1
|
Ma X, Tian F, Xiao Y, Huang M, Song D, Chen X, Xu H. Synergistic effects of bloom helicase (BLM) inhibitor AO/854 with cisplatin in prostate cancer. Sci Rep 2024; 14:24962. [PMID: 39438537 PMCID: PMC11496540 DOI: 10.1038/s41598-024-75938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
To determine the synergistic effect and mechanism of AO/854, a new Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, cell viability assays, neutral comet assays, and Western blotting (WB) were performed on prostate cancer (PCa) cells. According to our findings, combining AO/854 and CDDP enhanced the antiproliferative capabilities of PC3 cell lines. As evidenced by the upregulation of γH2AX, cleaved caspase-3/caspase-3, and BAX/Bcl-2, AO/854 dramatically increased PC3 apoptosis and DNA damage induced by CDDP. Furthermore, combining AO/854 and CDDP synergistically inhibited PC3 cell migration and invasion. In addition, AO/854 inhibited CDDP-induced S-phase cell-cycle arrest in PC3 cells while enhancing G2/M-phase cell-cycle arrest. In vivo, the antitumor efficacy of the combination therapy group was greater than that of the groups treated with AO/854 or CDDP alone. Our findings indicate that synergistic chemotherapy with AO/854 and CDDP may be a novel anticancer strategy for PCa.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Yuanpin Xiao
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- Department of Brewing Engineering, Moutai Institute, Renhuai, 564500, China
| | - Xinlin Chen
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Matsuoka T, Yashiro M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int J Mol Sci 2024; 25:5880. [PMID: 38892067 PMCID: PMC11172243 DOI: 10.3390/ijms25115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of the disease, and current anticancer drug advancements are still lacking. Therefore, it is crucial to find relevant biomarkers with the accurate prediction of prognoses and good predictive accuracy to select appropriate patients with GC. Recent advances in molecular profiling technologies, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have enabled the approach of GC biology at multiple levels of omics interaction networks. Systemic biological analyses, such as computational inference of "big data" and advanced bioinformatic approaches, are emerging to identify the key molecular biomarkers of GC, which would benefit targeted therapies. This review summarizes the current status of how bioinformatics analysis contributes to biomarker discovery for prognosis and prediction of therapeutic efficacy in GC based on a search of the medical literature. We highlight emerging individual multi-omics datasets, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, for validating putative markers. Finally, we discuss the current challenges and future perspectives to integrate multi-omics analysis for improving biomarker implementation. The practical integration of bioinformatics analysis and multi-omics datasets under complementary computational analysis is having a great impact on the search for predictive and prognostic biomarkers and may lead to an important revolution in treatment.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
3
|
Piper AK, Penney C, Holliday J, Tincknell G, Ma Y, Napaki S, Pantel K, Brungs D, Ranson M. EGFR and PI3K Signalling Pathways as Promising Targets on Circulating Tumour Cells from Patients with Metastatic Gastric Adenocarcinoma. Int J Mol Sci 2024; 25:5565. [PMID: 38791602 PMCID: PMC11122469 DOI: 10.3390/ijms25105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The prognosis for metastatic gastric adenocarcinoma (mGAC) remains poor. Gene alterations in receptor tyrosine kinases (RTKs) such as epidermal growth factor receptor (EGFR) and their downstream effectors including catalytic subunit alpha of the phosphatidylinositol 3-kinase (PIK3CA) are common in mGAC. Targeted RTK and phosphatidylinositol-3-kinase (PI3K) treatments have demonstrated clinical benefits in other solid tumours and are key potential targets for clinical development against mGAC given the presence of recurrent alterations in these pathways. Furthermore, combination RTK/PI3K treatments may overcome compensatory mechanisms that arise using monotherapies, leading to improved patient outcomes. Herein, we investigated RTK/PI3K single and combination drug responses against our unique human mGAC-derived PIK3CA gain-of-function mutant, human epidermal growth factor receptor 2 (HER2)-negative, EGFR-expressing circulating tumour cell line, UWG02CTC, under two- and three-dimensional culture conditions to model different stages of metastasis. UWG02CTCs were highly responsive to the PI3K p110α-subunit targeted drugs PIK-75 (IC50 = 37.0 ± 11.1 nM) or alpelisib (7.05 ± 3.7 µM). Drug sensitivities were significantly increased in 3D conditions. Compensatory MAPK/ERK pathway upregulation by PI3K/Akt suppression was overcome by combination treatment with the EGFR inhibitor gefitinib, which was strongly synergistic. PIK-75 plus gefitinib significantly impaired UWG02CTC invasion in an organotypic assay. In conclusion, UWG02CTCs are a powerful ex vivo mGAC drug responsiveness model revealing EGFR/PI3K-targeted drugs as a promising combination treatment option for HER2-negative, RAS wild-type mGAC patients.
