1
|
Guo X, Wu Z, Zhang S, Zhao J. Cov-trans: an efficient algorithm for discontinuous transcript assembly in coronaviruses. BMC Genomics 2024; 25:1257. [PMID: 39736540 DOI: 10.1186/s12864-024-11179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem. The current algorithms designed for assembling viral transcripts often struggle with low accuracy in determining the transcript boundaries. There is an urgent need to develop a highly accurate viral transcript assembly algorithm. RESULTS In this work, we propose Cov-trans, a reference-based transcript assembler specifically tailored for the discontinuous transcription of coronaviruses. Cov-trans first identifies canonical transcripts based on discontinuous transcription mechanisms, start and stop codons, as well as reads alignment information. Subsequently, it formulates the assembly of non-canonical transcripts as a path extraction problem, and introduces a mixed integer linear programming to recover these non-canonical transcripts. CONCLUSION Experimental results show that Cov-trans outperforms other assemblers in both accuracy and recall, with a notable strength in accurately identifying the boundaries of transcripts. Cov-trans is freely available at https://github.com/computer-Bioinfo/Cov-trans.git .
Collapse
Affiliation(s)
- Xiaoyu Guo
- School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China
| | - Zhenming Wu
- School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China
| | - Shu Zhang
- School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China
| | - Jin Zhao
- School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.
| |
Collapse
|
2
|
Baudeau T, Sahlin K. Improved sub-genomic RNA prediction with the ARTIC protocol. Nucleic Acids Res 2024; 52:e82. [PMID: 39149898 PMCID: PMC11417393 DOI: 10.1093/nar/gkae687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Viral subgenomic RNA (sgRNA) plays a major role in SARS-COV2's replication, pathogenicity, and evolution. Recent sequencing protocols, such as the ARTIC protocol, have been established. However, due to the viral-specific biological processes, analyzing sgRNA through viral-specific read sequencing data is a computational challenge. Current methods rely on computational tools designed for eukaryote genomes, resulting in a gap in the tools designed specifically for sgRNA detection. To address this, we make two contributions. Firstly, we present sgENERATE, an evaluation pipeline to study the accuracy and efficacy of sgRNA detection tools using the popular ARTIC sequencing protocol. Using sgENERATE, we evaluate periscope, a recently introduced tool that detects sgRNA from ARTIC sequencing data. We find that periscope has biased predictions and high computational costs. Secondly, using the information produced from sgENERATE, we redesign the algorithm in periscope to use multiple references from canonical sgRNAs to mitigate alignment issues and improve sgRNA and non-canonical sgRNA detection. We evaluate periscope and our algorithm, periscope_multi, on simulated and biological sequencing datasets and demonstrate periscope_multi's enhanced sgRNA detection accuracy. Our contribution advances tools for studying viral sgRNA, paving the way for more accurate and efficient analyses in the context of viral RNA discovery.
Collapse
Affiliation(s)
- Thomas Baudeau
- Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
| | - Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Bonavita CM, Wells HL, Anthony SJ. Cellular dynamics shape recombination frequency in coronaviruses. PLoS Pathog 2024; 20:e1012596. [PMID: 39331680 PMCID: PMC11463787 DOI: 10.1371/journal.ppat.1012596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Coronavirus genomes have evolutionary histories shaped extensively by recombination. Yet, how often recombination occurs at a cellular level, or the factors that regulate recombination rates, are poorly understood. Utilizing experimental co-infections with pairs of genetically distinct coronaviruses, we found that recombination is both frequent and rare during coinfection. Recombination occurred in every instance of co-infection yet resulted in relatively few recombinant RNAs. By integrating a discrete-time Susceptible-Infected-Removed (SIR) model, we found that rates of recombination are determined primarily by rates of cellular co-infection, rather than other possible barriers such as RNA compartmentalization. By staggering the order and timing of infection with each virus we also found that rates of co-infection are themselves heavily influenced by genetic and ecological mechanisms, including superinfection exclusion and the relative fitness of competing viruses. Our study highlights recombination as a potent yet regulated force: frequent enough to ensure a steady influx of genetic variation but also infrequent enough to maintain genomic integrity. As recombination is thought to be an important driver of host-switching and disease emergence, our study provides new insights into the factors that regulate coronavirus recombination and evolution more broadly.
Collapse
Affiliation(s)
- Cassandra M. Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| | - Heather L. Wells
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| | - Simon J. Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| |
Collapse
|
4
|
Liang R, Liu K, Li Y, Zhang X, Duan L, Huang M, Sun L, Yuan F, Zhao J, Zhao Y, Zhang G. Adaptive truncation of the S gene in IBV during chicken embryo passaging plays a crucial role in its attenuation. PLoS Pathog 2024; 20:e1012415. [PMID: 39078847 PMCID: PMC11315334 DOI: 10.1371/journal.ppat.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingfei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linqing Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Yuan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wu TTH, Travaglini KJ, Rustagi A, Xu D, Zhang Y, Andronov L, Jang S, Gillich A, Dehghannasiri R, Martínez-Colón GJ, Beck A, Liu DD, Wilk AJ, Morri M, Trope WL, Bierman R, Weissman IL, Shrager JB, Quake SR, Kuo CS, Salzman J, Moerner W, Kim PS, Blish CA, Krasnow MA. Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung. J Exp Med 2024; 221:e20232192. [PMID: 38597954 PMCID: PMC11009983 DOI: 10.1084/jem.20232192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.
Collapse
Affiliation(s)
- Timothy Ting-Hsuan Wu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Kyle J. Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yue Zhang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Leonid Andronov
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - SoRi Jang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Astrid Gillich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanny J. Martínez-Colón
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aimee Beck
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron J. Wilk
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Winston L. Trope
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rob Bierman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B. Shrager
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christin S. Kuo
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Catherine A. Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark A. Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| |
Collapse
|
6
|
Liu G, Jiang H, Chen D, Murchie AIH. Identification of Hammerhead-variant ribozyme sequences in SARS-CoV-2. Nucleic Acids Res 2024; 52:3262-3277. [PMID: 38296822 PMCID: PMC11014351 DOI: 10.1093/nar/gkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
The SARS-CoV-2 RNA virus and variants, responsible for the COVID-19 pandemic has become endemic, raised a need for further understanding of the viral genome and biology. Despite vast research on SARS-CoV-2, no ribozymes have been found in the virus genome. Here we report the identification of 39 Hammerhead-variant ribozyme sequences (CoV-HHRz) in SARS-CoV-2. These sequences are highly conserved within SARS-CoV-2 variants but show large diversity among other coronaviruses. In vitro CoV-HHRz sequences possess the characteristics of typical ribozymes; cleavage is pH and ion dependent, although their activity is relatively low and Mn2+ is required for cleavage. The cleavage sites of four CoV-HHRz coincide with the breakpoint of expressed subgenomic RNA (sgRNAs) in SARS-CoV-2 transcriptome data suggesting in vivo activity. The CoV-HHRz are involved in processing sgRNAs for ORF7b, ORF 10 and ORF1ab nsp13 which are essential for viral packaging and life cycle.
