1
|
Liu H, Xue Q, Yang F, Cao W, Liu P, Liu X, Zhu Z, Zheng H. Foot-and-mouth disease virus VP1 degrades YTHDF2 through autophagy to regulate IRF3 activity for viral replication. Autophagy 2024; 20:1597-1615. [PMID: 38516932 PMCID: PMC11210904 DOI: 10.1080/15548627.2024.2330105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024] Open
Abstract
Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses. GTPBP4 deficiency promotes the antiviral innate immune response, resulting in the ability of GTPBP4 to promote FMDV replication. Meanwhile, GTPBP4-deficient mice are more resistant to FMDV infection. To antagonize the host's antiviral immunity, FMDV structural protein VP1 promotes the expression of GTPBP4, and the 209th site of VP1 is responsible for this effect. Mechanically, FMDV VP1 promotes autophagy during virus infection and interacts with and degrades YTHDF2 (YTH N6-methyladenosine RNA binding protein F2) in an AKT-MTOR-dependent autophagy pathway, resulting in an increase in GTPBP4 mRNA and protein levels. Increased GTPBP4 inhibits IRF3 binding to the Ifnb/Ifn-β promoter, suppressing FMDV-induced type I interferon production. In conclusion, our study revealed an underlying mechanism of how VP1 negatively regulates innate immunity through the autophagy pathway, which would contribute to understanding the negative regulation of host innate immune responses and the function of GTPBP4 and YTHDF2 during FMDV infection.Abbreviation: 3-MA:3-methyladenine; ACTB: actin beta; ATG: autophagy related; ChIP:chromatin immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2-phenylindole; dpi: days post-infection; EV71:enterovirus 71; FMDV: foot-and-mouth disease virus; GTPBP4/NOG1: GTPbinding protein 4; HIF1A: hypoxia inducible factor 1 subunit alpha;hpt:hours post-transfection; IFNB/IFN-β:interferon beta; IRF3: interferon regulatory factor 3; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAVS: mitochondriaantiviral signaling protein; MOI: multiplicity of infection; MTOR:mechanistic target of rapamycin kinase; m6A: N(6)-methyladenosine;qPCR:quantitativePCR; SIRT3:sirtuin 3; SQSTM1/p62: sequestosome 1; STING1: stimulator ofinterferon response cGAMP interactor 1; siRNA: small interfering RNA;TBK1: TANK binding kinase 1; TCID50:50% tissue culture infectious doses; ULK1: unc-51 like autophagyactivating kinase 1; UTR: untranslated region; WT: wild type; YTHDF2:YTH N6-methyladenosine RNA binding protein F2.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Voinsky I, Shapira E, Gurwitz D. High purity and integrity RNA from human cell lines stored in liquid nitrogen for over 20 years. Drug Dev Res 2023; 84:1320-1324. [PMID: 37381835 DOI: 10.1002/ddr.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Biobanks are a key resource for obtaining human cell lines for biomedical research, including for drug development projects. Such projects often include comparative RNA-sequencing of large panels of human cell lines from individuals affected by certain disorders and healthy controls, or from individuals with different drug response phenotypes. RNA extractions are typically done from growing cell cultures, a process that may take several weeks. However, maintaining large numbers of cell lines in parallel increases the project workload. Here, we show that extracting RNAs directly from frozen vials of human cell lines stored for over 20 years in a liquid nitrogen freezer yields RNAs with the high purity and integrity parameters that conform to those required for optimal RNA-sequencing and are closely similar to those obtained for RNAs extracted from growing human cell lines.