Collapse
Affiliation(s)
- Ann-Katrin Piper
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chelsea Penney
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jacqueline Holliday
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gary Tincknell
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Sarbar Napaki
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Brungs
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Department of Pathology, Wollongong Hospital, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Awuah WA, Roy S, Tan JK, Adebusoye FT, Qiang Z, Ferreira T, Ahluwalia A, Shet V, Yee ALW, Abdul‐Rahman T, Papadakis M. Exploring the current landscape of single-cell RNA sequencing applications in gastric cancer research. J Cell Mol Med 2024; 28:e18159. [PMID: 38494861 PMCID: PMC10945075 DOI: 10.1111/jcmm.18159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.
Collapse
Affiliation(s)
| | - Sakshi Roy
- School of MedicineQueen's University BelfastBelfastUK
| | | | | | - Zekai Qiang
- Department of Oncology & MetabolismThe University of SheffieldSheffieldUK
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| |
Collapse
|
5
|
Kim S, Lee Y, Song BR, Sim H, Kang EH, Hwang M, Yu N, Hong S, Park C, Ahn BC, Lim EJ, Hwang KH, Park SY, Choi JH, Lee GK, Han JY. Drug Response of Patient-Derived Lung Cancer Cells Predicts Clinical Outcomes of Targeted Therapy. Cancers (Basel) 2024; 16:778. [PMID: 38398169 PMCID: PMC10887363 DOI: 10.3390/cancers16040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Intratumor heterogeneity leads to different responses to targeted therapies, even within patients whose tumors harbor identical driver oncogenes. This study examined clinical outcomes according to a patient-derived cell (PDC)-based drug sensitivity test in lung cancer patients treated with targeted therapies. From 487 lung cancers, 397 PDCs were established with a success rate of 82%. In 139 PDCs from advanced non-small-cell lung cancer (NSCLC) patients receiving targeted therapies, the standardized area under the curve (AUC) values for the drugs was significantly correlated with their tumor response (p = 0.002). Among 59 chemo-naive EGFR/ALK-positive NSCLC patients, the PDC non-responders showed a significantly inferior response rate (RR) and progression-free survival (PFS) for the targeted drugs than the PDC responders (RR, 25% vs. 78%, p = 0.011; median PFS, 3.4 months [95% confidence interval (CI), 2.8-4.1] vs. 11.8 months [95% CI, 6.5-17.0], p < 0.001). Of 25 EGFR-positive NSCLC patients re-challenged with EGFR inhibitors, the PDC responder showed a higher RR than the PDC non-responder (42% vs. 15%). Four patients with wild-type EGFR or uncommon EGFR-mutant NSCLC were treated with EGFR inhibitors based on their favorable PDC response to EGFR inhibitors, and two patients showed dramatic responses. Therefore, the PDC-based drug sensitivity test results were significantly associated with clinical outcomes in patients with EGFR- or ALK-positive NSCLC. It may be helpful for predicting individual heterogenous clinical outcomes beyond genomic alterations.