Collapse
Affiliation(s)
- Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Chen BJ, Lin CH, Wu HY, Cai JJ, Chao DY. Experimental and analytical pipeline for sub-genomic RNA landscape of coronavirus by Nanopore sequencer. Microbiol Spectr 2024; 12:e0395423. [PMID: 38483513 PMCID: PMC10986531 DOI: 10.1128/spectrum.03954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2, can infect a variety of mammalian and avian hosts with significant medical and economic consequences. During the life cycle of CoV, a coordinated series of subgenomic RNAs, including canonical subgenomic messenger RNA and non-canonical defective viral genomes (DVGs), are generated with different biological implications. Studies that adopted the Nanopore sequencer (ONT) to investigate the landscape and dynamics of viral RNA subgenomic transcriptomes applied arbitrary bioinformatics parameters without justification or experimental validation. The current study used bovine coronavirus (BCoV), which can be performed under biosafety level 2 for library construction and experimental validation using traditional colony polymerase chain reaction and Sanger sequencing. Four different ONT protocols, including RNA direct and cDNA direct sequencing with or without exonuclease treatment, were used to generate RNA transcriptomic libraries from BCoV-infected cell lysates. Through rigorously examining the k-mer, gap size, segment size, and bin size, the optimal cutoffs for the bioinformatic pipeline were determined to remove the sequence noise while keeping the informative DVG reads. The sensitivity and specificity of identifying DVG reads using the proposed pipeline can reach 82.6% and 99.6% under the k-mer size cutoff of 15. Exonuclease treatment reduced the abundance of RNA transcripts; however, it was not necessary for future library preparation. Additional recovery of clipped BCoV nucleotide sequences with experimental validation expands the landscape of the CoV discontinuous RNA transcriptome, whose biological function requires future investigation. The results of this study provide the benchmarks for library construction and bioinformatic parameters for studying the discontinuous CoV RNA transcriptome.IMPORTANCEFunctional defective viral genomic RNA, containing all the cis-acting elements required for translation or replication, may play different roles in triggering cell innate immune signaling, interfering with the canonical subgenomic messenger RNA transcription/translation or assisting in establishing persistence infection. This study does not only provide benchmarks for library construction and bioinformatic parameters for studying the discontinuous coronavirus RNA transcriptome but also reveals the complexity of the bovine coronavirus transcriptome, whose functional assays will be critical in future studies.
Collapse
Affiliation(s)
- Bo-Jia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Day-Yu Chao
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Deng S, Tian X, Belshaw R, Zhou J, Zhang S, Yang Y, Huang C, Chen W, Qiu H, Choo SW. An RNA-Seq analysis of coronavirus in the skin of the Pangolin. Sci Rep 2024; 14:910. [PMID: 38195813 PMCID: PMC10776870 DOI: 10.1038/s41598-024-51261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Protection of the Critically Endangered East Asian Pangolin species is hampered by the vulnerability of captive individuals to infection. Studies have previously shown the pangolin to have a unique pseudogenisation of many immunity genes (including IFNE, IFIH1, cGAS, STING, TLR5, and TLR11), and we suspected that these losses could account for this vulnerability. Here we used RNA-Seq data to show the effect of these gene losses on the transcriptional response to a viral skin infection in a deceased pangolin. This virus is very closely related to the one causing the current COVID-19 pandemic in the human population (SARS-CoV2), and we found the most upregulated pathway was the same one previously identified in the lungs of SARS-CoV2-infected humans. As predicted, we found that the pathways downstream of the lost genes were not upregulated. For example, the pseudogenised interferon epsilon (IFNE) is known to be particularly important in epithelial immunity, and we show that interferon-related responses were not upregulated in the infected pangolin skin. We suggest that the pangolin's innate gene pseudogenisation is indeed likely to be responsible for the animal's vulnerability to infection.
Collapse
Affiliation(s)
- Siwei Deng
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Robert Belshaw
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Jinfeng Zhou
- China Biodiversity Conservation and Green Development Foundation (CBCGDF), Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Siyuan Zhang
- China Biodiversity Conservation and Green Development Foundation (CBCGDF), Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Chang Huang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Weikang Chen
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Hailu Qiu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Siew Woh Choo
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| |
Collapse
|
9
|
Kron NS, Neuman BW, Kumar S, Blackwelder PL, Vidal D, Walker-Phelan DZ, Gibbs PDI, Fieber LA, Schmale MC. Expression dynamics of the aplysia abyssovirus. Virology 2024; 589:109890. [PMID: 37951086 PMCID: PMC10842508 DOI: 10.1016/j.virol.2023.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 11/13/2023]
Abstract
Two recent studies documented the genome of a novel, extremely large (35.9 kb), nidovirus in RNA sequence databases from the marine neural model Aplysia californica. The goal of the present study was to document the distribution and transcriptional dynamics of this virus, Aplysia abyssovirus 1 (AAbV), in maricultured and wild animals. We confirmed previous findings that AAbV RNA is widespread and reaches extraordinary levels in apparently healthy animals. Transmission electron microscopy identified viral replication factories in ciliated gill epithelial cells but not in neurons where viral RNA is most highly expressed. Viral transcripts do not exhibit evidence of discontinuous RNA synthesis as in coronaviruses but are consistent with production of a single leaderless subgenomic RNA, as in the Gill-associated virus of Penaeus monodon. Splicing patterns in chronically infected adults suggested high levels of defective genomes, possibly explaining the lack of obvious disease signs in high viral load animals.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA, 33149.
| | - Benjamin W Neuman
- Department of Biology, Department of Molecular Pathogenesis and Immunology and Division of Research, Texas A&M University, 400 Bizzell St., College Station, TX, USA, 77843
| | - Sathish Kumar
- Department of Biology, Department of Molecular Pathogenesis and Immunology and Division of Research, Texas A&M University, 400 Bizzell St., College Station, TX, USA, 77843
| | - Patricia L Blackwelder
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA, 33149; University of Miami Center for Advanced Microscopy, University of Miami, 142B Physics, Coral Gables, FL, USA, 33146
| | - Dayana Vidal
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA, 33149
| | - Delphina Z Walker-Phelan
- Department of Immunology, University of Washington, South Lake Union E-411 750 Republican St. UW Box 358059, Seattle, WA, 98109, USA
| | - Patrick D I Gibbs
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA, 33149
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA, 33149
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, USA, 33149
| |
Collapse
|
10
|
Lin CH, Hsieh FC, Lai CC, Wang WC, Kuo CY, Yang CC, Hsu HW, Tam HMH, Yang CY, Wu HY. Identification of the protein coding capability of coronavirus defective viral genomes by mass spectrometry. Virol J 2023; 20:290. [PMID: 38062493 PMCID: PMC10704767 DOI: 10.1186/s12985-023-02252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
During coronavirus infection, in addition to the well-known coronavirus genomes and subgenomic mRNAs, an abundance of defective viral genomes (DVGs) can also be synthesized. In this study, we aimed to examine whether DVGs can encode proteins in infected cells. Nanopore direct RNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were employed. With the protein databases generated by nanopore direct RNA sequencing and the cell lysates derived from the RNA-protein pull-down assay, six DVG-encoded proteins were identified by LC-MS/MS based on the featured fusion peptides caused by recombination during DVG synthesis. The results suggest that the coronavirus DVGs have the capability to encode proteins. Consequently, future studies determining the biological function of DVG-encoded proteins may contribute to the understanding of their roles in coronavirus pathogenesis and the development of antiviral strategies.
Collapse
Grants
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003 and 111-2327-B-005 -003 National Science and Technology Council
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
11
|
Lavezzari D, Mori A, Pomari E, Deiana M, Fadda A, Bertoli L, Sinigaglia A, Riccetti S, Barzon L, Piubelli C, Delledonne M, Capobianchi MR, Castilletti C. Comparative analysis of bioinformatics tools to characterize SARS-CoV-2 subgenomic RNAs. Life Sci Alliance 2023; 6:e202302017. [PMID: 37748810 PMCID: PMC10520259 DOI: 10.26508/lsa.202302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
During the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), positive-sense genomic RNA and subgenomic RNAs (sgRNAs) are synthesized by a discontinuous process of transcription characterized by a template switch, regulated by transcription-regulating sequences (TRS). Although poorly known about makeup and dynamics of sgRNAs population and function of its constituents, next-generation sequencing approaches with the help of bioinformatics tools have made a significant contribution to expand the knowledge of sgRNAs in SARS-CoV-2. For this scope to date, Periscope, LeTRS, sgDI-tector, and CORONATATOR have been developed. However, limited number of studies are available to compare the performance of such tools. To this purpose, we compared Periscope, LeTRS, and sgDI-tector in the identification of canonical (c-) and noncanonical (nc-) sgRNA species in the data obtained with the Illumina ARTIC sequencing protocol applied to SARS-CoV-2-infected Caco-2 cells, sampled at different time points. The three software showed a high concordance rate in the identification and in the quantification of c-sgRNA, whereas more differences were observed in nc-sgRNA. Overall, LeTRS and sgDI-tector result to be adequate alternatives to Periscope to analyze Fastq data from sequencing platforms other than Nanopore.