Collapse
Affiliation(s)
- Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Shapira
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Xue Q, Zhu Z, Xue Z, Yang F, Cao W, Liu X, Liu H, Zheng H. NOG1 downregulates type I interferon production by targeting phosphorylated interferon regulatory factor 3. PLoS Pathog 2023; 19:e1011511. [PMID: 37410776 DOI: 10.1371/journal.ppat.1011511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
The innate immune system is the first line of the host's defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication. Vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) infection induced a higher level of IFN-β protein in NOG1 deficient mice. Meanwhile, NOG1-deficient mice were more resistant to VSV and HSV-1 infection. NOG1 inhibited type I IFN production by targeting IRF3. NOG1 was also found to interact with phosphorylated IFN regulatory factor 3 (IRF3) to impair its DNA binding activity, thereby downregulating the transcription of IFN-β and downstream IFN-stimulated genes (ISGs). The GTP binding domain of NOG1 is responsible for this process. In conclusion, our study reveals an underlying mechanism of how NOG1 negatively regulates IFN-β by targeting IRF3, which uncovers a novel role of NOG1 in host innate immunity.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Zhou Q, Yin Y, Yu M, Gao D, Sun J, Yang Z, Weng J, Chen W, Atyah M, Shen Y, Ye Q, Li CW, Hung MC, Dong Q, Zhou C, Ren N. GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism. Redox Biol 2022; 56:102458. [PMID: 36116159 PMCID: PMC9483790 DOI: 10.1016/j.redox.2022.102458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022] Open
Abstract
Guanosine triphosphate binding protein 4 (GTPBP4) is a key regulator of cell cycle progression and MAPK activation. However, how its biological properties intersect with cellular metabolism in hepatocellular carcinoma (HCC) development remains poorly unexplained. Here, high GTPBP4 expression is found to be significantly associated with worse clinical outcomes in patients with HCC. Moreover, GTPBP4 upregulation is paralleled by DNA promoter hypomethylation and regulated by DNMT3A, a DNA methyltransferase. Additionally, both gain- and loss-of-function studies demonstrate that GTPBP4 promotes HCC growth and metastasis in vitro and in vivo. Mechanically, GTPBP4 can induce dimeric pyruvate kinase M2 (PKM2) formation through protein sumoylation modification to promote aerobic glycolysis in HCC. Notably, active GTPBP4 facilitates SUMO1 protein activation by UBA2, and acts as a linker bridging activated SUMO1 protein and PKM2 protein to induce PKM2 sumoylation. Furthermore, SUMO-modified PKM2 relocates from the cytoplasm to the nucleus may also could contribute to HCC progression through activating epithelial-mesenchymal transition (EMT) and STAT3 signaling pathway. Shikonin, a PKM2-specific inhibitor, can attenuate PKM2 dependent HCC glycolytic reprogramming, growth and metastasis promoted by GTPBP4, which offers a promising therapeutic candidate for HCC patients. Our findings indicate that GTPBP4-PKM2 regulatory axis plays a vital role in promoting HCC proliferation as well as metastasis by aerobic glycolysis and offer a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Mincheng Yu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Dongmei Gao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jialei Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhangfu Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Wanyong Chen
- Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yinghao Shen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qinghai Ye
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Qiongzhu Dong
- Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Institute of Fudan Minhang Academic Health System (AHS), Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Ruel NM, Nguyen KH, Kim CS, Andrade LPS, Hammond JR. Impact of SLC43A3/ENBT1 expression and function on 6-mercaptopurine transport and cytotoxicity in human acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 2022; 382:335-345. [PMID: 35798387 DOI: 10.1124/jpet.122.001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
6-Mercaptopurine (6-MP) is used extensively in the treatment of acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. Our lab determined previously, using a recombinant HEK293 cell model, that the SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) transports 6-MP into cells and significantly impacts the cytotoxicity of 6-MP in that model. To further investigate the clinical relevance of this finding, we now extend this work to an analysis of the impact of SLC43A3/ENBT1 expression and function on 6-MP uptake and cytotoxicity in leukemic lymphoblasts, the therapeutic target of 6-MP in ALL. A panel of ALL cell lines was assessed for SLC43A3/ENBT1 expression, ENBT1 function, and sensitivity to 6-MP. There was a significant difference in SLC43A3 expression among the cell lines that positively correlated with the rate of ENBT1-mediated 6-MP uptake. Cells with the lowest expression of SLC43A3 (SUP-B15: Vmax - 22 {plus minus} 5 pmol/µl/s) were also significantly less sensitive to 6-MP induced cytotoxicity than were the highest expressing cells (ALL-1: Vmax - 69 {plus minus} 10 pmol/µl/s). Furthermore, knockdown of ENBT1 using shRNAi in RS4;11 cells caused a significant decrease in ENBT1-mediated 6-MP uptake (Vmax: RS4;11 - 40 {plus minus} 4 pmol/µl/s; RS4;11 shRNAi - 26 {plus minus} 3 pmol/µl/s) and 6-MP cytotoxicity (EC50: RS4;11: 0.58 {plus minus} 0.05 µM; RS4;11 shRNAi: 1.44 {plus minus} 0.59 µM). This study showed that ENBT1 is a major contributor to 6-MP uptake in leukemia cell lines, and may prove to be a biomarker for the therapeutic efficacy of 6-MP in patients with ALL. Significance Statement This study shows that ENBT1 is responsible for the transport of 6-MP into leukemia cells and that its level of expression can impact the cytotoxicity of 6-MP. Further studies are warranted to investigate the therapeutic implications in patient populations.