Collapse
Affiliation(s)
- Sunshin Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Youngjoo Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang 10408, Republic of Korea
| | - Bo Ram Song
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Hanna Sim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Eun Hye Kang
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Mihwa Hwang
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Namhee Yu
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Sehwa Hong
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Charny Park
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Beung-Chul Ahn
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang 10408, Republic of Korea
| | - Eun Jin Lim
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
| | - Kum Hui Hwang
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, Goyang 10408, Republic of Korea; (S.-Y.P.); (G.K.L.)
| | - Jin-Ho Choi
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
| | - Geon Kook Lee
- Department of Pathology, National Cancer Center, Goyang 10408, Republic of Korea; (S.-Y.P.); (G.K.L.)
| | - Ji-Youn Han
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
6
|
Song X, Cai H, Shi Z, Li Z, Zheng X, Yang K, Gong Q, Gu Z, Hu J, Luo K. Enzyme-Responsive Branched Glycopolymer-Based Nanoassembly for Co-Delivery of Paclitaxel and Akt Inhibitor toward Synergistic Therapy of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306230. [PMID: 37953442 PMCID: PMC10787093 DOI: 10.1002/advs.202306230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Combined chemotherapy and targeted therapy holds immense potential in the management of advanced gastric cancer (GC). GC tissues exhibit an elevated expression level of protein kinase B (AKT), which contributes to disease progression and poor chemotherapeutic responsiveness. Inhibition of AKT expression through an AKT inhibitor, capivasertib (CAP), to enhance cytotoxicity of paclitaxel (PTX) toward GC cells is demonstrated in this study. A cathepsin B-responsive polymeric nanoparticle prodrug system is employed for co-delivery of PTX and CAP, resulting in a polymeric nano-drug BPGP@CAP. The release of PTX and CAP is triggered in an environment with overexpressed cathepsin B upon lysosomal uptake of BPGP@CAP. A synergistic therapeutic effect of PTX and CAP on killing GC cells is confirmed by in vitro and in vivo experiments. Mechanistic investigations suggested that CAP may inhibit AKT expression, leading to suppression of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Encouragingly, CAP can synergize with PTX to exert potent antitumor effects against GC after they are co-delivered via a polymeric drug delivery system, and this delivery system helped reduce their toxic side effects, which provides an effective therapeutic strategy for treating GC.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of Thoracic Surgery and Institute of Thoracic OncologyFrontiers Science Center for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610097China
| | - Zhaochen Shi
- West China School of MedicineSichuan UniversityChengdu610041China
| | - Zhiqian Li
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiuli Zheng
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Qiyong Gong
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamen361000China
| | - Zhongwei Gu
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Research Institute for BiomaterialsTech Institute for Advanced MaterialsCollege of Materials Science and EngineeringNJTech‐BARTY Joint Research Center for Innovative Medical TechnologySuqian Advanced Materials Industry Technology Innovation CenterJiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjing211816China
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of General SurgeryGastric Cancer CenterDepartment of RadiologyHuaxi MR Research Center (HMRRC)Frontiers Science Center for Disease‐Related Molecular NetworkLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, and Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
7
|
Mesquita FP, Lima LB, da Silva EL, Souza PFN, de Moraes MEA, Burbano RMR, Montenegro RC. A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy. Curr Protein Pept Sci 2024; 25:539-552. [PMID: 38424421 DOI: 10.2174/0113892037291318240130103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Luina Benevides Lima
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Emerson Lucena da Silva
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | | | - Rommel Mario Rodrigues Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil
| |
Collapse
|
8
|
Li Y, Tian L, Zhao T, Zhang J. A nanotherapeutic system for gastric cancer suppression by synergistic chemotherapy and immunotherapy based on iPSCs and DCs exosomes. Cancer Immunol Immunother 2023; 72:1673-1683. [PMID: 36622422 DOI: 10.1007/s00262-022-03355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chemotherapeutic drugs, the indispensable therapy in the treatment of gastric cancer, contain many problems such as high organ toxicity and insufficient therapeutic effect. The development of nanodrug delivery carriers with both tumor targeting function and immune stimulation ability possesses the potential to remedy these practical defects. METHODS AND RESULTS In this study, a tumor targeting nanosystem that combines chemotherapy with immunotherapy was applied to the treatment and prognosis of gastric cancer. The fusion vector of iPSCs and DCs exosomes, which simultaneously possess the ability of tumor targeting and immune factor recruitment, effectively improved the in vivo efficacy of chemotherapy drugs and released the suppressed T lymphocytes under the action of modified PD-1 antibody to dredge the immunotherapy process. In addition, extensive recruitment of immune cells to clean the environment while exposing vast tumor antigens efficiently amplified the anti-tumor immune effect and ensured the good prognosis. CONCLUSIONS Nanodrug delivery system DOX@aiPS-DCexo could effectively inhibit the expansion process of gastric cancer MFC through synergistic chemotherapy and immunotherapy and demonstrated the capacity of improving prognosis. Scheme: schematic illustration of the nanostructure DOX@aiPS-DCexo and the mechanism of action.