Collapse
Affiliation(s)
- Denise Lavezzari
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Antonio Mori
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Elena Pomari
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Michela Deiana
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Antonio Fadda
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Bertoli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Chiara Piubelli
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | | | - Maria Rosaria Capobianchi
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
12
|
Lin CH, Chen B, Chao DY, Hsieh FC, Yang CC, Hsu HW, Tam HMH, Wu HY. Unveiling the biology of defective viral genomes in vitro and in vivo: implications for gene expression and pathogenesis of coronavirus. Virol J 2023; 20:225. [PMID: 37803357 PMCID: PMC10559480 DOI: 10.1186/s12985-023-02189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Defective viral genome (DVG) is a truncated version of the full-length virus genome identified in most RNA viruses during infection. The synthesis of DVGs in coronavirus has been suggested; however, the fundamental characteristics of coronavirus DVGs in gene expression and pathogenesis have not been systematically analyzed. METHODS Nanopore direct RNA sequencing was used to investigate the characteristics of coronavirus DVGs in gene expression including reproducibility, abundance, species and genome structures for bovine coronavirus in cells, and for mouse hepatitis virus (MHV)-A59 (a mouse coronavirus) in cells and in mice. The MHV-A59 full-length genomic cDNAs (~ 31 kilobases) were in vitro constructed to experimentally validate the origin of coronavirus DVG. The synthesis of DVGs was also experimentally identified by RT-PCR followed by sequencing. In addition, the alterations of DVGs in amounts and species under different infection environments and selection pressures including the treatment of antiviral remdesivir and interferon were evaluated based on the banding patterns by RT-PCR. RESULTS The results are as follows: (i) the structures of DVGs are with diversity, (ii) DVGs are overall synthesized with moderate (MHV-A59 in cells) to high (BCoV in cells and MHV-A59 in mice) reproducibility under regular infection with the same virus inoculum, (iii) DVGs can be synthesized from the full-length coronavirus genome, (iv) the sequences flanking the recombination point of DVGs are AU-rich and thus may contribute to the recombination events during gene expression, (v) the species and amounts of DVG are altered under different infection environments, and (vi) the biological nature of DVGs between in vitro and in vivo is similar. CONCLUSIONS The identified biological characteristics of coronavirus DVGs in terms of abundance, reproducibility, and variety extend the current model for coronavirus gene expression. In addition, the biological features of alterations in amounts and species of coronavirus DVGs under different infection environments may assist the coronavirus to adapt to the altered environments for virus fitness and may contribute to the coronavirus pathogenesis. Consequently, the unveiled biological features may assist the community to study the gene expression mechanisms of DVGs and their roles in pathogenesis, contributing to the development of antiviral strategy and public health.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - BoJia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Day-Yu Chao
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
13
|
Fritch EJ, Sanders W, Sims AC, Herring LE, Barker NK, Schepmoes AA, Weitz KK, Texier JR, Dittmer DP, Graves LM, Smith RD, Waters KM, Moorman NJ, Baric RS, Graham RL. Metatranscriptomics analysis reveals a novel transcriptional and translational landscape during Middle East respiratory syndrome coronavirus infection. iScience 2023; 26:106780. [PMID: 37193127 PMCID: PMC10152751 DOI: 10.1016/j.isci.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.
Collapse
Affiliation(s)
- Ethan J. Fritch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy C. Sims
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Karl K. Weitz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Jordan R. Texier
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M. Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard D. Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Katrina M. Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Arman K, Dalloul Z, Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics. Gene 2023; 861:147232. [PMID: 36736508 PMCID: PMC9892334 DOI: 10.1016/j.gene.2023.147232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection which is commonly known as COVID-19 (COronaVIrus Disease 2019) has creeped into the human population taking tolls of life and causing tremendous economic crisis. It is indeed crucial to gain knowledge about their characteristics and interactions with human host cells. It has been shown that the majority of our genome consists of non-coding RNAs. Non-coding RNAs including micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) display significant roles in regulating gene expression in almost all cancers and viral diseases. It is intriguing that miRNAs and lncRNAs remarkably regulate the function and expression of major immune components of SARS-CoV-2. MiRNAs act via RNA interference mechanism in which they bind to the complementary sequences of the viral RNA strand, inducing the formation of silencing complex that eventually degrades or inhibits the viral RNA and viral protein expression. LncRNAs have been extensively shown to regulate gene expression in cytokine storm and thus emerges as a critical target for COVID-19 treatment. These lncRNAs also act as competing endogenous RNAs (ceRNAs) by sponging miRNAs and thus affecting the expression of downstream targets during SARS-CoV-2 infection. In this review, we extensively discuss the role of miRNAs and lncRNAs, describe their mechanism of action and their different interacting human targets cells during SARS-CoV-2 infection. Finally, we discuss possible ways how an interference with their molecular function could be exploited for new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Kaifee Arman
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Zeinab Dalloul
- Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
15
|
Mori A, Lavezzari D, Pomari E, Deiana M, Piubelli C, Capobianchi MR, Castilletti C. sgRNAs: A SARS-CoV-2 emerging issue. ASPECTS OF MOLECULAR MEDICINE 2023; 1:100008. [PMID: 37519862 PMCID: PMC10105645 DOI: 10.1016/j.amolm.2023.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 08/01/2023]
Abstract
Like for other coronaviruses, SARS-CoV-2 gene expression strategy is based on the synthesis of a nested set of subgenomic mRNA species (sgRNAs). These sgRNA are synthesized using a "discontinuous transcription" mechanism that relies on template switching at Transcription Regulatory Sequences (TRS). Both canonical (c-sgRNA) and non-canonical (nc-sgRNA, less numerous) subgenomic RNA species can be produced. Currently, sgRNAs are investigated on the basis of sequence data obtained through next generation sequencing (NGS), and bioinformatic tools are crucial for their identification, characterization and quantification. To date, few software have been developed to this aim, whose reliability and applicability to all the available NGS platforms need to be established, to build confidence on the information resulting from such tools. In fact, these information may be crucial for the in depth elucidation of viral expression strategy, particularly in respect of the significance of nc-sgRNAs, and for the possible use of sgRNAs as potential markers of virus replicative activity in infected patients.