Collapse
Affiliation(s)
| | | | - Chan S Kim
- Pharmacology, University of Alberta, Canada
| | | | | |
Collapse
|
6
|
Genova E, Lucafò M, Pelin M, Di Paolo V, Quintieri L, Decorti G, Stocco G. Insights into the cellular pharmacokinetics and pharmacodynamics of thiopurine antimetabolites in a model of human intestinal cells. Chem Biol Interact 2021; 347:109624. [PMID: 34416244 DOI: 10.1016/j.cbi.2021.109624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Thiopurines, immunomodulating drugs used in the management of different chronic autoimmune conditions and as anti-leukemic agents, may exert in some cases gastrointestinal toxicity. Moreover, since these agents are administered orally, they are absorbed across the gastrointestinal tract epithelium. On these premises, cellular and molecular events occurring in intestinal cells may be important to understand thiopurine effects. However, quantitative information on the biotransformation of thiopurines in intestinal tissues is still limited. To shed light on biotransformation processes specific of the intestinal tissue, in this study thiopurine metabolites concentrations were analyzed by an in vitro model of human healthy colon, the HCEC cell line, upon exposure to cytotoxic concentrations of azathioprine or mercaptopurine; the investigation was carried out using an innovative mass spectrometry method, that allowed the simultaneous quantification of 11 mono-, di-, and triphosphate thionucleotides. Among the 11 metabolites evaluated, TIMP, TGMP, TGDP, TGTP, MeTIMP, MeTIDP and MeTITP were detectable in HCEC cells treated with azathioprine or mercaptopurine, considering two different incubation times before the addition of the drugs (4 and 48 h). Different associations between metabolites concentrations and cytotoxicity were detected. In particular, the cytotoxicity was dependent on the TGMP, TGDP, TGTP and MeTITP concentrations after the 4 h incubation before the addition of thiopurines. This may be an indication that, to study the association between thiopurine metabolite concentrations and the cytotoxicity activity in vitro, short growth times before treatment should be used. Moreover, for the first time our findings highlight the strong correlation between cytotoxicity and thiopurine pharmacokinetics in HCEC intestinal cells in vitro suggesting that these cells could be a suitable in vitro model for studying thiopurine intestinal cytotoxicity.
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Chansavang A, Maalej S, Narjoz C, Loriot MA, Pallet N. Identification of rare defective allelic variants in cases of thiopurine S-methyltransferase deficient activity. Pharmacogenomics 2020; 21:1217-1226. [PMID: 33118454 DOI: 10.2217/pgs-2020-0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To assess rare TPMT variants in patients carrying a deficient phenotype not predicted by the four more frequent genotypes (*2, *3A, *3B and *3C). Materials & methods: Next-generation sequencing of TPMT in 39 patients with a discordant genotype. Results: None of the variants identified explained the discordances assuming that they are of uncertain significance according to the Clinical Pharmacogenetics Implementation Consortium classification. Two unknown variants were detected and predicted to result in a splicing defect. We show that TPMT*16 and TMPT*21 are defective alleles, and TPMT*8 and TPMT*24 are associated with a normal activity. Conclusion: Whole-exon sequencing for rare TPMT mutations has a low diagnostic yield. A reassessment of the functional impact of rare variants of uncertain significance is a critical issue.