Collapse
Affiliation(s)
- Yezhou Li
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Leilei Tian
- Department of Operating Room, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Tiancheng Zhao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| | - Jiayu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
9
|
Gu Z, Yao Y, Yang G, Zhu G, Tian Z, Wang R, Wu Q, Wang Y, Wu Y, Chen L, Wang C, Gao J, Kang X, Zhang J, Wang L, Duan S, Zhao Z, Zhang Z, Sun S. Pharmacogenomic landscape of head and neck squamous cell carcinoma informs precision oncology therapy. Sci Transl Med 2022; 14:eabo5987. [PMID: 36070368 DOI: 10.1126/scitranslmed.abo5987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and frequently lethal cancer with few therapeutic options. In particular, there are few effective targeted therapies. Development of highly effective therapeutic strategies tailored to patients with HNSCC remains a pressing challenge. To address this, we present a pharmacogenomic study to facilitate precision treatments for patients with HNSCC. We established a large collection of 56 HNSCC patient-derived cells (PDCs), which recapitulated the molecular features of the original tumors. Pharmacological assessment of HNSCCs was conducted using a three-tiered high-throughput drug screening using 2248 compounds across these PDC models and an additional 18 immortalized cell lines. We integrated genomic, transcriptomic, and pharmacological analysis to predict biomarkers, gene-drug associations, and validated biomarkers. These results supported drug repurposing for multiple HNSCC subtypes, including the JAK2 inhibitor fedratinib, for low KRT18-expressing HNSCC cases, and the topoisomerase inhibitor mitoxantrone, for IL6R-activated HNSCC cases. Our results demonstrated concordance between susceptibility predictions from the PDCs and the matched patients' responses to standard clinical medication. Moreover, we identified and experimentally confirmed that high expression of ITGB1 elicited therapeutic resistance to docetaxel and high SOD1 expression conferred resistance to afatinib. We further validated ITGB1 as a predictive biomarker for the efficacy of docetaxel therapy in a phase 2 clinical trial. In summary, our study shows that this HNSCC cell resource, as well as the resulting pharmacogenomic profiles, is effective for biomarker discovery and for guiding precision oncology therapies in HNSCCs.