Collapse
Affiliation(s)
- Antonio Mori
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| | - Denise Lavezzari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| | - Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| | - Michela Deiana
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| | - Maria Rosaria Capobianchi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024, Verona, Italy
| |
Collapse
|
16
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
17
|
Wu K, Wang D, Wang J, Zhou Y. Translation landscape of SARS-CoV-2 noncanonical subgenomic RNAs. Virol Sin 2022; 37:813-822. [PMID: 36075564 PMCID: PMC9444306 DOI: 10.1016/j.virs.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 12/27/2022] Open
Abstract
The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a positive-stranded RNA genome. Current proteomic studies of SARS-CoV-2 mainly focus on the proteins encoded by its genomic RNA (gRNA) or canonical subgenomic RNAs (sgRNAs). Here, we systematically investigated the translation landscape of SARS-CoV-2, especially its noncanonical sgRNAs. We first constructed a strict pipeline, named vipep, for identifying reliable peptides derived from RNA viruses using RNA-seq and mass spectrometry data. We applied vipep to analyze 24 sets of mass spectrometry data related to SARS-CoV-2 infection. In addition to known canonical proteins, we identified many noncanonical sgRNA-derived peptides, which stably increase after viral infection. Furthermore, we explored the potential functions of those proteins encoded by noncanonical sgRNAs and found that they can bind to viral RNAs and may have immunogenic activity. The generalized vipep pipeline is applicable to any RNA viruses and these results have expanded the SARS-CoV-2 translation map, providing new insights for understanding the functions of SARS-CoV-2 sgRNAs.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dehe Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junhao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China,TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, 430072, China,Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China,Corresponding author
| |
Collapse
|
18
|
Subgenomic RNAs and Their Encoded Proteins Contribute to the Rapid Duplication of SARS-CoV-2 and COVID-19 Progression. Biomolecules 2022; 12:biom12111680. [DOI: 10.3390/biom12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently widespread throughout the world, accompanied by a rising number of people infected and breakthrough infection of variants, which make the virus highly transmissible and replicable. A comprehensive understanding of the molecular virological events and induced immunological features during SARS-CoV-2 replication can provide reliable targets for vaccine and drug development. Among the potential targets, subgenomic RNAs and their encoded proteins involved in the life cycle of SARS-CoV-2 are extremely important in viral duplication and pathogenesis. Subgenomic RNAs employ a range of coping strategies to evade immune surveillance from replication to translation, which allows RNAs to synthesize quickly, encode structural proteins efficiently and complete the entire process of virus replication and assembly successfully. This review focuses on the characteristics and functions of SARS-CoV-2 subgenomic RNAs and their encoded proteins and explores in depth the role of subgenomic RNAs in the replication and infection of host cells to provide important clues to the mechanism of COVID-19 pathogenesis.
Collapse
|
19
|
Kim K, Calabrese P, Wang S, Qin C, Rao Y, Feng P, Chen XS. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci Rep 2022; 12:14972. [PMID: 36100631 PMCID: PMC9470679 DOI: 10.1038/s41598-022-19067-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Calabrese
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shanshan Wang
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
On the Origins of Omicron's Unique Spike Gene Insertion. Vaccines (Basel) 2022; 10:vaccines10091509. [PMID: 36146586 PMCID: PMC9504260 DOI: 10.3390/vaccines10091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/28/2023] Open
Abstract
The emergence of a heavily mutated SARS-CoV-2 variant (Omicron; Pango lineage B.1.1.529 and BA sublineages) and its rapid spread to over 75 countries raised a global public health alarm. Characterizing the mutational profile of Omicron is necessary to interpret its clinical phenotypes which are shared with or distinctive from those of other SARS-CoV-2 variants. We compared the mutations of the initially circulating Omicron variant (now known as BA.1) with prior variants of concern (Alpha, Beta, Gamma, and Delta), variants of interest (Lambda, Mu, Eta, Iota, and Kappa), and ~1500 SARS-CoV-2 lineages constituting ~5.8 million SARS-CoV-2 genomes. Omicron's Spike protein harbors 26 amino acid mutations (23 substitutions, 2 deletions, and 1 insertion) that are distinct compared to other variants of concern. While the substitution and deletion mutations appeared in previous SARS-CoV-2 lineages, the insertion mutation (ins214EPE) was not previously observed in any other SARS-CoV-2 lineage. Here, we consider and discuss various mechanisms through which the nucleotide sequence encoding for ins214EPE could have been acquired, including local duplication, polymerase slippage, and template switching. Although we are not able to definitively determine the mechanism, we highlight the plausibility of template switching. Analysis of the homology of the inserted nucleotide sequence and flanking regions suggests that this template-switching event could have involved the genomes of SARS-CoV-2 variants (e.g., the B.1.1 strain), other human coronaviruses that infect the same host cells as SARS-CoV-2 (e.g., HCoV-OC43 or HCoV-229E), or a human transcript expressed in a host cell that was infected by the Omicron precursor.
Collapse
|
21
|
Okura T, Shirato K, Kakizaki M, Sugimoto S, Matsuyama S, Tanaka T, Kume Y, Chishiki M, Ono T, Moriishi K, Sonoyama M, Hosoya M, Hashimoto K, Maenaka K, Takeda M. Hydrophobic Alpha-Helical Short Peptides in Overlapping Reading Frames of the Coronavirus Genome. Pathogens 2022; 11:877. [PMID: 36014999 PMCID: PMC9415614 DOI: 10.3390/pathogens11080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we show that the coronavirus (CoV) genome may encode many functional hydrophobic alpha-helical peptides (HAHPs) in overlapping reading frames of major coronaviral proteins throughout the entire viral genome. These HAHPs can theoretically be expressed from non-canonical sub-genomic (sg)RNAs that are synthesized in substantial amounts in infected cells. We selected and analyzed five and six HAHPs encoded in the S gene regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively. Two and three HAHPs derived from SARS-CoV-2 and MERS-CoV, respectively, specifically interacted with both the SARS-CoV-2 and MERS-CoV S proteins and inhibited their membrane fusion activity. Furthermore, one of the SARS-CoV-2 HAHPs specifically inhibited viral RNA synthesis by accumulating at the site of viral RNA synthesis. Our data show that a group of HAHPs in the coronaviral genome potentially has a regulatory role in viral propagation.
Collapse
Affiliation(s)
- Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Masatoshi Kakizaki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Satoko Sugimoto
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan
| | - Shutoku Matsuyama
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan;
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan; (T.T.); (K.M.)
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan; (T.T.); (K.M.)
- Center for Life Science Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0808, Hokkaido, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, Kiryu 376-8515, Gunma, Japan
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan;
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| |
Collapse
|
22
|
Dong X, Penrice-Randal R, Goldswain H, Prince T, Randle N, Donovan-Banfield I, Salguero FJ, Tree J, Vamos E, Nelson C, Clark J, Ryan Y, Stewart JP, Semple MG, Baillie JK, Openshaw PJM, Turtle L, Matthews DA, Carroll MW, Darby AC, Hiscox JA. Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers. Gigascience 2022; 11:giac045. [PMID: 35639883 PMCID: PMC9154083 DOI: 10.1093/gigascience/giac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | | | - Julia Tree
- UK-Health Security Agency, Salisbury, SP4 0JG, UK
| | - Ecaterina Vamos
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Charlotte Nelson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Jordan Clark
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - James P Stewart
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Malcolm G Semple
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | | | - Miles W Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
- UK-Health Security Agency, Salisbury, SP4 0JG, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, 138632, Singapore
| |
Collapse
|
23
|
Agius JE, Johnson-Mackinnon JC, Fong W, Gall M, Lam C, Basile K, Kok J, Arnott A, Sintchenko V, Rockett RJ. SARS-CoV-2 Within-Host and in vitro Genomic Variability and Sub-Genomic RNA Levels Indicate Differences in Viral Expression Between Clinical Cohorts and in vitro Culture. Front Microbiol 2022; 13:824217. [PMID: 35663867 PMCID: PMC9161297 DOI: 10.3389/fmicb.2022.824217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 12/23/2022] Open
Abstract
Background Low frequency intrahost single nucleotide variants (iSNVs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been increasingly recognised as predictive indicators of positive selection. Particularly as growing numbers of SARS-CoV-2 variants of interest (VOI) and concern (VOC) emerge. However, the dynamics of subgenomic RNA (sgRNA) expression and its impact on genomic diversity and infection outcome remain poorly understood. This study aims to investigate and quantify iSNVs and sgRNA expression in single and longitudinally sampled cohorts over the course of mild and severe SARS-CoV-2 infection, benchmarked against an in vitro infection model. Methods Two clinical cohorts of SARS-CoV-2 positive cases in New South Wales, Australia collected between March 2020 and August 2021 were sequenced. Longitudinal samples from cases hospitalised due to SARS-CoV-2 infection (severe) (n = 16) were analysed and compared with cases that presented with SARS-CoV-2 symptoms but were not hospitalised (mild) (n = 23). SARS-CoV-2 genomic diversity profiles were also examined from daily sampling of culture experiments for three SARS-CoV-2 variants (Lineage A, B.1.351, and B.1.617.2) cultured in VeroE6 C1008 cells (n = 33). Results Intrahost single nucleotide variants were detected in 83% (19/23) of the mild cohort cases and 100% (16/16) of the severe cohort cases. SNP profiles remained relatively fixed over time, with an average of 1.66 SNPs gained or lost, and an average of 4.2 and 5.9 low frequency variants per patient were detected in severe and mild infection, respectively. sgRNA was detected in 100% (25/25) of the mild genomes and 92% (24/26) of the severe genomes. Total sgRNA expressed across all genes in the mild cohort was significantly higher than that of the severe cohort. Significantly higher expression levels were detected in the spike and the nucleocapsid genes. There was significantly less sgRNA detected in the culture dilutions than the clinical cohorts. Discussion and Conclusion The positions and frequencies of iSNVs in the severe and mild infection cohorts were dynamic overtime, highlighting the importance of continual monitoring, particularly during community outbreaks where multiple SARS-CoV-2 variants may co-circulate. sgRNA levels can vary across patients and the overall level of sgRNA reads compared to genomic RNA can be less than 1%. The relative contribution of sgRNA to the severity of illness warrants further investigation given the level of variation between genomes. Further monitoring of sgRNAs will improve the understanding of SARS-CoV-2 evolution and the effectiveness of therapeutic and public health containment measures during the pandemic.
