and Future Opportunities. AAPS JOURNAL 2021; 23:74. [PMID: 34008139 PMCID: PMC8130984 DOI: 10.1208/s12248-021-00593-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The exponential increase in our ability to harness multi-dimensional biological and clinical data from experimental to real-world settings has transformed pharmaceutical research and development in recent years, with increasing applications of artificial intelligence (AI) and machine learning (ML). Patient-centered iterative forward and reverse translation is at the heart of precision medicine discovery and development across the continuum from target validation to optimization of pharmacotherapy. Integration of advanced analytics into the practice of Translational Medicine is now a fundamental enabler to fully exploit information contained in diverse sources of big data sets such as “omics” data, as illustrated by deep characterizations of the genome, transcriptome, proteome, metabolome, microbiome, and exposome. In this commentary, we provide an overview of ML applications in drug discovery and development, aligned with the three strategic pillars of Translational Medicine (target, patient, dose) and offer perspectives on their potential to transform the science and practice of the discipline. Opportunities for integrating ML approaches into the discipline of Pharmacometrics are discussed and will revolutionize the practice of model-informed drug discovery and development. Finally, we posit that joint efforts of Clinical Pharmacology, Bioinformatics, and Biomarker Technology experts are vital in cross-functional team settings to realize the promise of AI/ML-enabled Translational and Precision Medicine.
Collapse
Affiliation(s)
- Nadia Terranova
- Translational Medicine, Merck Institute for Pharmacometrics, Merck Serono S.A., Lausanne, Switzerland
| | - Karthik Venkatakrishnan
- Translational Medicine, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - Lisa J Benincosa
- Translational Medicine, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA.
| |
Collapse
|
45
|
Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou M, Zhang B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41:1427-1473. [PMID: 33295676 PMCID: PMC8043990 DOI: 10.1002/med.21764] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023]
Abstract
Neurological disorders significantly outnumber diseases in other therapeutic areas. However, developing drugs for central nervous system (CNS) disorders remains the most challenging area in drug discovery, accompanied with the long timelines and high attrition rates. With the rapid growth of biomedical data enabled by advanced experimental technologies, artificial intelligence (AI) and machine learning (ML) have emerged as an indispensable tool to draw meaningful insights and improve decision making in drug discovery. Thanks to the advancements in AI and ML algorithms, now the AI/ML-driven solutions have an unprecedented potential to accelerate the process of CNS drug discovery with better success rate. In this review, we comprehensively summarize AI/ML-powered pharmaceutical discovery efforts and their implementations in the CNS area. After introducing the AI/ML models as well as the conceptualization and data preparation, we outline the applications of AI/ML technologies to several key procedures in drug discovery, including target identification, compound screening, hit/lead generation and optimization, drug response and synergy prediction, de novo drug design, and drug repurposing. We review the current state-of-the-art of AI/ML-guided CNS drug discovery, focusing on blood-brain barrier permeability prediction and implementation into therapeutic discovery for neurological diseases. Finally, we discuss the major challenges and limitations of current approaches and possible future directions that may provide resolutions to these difficulties.
Collapse
Affiliation(s)
- Sezen Vatansever
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Avner Schlessinger
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Daniel Wacker
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - H. Ümit Kaniskan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jian Jin
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
46
|
Santana K, do Nascimento LD, Lima e Lima A, Damasceno V, Nahum C, Braga RC, Lameira J. Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products. Front Chem 2021; 9:662688. [PMID: 33996755 PMCID: PMC8117418 DOI: 10.3389/fchem.2021.662688] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products are continually explored in the development of new bioactive compounds with industrial applications, attracting the attention of scientific research efforts due to their pharmacophore-like structures, pharmacokinetic properties, and unique chemical space. The systematic search for natural sources to obtain valuable molecules to develop products with commercial value and industrial purposes remains the most challenging task in bioprospecting. Virtual screening strategies have innovated the discovery of novel bioactive molecules assessing in silico large compound libraries, favoring the analysis of their chemical space, pharmacodynamics, and their pharmacokinetic properties, thus leading to the reduction of financial efforts, infrastructure, and time involved in the process of discovering new chemical entities. Herein, we discuss the computational approaches and methods developed to explore the chemo-structural diversity of natural products, focusing on the main paradigms involved in the discovery and screening of bioactive compounds from natural sources, placing particular emphasis on artificial intelligence, cheminformatics methods, and big data analyses.