Collapse
Affiliation(s)
- Albain Chansavang
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Sadok Maalej
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Céline Narjoz
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Marie-Anne Loriot
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France.,Université de Paris, INSERM U1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Nicolas Pallet
- Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France.,Université de Paris, INSERM U1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| |
Collapse
|
8
|
PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients. THE PHARMACOGENOMICS JOURNAL 2019; 20:415-425. [PMID: 31792371 DOI: 10.1038/s41397-019-0130-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
The aim of the study was to validate the impact of the single-nucleotide polymorphism rs2413739 (T > C) in the PACSIN2 gene on thiopurines pharmacological parameters and clinical response in an Italian cohort of pediatric patients with acute lymphoblastic leukemia (ALL) and inflammatory bowel disease (IBD). In ALL, PACSIN2 rs2413739 T allele was associated with a significant reduction of TPMT activity in erythrocytes (p = 0.0094, linear mixed-effect model, multivariate analysis considering TPMT genotype) and increased severe gastrointestinal toxicity during consolidation therapy (p = 0.049). A similar trend was present also for severe hematological toxicity during maintenance. In IBD, no significant effect of rs2413739 could be found on TPMT activity, however azathioprine effectiveness was reduced in patients carrying the T allele (linear mixed effect, p = 0.0058). In PBMC from healthy donors, a positive correlation between PACSIN2 and TPMT protein concentration could be detected (linear mixed effect, p = 0.045). These results support the role of PACSIN2 polymorphism on TPMT activity and mercaptopurine adverse effects in patients with ALL. Further evidence on PBMC and pediatric patients with IBD supports an association between PACSIN2 variants, TPMT activity, and thiopurines effects, even if more studies are needed since some of these effects may be tissue specific.
Collapse
|
9
|
A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Lett 2019; 452:158-167. [PMID: 30922918 DOI: 10.1016/j.canlet.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
PTOV1 is a transcription and translation regulator and a promoter of cancer progression. Its overexpression in prostate cancer induces transcription of drug resistance and self-renewal genes, and docetaxel resistance. Here we studied PTOV1 ability to directly activate the transcription of ALDH1A1 and CCNG2 by binding to specific promoter sequences. Chromatin immunoprecipitation and electrophoretic mobility shift assays identified a DNA-binding motif inside the PTOV-A domain with similarities to known AT-hooks that specifically interacts with ALDH1A1 and CCNG2 promoters. Mutation of this AT-hook-like sequence significantly decreased the expression of ALDH1A1 and CCNG2 promoted by PTOV1. Immunohistochemistry revealed the association of PTOV1 with mitotic chromosomes in high grade prostate, colon, bladder, and breast carcinomas. Overexpression of PTOV1, ALDH1A1, and CCNG2 significantly correlated with poor prognosis in prostate carcinomas and with shorter relapse-free survival in colon carcinoma. The previously described interaction with translation complexes and its direct binding to ALDH1A1 and CCNG2 promoters found here reveal the PTOV1 capacity to modulate the expression of critical genes at multiple levels in aggressive cancers. Remarkably, the AT-hook motifs in PTOV1 open possibilities for selective targeting its nuclear and/or cytoplasmic activities.