Collapse
Affiliation(s)
- Jessica E. Agius
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jessica C. Johnson-Mackinnon
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Winkie Fong
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mailie Gall
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology – Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Connie Lam
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology – Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology – Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Alicia Arnott
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology – Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology – Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases and Microbiology Public Health, Westmead Hospital, Institute for Clinical Pathology and Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
24
|
Nomburg J, Zou W, Frost TC, Datta C, Vasudevan S, Starrett GJ, Imperiale MJ, Meyerson M, DeCaprio JA. Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathog 2022; 18:e1010401. [PMID: 35363834 PMCID: PMC9007360 DOI: 10.1371/journal.ppat.1010401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.
Collapse
Affiliation(s)
- Jason Nomburg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas C. Frost
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gabriel J. Starrett
- Laboratory of Cellular Oncology, CCR, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, Ann Arbor, Michigan, United States of America
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Long S. Digital PCR: Methods and applications in infectious diseases. Methods 2022; 201:1-4. [DOI: 10.1016/j.ymeth.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
27
|
Soszynska-Jozwiak M, Ruszkowska A, Kierzek R, O’Leary CA, Moss WN, Kierzek E. Secondary Structure of Subgenomic RNA M of SARS-CoV-2. Viruses 2022; 14:322. [PMID: 35215915 PMCID: PMC8878378 DOI: 10.3390/v14020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 belongs to the Coronavirinae family. Like other coronaviruses, SARS-CoV-2 is enveloped and possesses a positive-sense, single-stranded RNA genome of ~30 kb. Genomic RNA is used as the template for replication and transcription. During these processes, positive-sense genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) are created. Several studies presented the importance of the genomic RNA secondary structure in SARS-CoV-2 replication. However, the structure of sgRNAs has remained largely unsolved so far. In this study, we probed the sgRNA M model of SARS-CoV-2 in vitro. The presented model molecule includes 5'UTR and a coding sequence of gene M. This is the first experimentally informed secondary structure model of sgRNA M, which presents features likely to be important in sgRNA M function. The knowledge of sgRNA M structure provides insights to better understand virus biology and could be used for designing new therapeutics.
Collapse
Affiliation(s)
- Marta Soszynska-Jozwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (M.S.-J.); (A.R.); (R.K.)
| | - Agnieszka Ruszkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (M.S.-J.); (A.R.); (R.K.)
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (M.S.-J.); (A.R.); (R.K.)
| | - Collin A. O’Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (C.A.O.); (W.N.M.)
| | - Walter N. Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (C.A.O.); (W.N.M.)
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (M.S.-J.); (A.R.); (R.K.)
| |
Collapse
|
28
|
Mingaleeva RN, Nigmatulina NA, Sharafetdinova LM, Romozanova AM, Gabdoulkhakova AG, Filina YV, Shavaliyev RF, Rizvanov AA, Miftakhova RR. Biology of the SARS-CoV-2 Coronavirus. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1662-1678. [PMID: 36717455 PMCID: PMC9839213 DOI: 10.1134/s0006297922120215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
New coronavirus infection causing COVID-19, which was first reported in late 2019 in China, initiated severe social and economic crisis that affected the whole world. High frequency of the errors in replication of RNA viruses, zoonotic nature of transmission, and high transmissibility allowed betacoronaviruses to cause the third pandemic in the world since the beginning of 2003: SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019. The latest pandemic united scientific community and served as a powerful impetus in the study of biology of coronaviruses: new routes of virus penetration into the human cells were identified, features of the replication cycle were studied, and new functions of coronavirus proteins were elucidated. It should be recognized that the pandemic was accompanied by the need to obtain and publish results within a short time, which led to the emergence of an array of conflicting data and low reproducibility of research results. We systematized and analyzed scientific literature, filtered the results according to reliability of the methods of analysis used, and prepared a review describing molecular mechanisms of functioning of the SARS-CoV-2 coronavirus. This review considers organization of the genome of the SARS-CoV-2 virus, mechanisms of its gene expression and entry of the virus into the cell, provides information on key mutations that characterize different variants of the virus, and their contribution to pathogenesis of the disease.
Collapse
Affiliation(s)
- Rimma N. Mingaleeva
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| | - Nigina A. Nigmatulina
- State Autonomous Public Health Institution “Republican Clinical Hospital”, Ministry of Health of the Republic of Tatarstan, 420064 Kazan, Russia
| | - Liliya M. Sharafetdinova
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| | - Albina M. Romozanova
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| | - Aida G. Gabdoulkhakova
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| | - Yuliya V. Filina
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| | - Rafael F. Shavaliyev
- State Autonomous Public Health Institution “Republican Clinical Hospital”, Ministry of Health of the Republic of Tatarstan, 420064 Kazan, Russia
| | - Albert A. Rizvanov
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| | - Regina R. Miftakhova
- Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, 420008 Kazan, Russia
| |
Collapse
|
29
|
Characterization of two SARS-CoV-2 subgenomic RNA dynamics in severe COVID-19 patients. Virol Sin 2022; 37:30-37. [PMID: 35234623 PMCID: PMC8762994 DOI: 10.1016/j.virs.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Little is known about Subgenomic RNA (sgRNA) dynamics in patients with Coronavirus diseases 2019 (COVID-19). We collected 147 throat swabs, 74 gut swabs and 46 plasma samples from 117 COVID-19 patients recruited in the LOTUS China trial (ChiCTR2000029308) and compared E and orf7a sgRNA load in patients with different illness duration, outcome, and comorbidities. Both sgRNAs were detected in all the three types of samples, with longest duration of 25, 13, and 17 days for E sgRNA, and 32, 28, and 17 days for orf7a sgRNA in throat, gut, and plasma, respectively. A total of 95% (57/60) of patients had no E sgRNA detected after 10 days post treatment, though 86% of them were still E RNA positive. High correlation on titer was observed between sgRNA encoding E and orf7a gene. sgRNA showed similar variation in the standard care and Lopinavir-Ritonavir group. Patients with diabetes and heart diseases showed higher pharyngeal E sgRNA at the first day (P = 0.016 and 0.013, respectively) but no difference at five days after treatment, compared with patients without such commodities. Patients with hypertension and cerebrovascular diseases showed no difference in the pharyngeal sgRNA levels at both one and five days after treatment, compared with patients without these two commodities. E sgRNA levels in the initial infection showed no correlation with the serum antibody against spike, nucleoprotein, and receptor binding domains at ten days later. sgRNA lasted a long period in COVID-19 patients and might have little effect on humoral response. 147 throat swabs, 74 gut swabs and 46 plasma samples were used for subgenomic RNA (sgRNA) E and orf7a detection and quantification. sgRNA of E and orf7a gene were detected in throat swabs, gut swabs and plasmas and lasted long period. E sgRNA levels in the initial infection showed no correlation with the serum antibody against SARS-CoV-2 ten days later.