Collapse
Affiliation(s)
- Kauê Santana
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Anderson Lima e Lima
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Vinícius Damasceno
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Claudio Nahum
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | | - Jerônimo Lameira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
47
|
Xie Y, Meng WY, Li RZ, Wang YW, Qian X, Chan C, Yu ZF, Fan XX, Pan HD, Xie C, Wu QB, Yan PY, Liu L, Tang YJ, Yao XJ, Wang MF, Leung ELH. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol 2021; 14:100907. [PMID: 33217646 PMCID: PMC7683339 DOI: 10.1016/j.tranon.2020.100907] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients' plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Wei-Yu Meng
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xin Qian
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Chang Chan
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhi-Fang Yu
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Chun Xie
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yi-Jun Tang
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| | - Mei-Fang Wang
- Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Respiratory Medicine department of Taihe Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
48
|
Yu K, Visweswaran S, Batmanghelich K. Semi-supervised Hierarchical Drug Embedding in Hyperbolic Space. J Chem Inf Model 2020; 60:5647-5657. [PMID: 33140969 PMCID: PMC7943198 DOI: 10.1021/acs.jcim.0c00681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Learning accurate drug representations is essential for tasks such as computational drug repositioning and prediction of drug side effects. A drug hierarchy is a valuable source that encodes knowledge of relations among drugs in a tree-like structure where drugs that act on the same organs, treat the same disease, or bind to the same biological target are grouped together. However, its utility in learning drug representations has not yet been explored, and currently described drug representations cannot place novel molecules in a drug hierarchy. Here, we develop a semi-supervised drug embedding that incorporates two sources of information: (1) underlying chemical grammar that is inferred from chemical structures of drugs and drug-like molecules (unsupervised) and (2) hierarchical relations that are encoded in an expert-crafted hierarchy of approved drugs (supervised). We use the Variational Auto-Encoder (VAE) framework to encode the chemical structures of molecules and use the drug-drug similarity information obtained from the hierarchy to induce the clustering of drugs in hyperbolic space. The hyperbolic space is amenable for encoding hierarchical relations. Both quantitative and qualitative results support that the learned drug embedding can accurately reproduce the chemical structure and recapitulate the hierarchical relations among drugs. Furthermore, our approach can infer the pharmacological properties of novel molecules by retrieving similar drugs from the embedding space. We demonstrate that our drug embedding can predict new uses and discover new side effects of existing drugs. We show that it significantly outperforms comparison methods in both tasks.
Collapse
Affiliation(s)
- Ke Yu
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Shyam Visweswaran
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | - Kayhan Batmanghelich
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| |
Collapse
|
49
|
Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today 2020; 26:1256-1264. [PMID: 33358699 DOI: 10.1016/j.drudis.2020.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/21/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023]
Abstract
The US Food and Drug Administration (FDA) has been actively promoting the use of real-world data (RWD) in drug development. RWD can generate important real-world evidence reflecting the real-world clinical environment where the treatments are used. Meanwhile, artificial intelligence (AI), especially machine- and deep-learning (ML/DL) methods, have been increasingly used across many stages of the drug development process. Advancements in AI have also provided new strategies to analyze large, multidimensional RWD. Thus, we conducted a rapid review of articles from the past 20 years, to provide an overview of the drug development studies that use both AI and RWD. We found that the most popular applications were adverse event detection, trial recruitment, and drug repurposing. Here, we also discuss current research gaps and future opportunities.
Collapse
Affiliation(s)
- Zhaoyi Chen
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610-0177, USA
| | - Xiong Liu
- AI Innovation Center, Novartis, Cambridge, MA 02142, USA
| | - William Hogan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610-0177, USA
| | - Elizabeth Shenkman
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610-0177, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610-0177, USA.
| |
Collapse
|
50
|
Artificial intelligence in the early stages of drug discovery. Arch Biochem Biophys 2020; 698:108730. [PMID: 33347838 DOI: 10.1016/j.abb.2020.108730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Although the use of computational methods within the pharmaceutical industry is well established, there is an urgent need for new approaches that can improve and optimize the pipeline of drug discovery and development. In spite of the fact that there is no unique solution for this need for innovation, there has recently been a strong interest in the use of Artificial Intelligence for this purpose. As a matter of fact, not only there have been major contributions from the scientific community in this respect, but there has also been a growing partnership between the pharmaceutical industry and Artificial Intelligence companies. Beyond these contributions and efforts there is an underlying question, which we intend to discuss in this review: can the intrinsic difficulties within the drug discovery process be overcome with the implementation of Artificial Intelligence? While this is an open question, in this work we will focus on the advantages that these algorithms provide over the traditional methods in the context of early drug discovery.
Collapse
|