Collapse
|
10
|
Weeramange C, Lansakara A, Dallman J, Nguyen T, Hulangamuwa W, Rafferty RJ. New methods to assess 6-thiopurine toxicity and expanding its therapeutic application to pancreatic cancer via small molecule potentiators. MEDCHEMCOMM 2019; 10:717-725. [PMID: 31191862 DOI: 10.1039/c9md00010k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/14/2019] [Indexed: 01/16/2023]
Abstract
6-Thiopurine (6TP) is a potent cytotoxic agent that is a clinically prescribed anti-metabolite employed in the treatment of numerous blood cancers since 1952. However, its reported severe toxicities limit its general usage in the clinic. We previously have undertaken investigations into identifying the mode of toxicity for 6TP, and have found that the oxidative metabolites of 6TP, specifically 6-thiouric acid (6TU), is responsible for the in vitro inhibition of UDP-glucose dehydrogenase (UDPGDH) in a UV-vis method. In this method, inhibition was quantified through the quantification of NADH production, however, purines absorb at the same wavelength and thereby can interfere with the NADH detection. Herein, we report a HPLC method that allows for direct quantification of UDP-glucuronic acid, product from UDPGDH, for the assessment of inhibition towards UDPGDH with no interference from purines. In this method it was revealed that 6TP possesses a greater inhibitory properties than previously observed; 111 vs. 288 μM. Building upon the data collected from a previously performed rat hepatocyte study, which correlated our in vitro to in vivo inhibition theories about UDPGDH, we have developed a bio-mimic in vitro assay to aid in the inhibitory assessment of 6TP and analogs. In our efforts to expand the use of 6TP, and analogs constructed, our laboratory has undertaken a screening campaign to identify small molecule potentiators that work in synergy with 6TP in other types of cancers. Three chalcone-based compounds have been discovered through our total synthesis campaign of uvaretin, and it has been found that 11c has strong synergism with 6TP in the pancreatic cancer cell line MIA PaCa-2. Through the work presented herein, we reveal new methods to assess toxicity of 6TP and future analogs and new small molecules that work in synergy to expand the therapeutic applications of this neglected cytotoxic agent.
Collapse
Affiliation(s)
- Chamitha Weeramange
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA
| | - Ashabha Lansakara
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA
| | - Johnathan Dallman
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA
| | - Thi Nguyen
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA
| | - Wasundara Hulangamuwa
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA
| | - Ryan J Rafferty
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA
| |
Collapse
|
11
|
Steeghs EMP, Boer JM, Hoogkamer AQ, Boeree A, de Haas V, de Groot-Kruseman HA, Horstmann MA, Escherich G, Pieters R, den Boer ML. Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 2019; 9:4634. [PMID: 30874617 PMCID: PMC6420659 DOI: 10.1038/s41598-019-41078-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1, EBF1, PAX5, CDKN2A/B, RB1, BTG1, ETV6, and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1-deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1-deleted primary BCR-ABL1-like and non-BCR-ABL1-like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1-like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses.
Collapse
Affiliation(s)
- Elisabeth M P Steeghs
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex Q Hoogkamer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Aurélie Boeree
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Valerie de Haas
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | | | - Martin A Horstmann
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gabriele Escherich
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Monique L den Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands.
| |
Collapse
|
12
|
Hooper KM, Barlow PG, Henderson P, Stevens C. Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:661-671. [PMID: 30590697 DOI: 10.1093/ibd/izy380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis, is characterized by chronic inflammation of the gastrointestinal tract. The etiology involves a combination of genetic and environmental factors resulting in abnormal immune responses to intestinal microbiota. Genetic studies have strongly linked genes involved in autophagy to CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), and autophagy plays a key role in relieving ER stress and restoring homeostasis. This review summarizes the known interactions between autophagy and the UPR and discusses the impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-term treatments for IBD, targeting of synergistic pathways may provide novel and more effective therapeutic options.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom.,Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Torres Hernandez AX, Weeramange CJ, Desman P, Fatino A, Haney O, Rafferty RJ. Efforts in redesigning the antileukemic drug 6-thiopurine: decreasing toxic side effects while maintaining efficacy. MEDCHEMCOMM 2018; 10:169-179. [PMID: 30774864 DOI: 10.1039/c8md00463c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/15/2018] [Indexed: 01/14/2023]
Abstract