Collapse
|
30
|
Kim K, Calabrese P, Wang S, Qin C, Rao Y, Feng P, Chen XS. The Roles of APOBEC-mediated RNA Editing in SARS-CoV-2 Mutations, Replication and Fitness.. [PMID: 34981048 PMCID: PMC8722585 DOI: 10.1101/2021.12.18.473309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure. Efficient Editing of SARS-CoV-2 genomic RNA by Host APOBEC deaminases and Its Potential Impacts on the Viral Replication and Emergence of New Strains in COVID-19 Pandemic
Collapse
|
31
|
Garushyants SK, Rogozin IB, Koonin EV. Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring. Commun Biol 2021; 4:1343. [PMID: 34848826 PMCID: PMC8632935 DOI: 10.1038/s42003-021-02858-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
The appearance of multiple new SARS-CoV-2 variants during the COVID-19 pandemic is a matter of grave concern. Some of these variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the Spike (S) protein is thought to be a determinant of SARS-CoV-2 virulence. Here, we identify 346 unique inserts of different lengths in SARS-CoV-2 genomes and present evidence that these inserts reflect actual virus variance rather than sequencing artifacts. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. At least three inserts in the N-terminal domain of the S protein are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity. Thus, inserts in the S protein can affect its antigenic properties and merit monitoring.
Collapse
Affiliation(s)
- Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Abstract
The ongoing Covid-19 pandemic has spurred research in the biology of the nidovirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Much focus has been on the viral RNA synthesis machinery due to its fundamental role in viral propagation. The central and essential enzyme of the RNA synthesis process, the RNA-dependent RNA polymerase (RdRp), functions in conjunction with a coterie of viral-encoded enzymes that mediate crucial nucleic acid transactions. Some of these enzymes share common features with other RNA viruses, while others play roles unique to nidoviruses or CoVs. The RdRps are proven targets for viral pathogens, and many of the other nucleic acid processing enzymes are promising targets. The purpose of this review is to summarize recent advances in our understanding of the mechanisms of RNA synthesis in CoVs. By reflecting on these studies, we hope to emphasize the remaining gaps in our knowledge. The recent onslaught of structural information related to SARS-CoV-2 RNA synthesis, in combination with previous structural, genetic and biochemical studies, have vastly improved our understanding of how CoVs replicate and process their genomic RNA. Structural biology not only provides a blueprint for understanding the function of the enzymes and cofactors in molecular detail, but also provides a basis for drug design and optimization. The concerted efforts of researchers around the world, in combination with the renewed urgency toward understanding this deadly family of viruses, may eventually yield new and improved antivirals that provide relief to the current global devastation.
Collapse
Affiliation(s)
- Brandon Malone
- The Rockefeller University, New York, New York, United States
| | | | - Seth A Darst
- The Rockefeller University, New York, New York, United States.
| |
Collapse
|
33
|
Zhang Y, Huang K, Xie D, Lau JY, Shen W, Li P, Wang D, Zou Z, Shi S, Ren H, Wang Y, Mao Y, Jin M, Kudla G, Zhao Z. In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat Commun 2021; 12:5695. [PMID: 34584097 PMCID: PMC8478942 DOI: 10.1038/s41467-021-25999-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
The dynamics of SARS-CoV-2 RNA structure and their functional relevance are largely unknown. Here we develop a simplified SPLASH assay and comprehensively map the in vivo RNA-RNA interactome of SARS-CoV-2 genome across viral life cycle. We report canonical and alternative structures including 5'-UTR and 3'-UTR, frameshifting element (FSE) pseudoknot and genome cyclization in both cells and virions. We provide direct evidence of interactions between Transcription Regulating Sequences, which facilitate discontinuous transcription. In addition, we reveal alternative short and long distance arches around FSE. More importantly, we find that within virions, while SARS-CoV-2 genome RNA undergoes intensive compaction, genome domains remain stable but with strengthened demarcation of local domains and weakened global cyclization. Taken together, our analysis reveals the structural basis for the regulation of replication, discontinuous transcription and translational frameshifting, the alternative conformations and the maintenance of global genome organization during the whole life cycle of SARS-CoV-2, which we anticipate will help develop better antiviral strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing institute of Biotechnology, Beijing, China
| | - Kun Huang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dejian Xie
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Wenlong Shen
- Beijing institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing institute of Biotechnology, Beijing, China
| | - Dong Wang
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Zhong Zou
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Shi
- Beijing institute of Biotechnology, Beijing, China
| | | | | | - Youzhi Mao
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Zhihu Zhao
- Beijing institute of Biotechnology, Beijing, China.
| |
Collapse
|
34
|
Long S. SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses 2021; 13:1923. [PMID: 34696353 PMCID: PMC8539008 DOI: 10.3390/v13101923] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, the etiologic agent at the root of the ongoing COVID-19 pandemic, harbors a large RNA genome from which a tiered ensemble of subgenomic RNAs (sgRNAs) is generated. Comprehensive definition and investigation of these RNA products are important for understanding SARS-CoV-2 pathogenesis. This review summarizes the recent progress on SARS-CoV-2 sgRNA identification, characterization, and application as a viral replication marker. The significance of these findings and potential future research areas of interest are discussed.
Collapse
Affiliation(s)
- Samuel Long
- Independent Researcher, Clarksburg, MD 20871, USA
| |
Collapse
|
35
|
Wong CH, Ngan CY, Goldfeder RL, Idol J, Kuhlberg C, Maurya R, Kelly K, Omerza G, Renzette N, De Abreu F, Li L, Browne FA, Liu ET, Wei CL. Reduced subgenomic RNA expression is a molecular indicator of asymptomatic SARS-CoV-2 infection. COMMUNICATIONS MEDICINE 2021; 1:33. [PMID: 35602196 PMCID: PMC9053197 DOI: 10.1038/s43856-021-00034-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023] Open
Abstract
Background It is estimated that up to 80% of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are asymptomatic and asymptomatic patients can still effectively transmit the virus and cause disease. While much of the effort has been placed on decoding single nucleotide variation in SARS-CoV-2 genomes, considerably less is known about their transcript variation and any correlation with clinical severity in human hosts, as defined here by the presence or absence of symptoms. Methods To assess viral genomic signatures of disease severity, we conducted a systematic characterization of SARS-CoV-2 transcripts and genetic variants in 81 clinical specimens collected from symptomatic and asymptomatic individuals using multi-scale transcriptomic analyses including amplicon-seq, short-read metatranscriptome and long-read Iso-seq. Results Here we show a highly coordinated and consistent pattern of sgRNA expression from individuals with robust SARS-CoV-2 symptomatic infection and their expression is significantly repressed in the asymptomatic infections. We also observe widespread inter- and intra-patient variants in viral RNAs, known as quasispecies frequently found in many RNA viruses. We identify unique sets of deletions preferentially found primarily in symptomatic individuals, with many likely to confer changes in SARS-CoV-2 virulence and host responses. Moreover, these frequently occurring structural variants in SARS-CoV-2 genomes serve as a mechanism to further induce SARS-CoV-2 proteome complexity. Conclusions Our results indicate that differential sgRNA expression and structural mutational burden are highly correlated with the clinical severity of SARS-CoV-2 infection. Longitudinally monitoring sgRNA expression and structural diversity could further guide treatment responses, testing strategies, and vaccine development.
Collapse
Affiliation(s)
- Chee Hong Wong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | | | - Jennifer Idol
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Chris Kuhlberg
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Rahul Maurya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin Kelly
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Gregory Omerza
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Nicholas Renzette
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Francine De Abreu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Lei Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | | | - Edison T. Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| |
Collapse
|
36
|
Age and Sex Modulate SARS-CoV-2 Viral Load Kinetics: A Longitudinal Analysis of 1735 Subjects. J Pers Med 2021; 11:jpm11090882. [PMID: 34575659 PMCID: PMC8470027 DOI: 10.3390/jpm11090882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 represents a public health emergency, which became even more challenging since the detection of highly transmissible variants and strategies against COVID-19 were indistinctly established. We characterized the temporal viral load kinetics in individuals infected by original and variant strains. Naso-oropharyngeal swabs from 33,000 individuals (admitted to the IRCCS Santa Lucia Foundation Drive-in, healthcare professionals and hospitalized patients who underwent routinary screening) from November 2020 to June 2021 were analyzed. Of them, 1735 subjects were selected and grouped according to the viral strain. Diagnostic analyses were performed by CE-IVD RT-PCR-based kits. The subgenomic-RNA component was assessed in 36 subjects using digital PCR. Infection duration, viral load decay speed, effects of age and sex were assessed and compared by extensive statistical analyses. Overall, infection duration and viral load differed between the groups (p < 0.05). Male sex was more present among both original and variant carriers affected with high viral load and showing fast decay speed, whereas original strain carriers with slow decay speed resulted in older (p < 0.05). Subgenomic-RNA was detected in the positive samples, including those with low viral load. This study provides a picture of the viral load kinetics, identifying individuals with similar patterns and showing differential effects of age and sex, thus providing potentially useful information for personalized management of infected subjects.
Collapse
|
37
|
Garushyants SK, Rogozin IB, Koonin EV. Insertions in SARS-CoV-2 genome caused by template switch and duplications give rise to new variants that merit monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.23.441209. [PMID: 33907754 PMCID: PMC8077628 DOI: 10.1101/2021.04.23.441209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The appearance of multiple new SARS-CoV-2 variants during the winter of 2020-2021 is a matter of grave concern. Some of these new variants, such as B.1.617.2, B.1.1.7, and B.1.351, manifest higher infectivity and virulence than the earlier SARS-CoV-2 variants, with potential dramatic effects on the course of the COVID-19 pandemic. So far, analysis of new SARS-CoV-2 variants focused primarily on point nucleotide substitutions and short deletions that are readily identifiable by comparison to consensus genome sequences. In contrast, insertions have largely escaped the attention of researchers although the furin site insert in the spike protein is thought to be a determinant of SARS-CoV-2 virulence and other inserts might have contributed to coronavirus pathogenicity as well. Here, we investigate insertions in SARS-CoV-2 genomes and identify 347 unique inserts of different lengths. We present evidence that these inserts reflect actual virus variance rather than sequencing errors. Two principal mechanisms appear to account for the inserts in the SARS-CoV-2 genomes, polymerase slippage and template switch that might be associated with the synthesis of subgenomic RNAs. We show that inserts in the Spike glycoprotein can affect its antigenic properties and thus merit monitoring. At least, three inserts in the N-terminal domain of the Spike (ins245IME, ins246DSWG, and ins248SSLT) that were first detected in 2021 are predicted to lead to escape from neutralizing antibodies, whereas other inserts might result in escape from T-cell immunity.
Collapse
Affiliation(s)
- Sofya K. Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Deiana M, Mori A, Piubelli C, Perandin F, Treggiari D, Martini D, Chesini F, Angheben A, Bonfante F, Terregino C, Bisoffi Z, Pomari E. Impact of Full Vaccination with mRNA BNT162b2 on SARS-CoV-2 Infection: Genomic and Subgenomic Viral RNAs Detection in Nasopharyngeal Swab and Saliva of Health Care Workers. Microorganisms 2021; 9:1738. [PMID: 34442817 PMCID: PMC8400037 DOI: 10.3390/microorganisms9081738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
SARS-CoV-2 infection was monitored in 1898 health care workers (HCWs) after receiving full vaccination with BNT162b2. Untill 30 June 2021, 10 HCWs tested positive for SARS-CoV-2 using real time RT-PCR, resulting in a 4-month cumulative incidence of 0.005%. The infection was mildly symptomatic in six (60%) and asymptomatic in four (40%) individuals. Among the infected HCWs, eight consenting individuals provided paired NPS and saliva during the course of infection, for the purpose of the analysis performed in the present study. Genomic and subgenomic viral RNAs were investigated using real-time RT-PCR in both biological specimens. The temporal profile of viral load was measured using ddPCR. Viral mutations were also analysed. Subgenomic viral RNA was detected in 8/8 (100%) NPS and in 6/8 (75%) saliva specimens at the baseline. The expression of subgenomic RNA was observed for up to 7 days in 3/8 (38%) symptomatic cases. Moreover, concordance was observed between NPS and saliva in the detection of viral mutations, and both N501Y and 69/70del (associated with the B.1.1.7 variant) were detected in the majority 6/8 (75%) of subjects, while the K417T mutation (associated with the P.1-type variants) was detected in 2/8 (25%) individuals. Overall, our findings report a low frequency of infected HCWs after full vaccination. It is, therefore, important to monitor the vaccinees in order to identify asymptomatic infected individuals. Saliva can be a surrogate for SARS-CoV-2 surveillance, particularly in social settings such as hospitals.
Collapse
Affiliation(s)
- Michela Deiana
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Antonio Mori
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Davide Treggiari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Davide Martini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Fabio Chesini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Andrea Angheben
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (F.B.); (C.T.)
| | - Calogero Terregino
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (F.B.); (C.T.)
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
- Department of Diagnostics and Public Health, University of Verona, 37129 Verona, Italy
| | - Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (M.D.); (C.P.); (F.P.); (D.T.); (D.M.); (F.C.); (A.A.); (Z.B.)
| |
Collapse
|
39
|
Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol 2021; 12:682603. [PMID: 34335504 PMCID: PMC8317507 DOI: 10.3389/fmicb.2021.682603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.
Collapse
Affiliation(s)
- Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
40
|
Xie D, Chu H, Yang D, Ding Q, Huang G, Chen L, Cai Z, Huang J, Zhao Z. A stark difference in the profiles of defective viral transcripts between SARS-CoV-2 and SARS-CoV. J Infect 2021; 83:381-412. [PMID: 34216637 PMCID: PMC8245308 DOI: 10.1016/j.jinf.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hin Chu
- Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Dong Yang
- Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Gefei Huang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Luo Chen
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Jiandong Huang
- School of Biomedical Sciences, the University of Hong Kong, China; Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
41
|
Nagler A, Kalaora S, Barbolin C, Gangaev A, Ketelaars SLC, Alon M, Pai J, Benedek G, Yahalom-Ronen Y, Erez N, Greenberg P, Yagel G, Peri A, Levin Y, Satpathy AT, Bar-Haim E, Paran N, Kvistborg P, Samuels Y. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep 2021; 35:109305. [PMID: 34166618 PMCID: PMC8185308 DOI: 10.1016/j.celrep.2021.109305] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
The human leukocyte antigen (HLA)-bound viral antigens serve as an immunological signature that can be selectively recognized by T cells. As viruses evolve by acquiring mutations, it is essential to identify a range of presented viral antigens. Using HLA peptidomics, we are able to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides presented by highly prevalent HLA class I (HLA-I) molecules by using infected cells as well as overexpression of SARS-CoV-2 genes. We find 26 HLA-I peptides and 36 HLA class II (HLA-II) peptides. Among the identified peptides, some are shared between different cells and some are derived from out-of-frame open reading frames (ORFs). Seven of these peptides were previously shown to be immunogenic, and we identify two additional immunoreactive peptides by using HLA multimer staining. These results may aid the development of the next generation of SARS-CoV-2 vaccines based on presented viral-specific antigens that span several of the viral genes.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Steven L C Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, the Netherlands
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joy Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yagel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Pia Kvistborg
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Liu J, Yan W, Liu Z, Han Y, Xia Y, Yu J. A colloidal gold-based immunochromatographic strip for rapid detection of SARS-CoV-2 antibodies after vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021; 11:100084. [PMID: 34222853 PMCID: PMC8234432 DOI: 10.1016/j.medntd.2021.100084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Vaccination interventions is consideredan important preventive measure to block the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect the organism from pathogen infection effectively. However, a quick and accurate technique to evaluate the immune efficacy of the SARS-CoV-2 inactivated vaccine remains scarce. In this paper, an IgM-IgG antibody combined detection colloidal gold immunochromatography assay kit was optimized and developed, which can assess the efficacy of the inactivated SARS-CoV-2 vaccine. We collected fingertip blood samples from 3 vaccinees and 1 unvaccinated sample. The results showed that the proportion of antibody was high after the second shots immunization. The colloidal gold-based immunochromatographic strip is rapid, convenient and easy to operate. It can be used as an auxiliary method for preliminary evaluation of the antibody effect of vaccine recipients, and provide a reference index for the potential clinical application value of the vaccine.