6-Thiopurine (6TP) is a currently prescribed drug in the treatment of diseases ranging from Crohn's disease to acute lymphocytic leukemia. While its potent mode of action is through incorporation into DNA as a thiol mimic of deoxyguanosine, severe toxicities are associated with its administration which hinder the potential therapeutic application. We have previously reported in vitro that the oxidative metabolites of 6TP, specifically 6-thiouric acid (6TU, K i 7 μM), are potent inhibitors of UDP-glucose dehydrogenase (UDPGDH), an enzyme that is responsible for the formation of UDP-glucuronic acid (UDPGA), an essential substrate that is used in detoxification processes in the liver. An in vivo investigation was undertaken to probe if 6TU inhibits UDPGDH in rat hepatocytes, and it was observed that 6TU does greatly suppress the conjugation of bilirubin with UDPGA. The failed excretion of bilirubin is linked to a majority of the reported toxicities associated with 6TP administration. Efforts were undertaken for the construction of 6TP analogs, substituted at the C8 position, to reduce inhibition of UDPGDH while retaining therapeutic efficacy. Three new 6TP analogs bearing a halogen (Br, Cl, and F) at the C8 position have been achieved over five-synthetic steps in overall yields of 16 to 32%. Each of these analogs were shown to have reduced inhibition towards UDPGDH, with K i values of 192, 163, 215 μM, respectively. In addition, the bromine, chlorine, and fluorine analogs were shown to possess cytotoxicity towards the REH cell line (acute lymphocytic leukemia) having IC50 values of 9.54 μM (±0.97), 3.95 μM (±1.94), and 4.71 μM (±1.40), respectively. These three new 6TP analogs represent the first steps in the redesign of this potent anticancer agent into a better drug that possesses reduced toxic side effects while retaining therapeutic potency.
Collapse
Affiliation(s)
- Arnaldo X Torres Hernandez
- Department of Chemistry , Pontifical Catholic University of Puerto Rico , 2250 Boulevard Luis A. Ferré Aguayo, Suite 626 , Ponce , PR 00717-0777 , Puerto Rico.,Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Chamitha J Weeramange
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Prathibha Desman
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Anthony Fatino
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Olivia Haney
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| | - Ryan J Rafferty
- Department of Chemistry , Kansas State University , 1212 Mid-Campus Drive North , Manhattan , KS 66506 , USA .
| |
Collapse
|
14
|
Sobiak J, Skalska-Sadowska J, Chrzanowska M, Resztak M, Kołtan S, Wysocki M, Wachowiak J. Thiopurine methyltransferase activity in children with acute myeloid leukemia. Oncol Lett 2018; 16:4699-4706. [PMID: 30214603 DOI: 10.3892/ol.2018.9191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
Activity of the enzyme thiopurine methyltransferase (TPMT) determines the anti-leukemic effect of thiopurines used in the chemotherapy of acute lymphoblastic leukemia (ALL) and acute myeloblastic leukemia (AML). TPMT status and its effects on treatment outcome have been studied extensively in ALL and autoimmune disorders, but few data is available on TPMT in AML. The present study assessed the genetic polymorphisms and activity of TPMT in children with AML at different treatment stages, and compared the results with those obtained for children with ALL. The study included 33 children with AML (0.7-19.7 years) treated with 6-thioguanine (6-TG) according to the AML-BFM 2004 Protocol. Blood samples were collected at diagnosis, during and following maintenance chemotherapy from 8, 10 and 17 patients with AML (the assay was performed at two time points in 2 patients), respectively. Blood samples from 105 children with ALL were obtained at diagnosis, during the maintenance chemotherapy and following the cessation of the chemotherapy from 16, 55 and 34 children, respectively. The activity of TPMT in red blood cells lysates was measured using an enzymatic reaction based on the conversion of 6-mercaptopurine into 6-methylmercaptopurine, involving S-adenozyl-L-methionine as the methyl group donor. TPMT mutations were determined using a polymerase chain reaction/restriction fragment length polymorphism method. Median TPMT activity at diagnosis, during maintenance chemotherapy and following chemotherapy was 43.1, 47,3 and 41.7 nmol 6-mMP g-1 Hb h-1, respectively. All patients with AML exhibited the homozygous TPMT*1/*1 genotype, with the exception of 1, who was a heterozygote with the TPMT*1/*3C genotype and demonstrated a TPMT activity level at diagnosis of 42.5 nmol 6-mMP g-1 Hb h-1. At each chemotherapy stage, the median TPMT activities in children with AML were significantly increased compared with the median TPMT activities in children with ALL. The preliminary results suggest that the TPMT activity in AML may be increased compared with that in ALL. Comprehensive studies on the association between thiopurine metabolism and treatment outcome in AML are required, with regard to the cytogenetic and molecular factors currently used for AML risk stratification.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Maria Chrzanowska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Mariusz Wysocki
- Department of Pediatrics, Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| |
Collapse
|
15
|
6-mercaptopurine promotes energetic failure in proliferating T cells. Oncotarget 2018; 8:43048-43060. [PMID: 28574837 PMCID: PMC5522126 DOI: 10.18632/oncotarget.17889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.