Collapse
Affiliation(s)
- Jia Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqi Yan
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yizhao Han
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuanshi Xia
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jian Yu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
43
|
Farkas C, Mella A, Turgeon M, Haigh JJ. A Novel SARS-CoV-2 Viral Sequence Bioinformatic Pipeline Has Found Genetic Evidence That the Viral 3' Untranslated Region (UTR) Is Evolving and Generating Increased Viral Diversity. Front Microbiol 2021; 12:665041. [PMID: 34234758 PMCID: PMC8256173 DOI: 10.3389/fmicb.2021.665041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
An unprecedented amount of SARS-CoV-2 sequencing has been performed, however, novel bioinformatic tools to cope with and process these large datasets is needed. Here, we have devised a bioinformatic pipeline that inputs SARS-CoV-2 genome sequencing in FASTA/FASTQ format and outputs a single Variant Calling Format file that can be processed to obtain variant annotations and perform downstream population genetic testing. As proof of concept, we have analyzed over 229,000 SARS-CoV-2 viral sequences up until November 30, 2020. We have identified over 39,000 variants worldwide with increased polymorphisms, spanning the ORF3a gene as well as the 3' untranslated (UTR) regions, specifically in the conserved stem loop region of SARS-CoV-2 which is accumulating greater observed viral diversity relative to chance variation. Our analysis pipeline has also discovered the existence of SARS-CoV-2 hypermutation with low frequency (less than in 2% of genomes) likely arising through host immune responses and not due to sequencing errors. Among annotated non-sense variants with a population frequency over 1%, recurrent inactivation of the ORF8 gene was found. This was found to be present in the newly identified B.1.1.7 SARS-CoV-2 lineage that originated in the United Kingdom. Almost all VOC-containing genomes possess one stop codon in ORF8 gene (Q27∗), however, 13% of these genomes also contains another stop codon (K68∗), suggesting that ORF8 loss does not interfere with SARS-CoV-2 spread and may play a role in its increased virulence. We have developed this computational pipeline to assist researchers in the rapid analysis and characterization of SARS-CoV-2 variation.
Collapse
Affiliation(s)
- Carlos Farkas
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andy Mella
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Maxime Turgeon
- Department of Statistics, University of Manitoba, Winnipeg, MB, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jody J. Haigh
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
44
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
45
|
Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nat Commun 2021; 12:2642. [PMID: 33976134 PMCID: PMC8113528 DOI: 10.1038/s41467-021-22905-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 02/03/2023] Open
Abstract
Despite its clinical importance, the SARS-CoV-2 gene set remains unresolved, hindering dissection of COVID-19 biology. We use comparative genomics to provide a high-confidence protein-coding gene set, characterize evolutionary constraint, and prioritize functional mutations. We select 44 Sarbecovirus genomes at ideally-suited evolutionary distances, and quantify protein-coding evolutionary signatures and overlapping constraint. We find strong protein-coding signatures for ORFs 3a, 6, 7a, 7b, 8, 9b, and a novel alternate-frame gene, ORF3c, whereas ORFs 2b, 3d/3d-2, 3b, 9c, and 10 lack protein-coding signatures or convincing experimental evidence of protein-coding function. Furthermore, we show no other conserved protein-coding genes remain to be discovered. Mutation analysis suggests ORF8 contributes to within-individual fitness but not person-to-person transmission. Cross-strain and within-strain evolutionary pressures agree, except for fewer-than-expected within-strain mutations in nsp3 and S1, and more-than-expected in nucleocapsid, which shows a cluster of mutations in a predicted B-cell epitope, suggesting immune-avoidance selection. Evolutionary histories of residues disrupted by spike-protein substitutions D614G, N501Y, E484K, and K417N/T provide clues about their biology, and we catalog likely-functional co-inherited mutations. Previously reported RNA-modification sites show no enrichment for conservation. Here we report a high-confidence gene set and evolutionary-history annotations providing valuable resources and insights on SARS-CoV-2 biology, mutations, and evolution.
Collapse
Affiliation(s)
- Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Rep 2021; 35:109108. [PMID: 33961822 PMCID: PMC8062406 DOI: 10.1016/j.celrep.2021.109108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses subgenomic RNA (sgRNA) to produce viral proteins for replication and immune evasion. We apply long-read RNA and cDNA sequencing to in vitro human and primate infection models to study transcriptional dynamics. Transcription-regulating sequence (TRS)-dependent sgRNA upregulates earlier in infection than TRS-independent sgRNA. An abundant class of TRS-independent sgRNA consisting of a portion of open reading frame 1ab (ORF1ab) containing nsp1 joins to ORF10, and the 3' untranslated region (UTR) upregulates at 48 h post-infection in human cell lines. We identify double-junction sgRNA containing both TRS-dependent and -independent junctions. We find multiple sites at which the SARS-CoV-2 genome is consistently more modified than sgRNA and that sgRNA modifications are stable across transcript clusters, host cells, and time since infection. Our work highlights the dynamic nature of the SARS-CoV-2 transcriptome during its replication cycle.
Collapse
|
47
|
Parker MD, Lindsey BB, Leary S, Gaudieri S, Chopra A, Wyles M, Angyal A, Green LR, Parsons P, Tucker RM, Brown R, Groves D, Johnson K, Carrilero L, Heffer J, Partridge DG, Evans C, Raza M, Keeley AJ, Smith N, Filipe ADS, Shepherd JG, Davis C, Bennett S, Sreenu VB, Kohl A, Aranday-Cortes E, Tong L, Nichols J, Thomson EC, Wang D, Mallal S, de Silva TI. Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data. Genome Res 2021; 31:645-658. [PMID: 33722935 PMCID: PMC8015849 DOI: 10.1101/gr.268110.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.
Collapse
Affiliation(s)
- Matthew D. Parker
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Benjamin B. Lindsey
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia;,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;,School of Human Sciences, University of Western Australia, Crawley WA 6009, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Luke R. Green
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Paul Parsons
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rachel M. Tucker
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rebecca Brown
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Danielle Groves
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katie Johnson
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Laura Carrilero
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Joe Heffer
- IT Services, The University of Sheffield, Sheffield S10 2FN, United Kingdom
| | - David G. Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Cariad Evans
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Mohammad Raza
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Alexander J. Keeley
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nikki Smith
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ana Da Silva Filipe
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - James G. Shepherd
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Chris Davis
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Sahan Bennett
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Vattipally B. Sreenu
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Alain Kohl
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Elihu Aranday-Cortes
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lily Tong
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Jenna Nichols
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Emma C. Thomson
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | | | - Dennis Wang
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, United Kingdom;,Department of Computer Science, The University of Sheffield, Sheffield S1 4DP, United Kingdom
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia;,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|