Collapse
|
16
|
Inhibition of UDP-glucose dehydrogenase by 6-thiopurine and its oxidative metabolites: Possible mechanism for its interaction within the bilirubin excretion pathway and 6TP associated liver toxicity. J Pharm Biomed Anal 2017; 151:106-115. [PMID: 29324279 DOI: 10.1016/j.jpba.2017.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/24/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
6-Thiopurine (6TP) is an actively prescribed drug in the treatment of various diseases ranging from Crohn's disease and other inflammatory diseases to acute lymphocytic leukemia and non-Hodgkin's leukemia. While 6TP has beneficial therapeutic uses, severe toxicities are also reported with its use, such as jaundice and liver toxicity. While numerous investigations into the mode in which toxicity originates has been undertaken. None have investigated the effects of inhibition towards UDP-Glucose Dehydrogenase (UDPGDH), an oxidative enzyme responsible for UDP-glucuronic acid (UDPGA) formation or UDP-Glucuronosyl transferase (UGT1A1), which is responsible for the conjugation of bilirubin with UDPGA for excretion. Failure to excrete bilirubin leads to jaundice and liver toxicity. We proposed that either 6TP or its primary oxidative excretion metabolites inhibit one or both of these enzymes, resulting in the observed toxicity from 6TP administration. Inhibition analysis of these purines revealed that 6-thiopurine has weak to no inhibition towards UDPGDH with a Ki of 288 μM with regard to varying UDP-glucose, but 6-thiouric (primary end metabolite, fully oxidized at carbon 2 and 8, and highly retained by the body) has a near six-fold increased inhibition towards UDPGDH with a Ki of 7 μM. Inhibition was also observed by 6-thioxanthine (oxidized at carbon 2) and 8-OH-6TP with Ki values of 54 and 14 μM, respectively. Neither 6-thiopurine or its excretion metabolites were shown to inhibit UGT1A1. Our results show that the C2 and C8 positions of 6TP are pivotal in said inhibition towards UDPGDH and have no effect upon UGT1A1, and that blocking C8 could lead to new analogs with reduced, if not eliminated jaundice and liver toxicities.
Collapse
|
17
|
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem Rev 2016; 116:14379-14455. [PMID: 27960273 DOI: 10.1021/acs.chemrev.6b00209] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleoside, nucleotide, and base analogs have been in the clinic for decades to treat both viral pathogens and neoplasms. More than 20% of patients on anticancer chemotherapy have been treated with one or more of these analogs. This review focuses on the chemical synthesis and biology of anticancer nucleoside, nucleotide, and base analogs that are FDA-approved and in clinical development since 2000. We highlight the cellular biology and clinical biology of analogs, drug resistance mechanisms, and compound specificity towards different cancer types. Furthermore, we explore analog syntheses as well as improved and scale-up syntheses. We conclude with a discussion on what might lie ahead for medicinal chemists, biologists, and physicians as they try to improve analog efficacy through prodrug strategies and drug combinations.
Collapse
Affiliation(s)
- Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Joseph A Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
The role of the TNF receptors and apoptosis inducing ligands in tumor growth. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:18-37. [DOI: 10.15407/ubj88.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|