Collapse
Affiliation(s)
- Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yanli Yao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guopei Zhu
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Department of Oral and Maxillofacial-Head Neck Oncology, Division of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhen Tian
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Qi Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yujue Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yaping Wu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lan Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiamin Gao
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xindan Kang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jie Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lizhen Wang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shengzhong Duan
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
10
|
Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Singh SK, Dua K, Gupta G. An overview of epithelial growth factor receptor (EGFR) inhibitors in cancer therapy. Chem Biol Interact 2022; 366:110108. [PMID: 36027944 DOI: 10.1016/j.cbi.2022.110108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/28/2022]
Abstract
Epithelial growth factor receptor (EGFR), a transmembrane receptor on the cell surface, carries extracellular messages into the cell and alters the activity of the nucleus through tyrosine signalling. EGFR-targeted treatments have influenced the new era of precision oncology throughout the last few decades. Despite significant progress, long-term remission from solid tumours is still a distant goal for many oncologists. There are several methods by which tumour cells alter the activity of this protein in solid tumours. EGFR-related oncogenic pathways, resistance mechanisms, and novel avenues to suppress tumour development and metastatic spread were discovered in clinical specimens using preclinical models (cell cultures, xenografts, mouse models), which were then validated in those specimens. EGFR has been implicated in the onset and advancement of a variety of cancers, according to research. An overview of EGFR's structural anatomy and physiology, its role in cancers, and clinical studies that target EGFR in various tumours are included in this review.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
11
|
Xi W, Zhou C, Xu F, Sun D, Wang S, Chen Y, Ji J, Ma T, Wu J, Shangguan C, Zhu Z, Zhang J. Molecular evolutionary process of advanced gastric cancer during sequential chemotherapy detected by circulating tumor DNA. Lab Invest 2022; 20:365. [PMID: 35962408 PMCID: PMC9373478 DOI: 10.1186/s12967-022-03567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Efficacy of conventional sequential chemotherapy paradigm for advanced gastric cancer (AGC) patients has largely plateaued. Dynamic molecular changes during and after sequential chemotherapy have not been fully delineated. We aimed to profile the molecular evolutionary process of AGC patients during sequential chemotherapy by next generation sequencing (NGS) of plasma circulating tumor DNA (ctDNA). METHODS A total of 30 chemo-naïve patients who were diagnosed with unresectable advanced or metastatic stomach adenocarcinoma were enrolled. All patients received sequential chemotherapy regimens following the clinical guideline. One hundred and eight serial peripheral blood samples were collected at baseline, radiographical assessment and disease progression. Plasma ctDNA was isolated and a customized NGS panel was used to detect the genomic features of ctDNA including single nucleotide variants (SNVs) and gene-level copy number variations (CNVs). KEGG pathway enrichment analysis was performed. RESULTS Platinum-based combination chemotherapy was administrated as first-line regimen. Objective response rate was 50% (15/30). Patients with higher baseline values of copy number instability (CNI), CNVs and variant allel frequency (VAF) were more sensitive to platinum-based first-line regimens. Tumor mutation burden (TMB), CNI and CNV burden at partial response and stable disease were significantly lower than those at baseline, where at progressive disease they recovered to baseline levels. Dynamic change of TMB (ΔTMB) was correlated with progression-free survival of first-line treatment. Fluctuating changes of SNVs and gene-level CNVs could be observed during sequential chemotherapy. Under the pressure of conventional chemotherapy, the number of novel gene-level CNVs were found to be higher than that of novel SNVs. Such novel molecular alterations could be enriched into multiple common oncologic signaling pathways, including EGFR tyrosine kinase inhibitor resistance and platinum drug resistance pathways, where their distributions were found to be highly heterogenous among patients. The impact of subsequent regimens, including paclitaxel-based and irinotecan-based regimens, on the molecular changes driven by first-line therapy was subtle. CONCLUSION Baseline and dynamic changes of genomic features of ctDNA could be biomarkers for predicting response of platinum-based first-line chemotherapy in AGC patients. After treatment with standard chemotherapy regimens, convergent oncologic pathway enrichment was identified, which is yet characterized by inter-patient heterogenous gene-level CNVs.
Collapse
Affiliation(s)
- Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.,Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| | - Fei Xu
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Shengzhou Wang
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Yawei Chen
- Genecast Biotechnology Co., Ltd, Wuxi City, 214104, Jiangsu, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Tao Ma
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.,Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| | - Chengfang Shangguan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China. .,Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
12
|
Cao X, Ge S, Hua W, Zhou X, Lu W, Gu Y, Li Z, Qian Y. A pump-free and high-throughput microfluidic chip for highly sensitive SERS assay of gastric cancer-related circulating tumor DNA via a cascade signal amplification strategy. J Nanobiotechnology 2022; 20:271. [PMID: 35690820 PMCID: PMC9188168 DOI: 10.1186/s12951-022-01481-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
Circulating tumour DNA (ctDNA) has emerged as an ideal biomarker for the early diagnosis and prognosis of gastric cancer (GC). In this work, a pump-free, high-throughput microfluidic chip coupled with catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) as the signal cascade amplification strategy (CHA–HCR) was developed for surface-enhanced Raman scattering (SERS) assays of PIK3CA E542K and TP53 (two GC-related ctDNAs). The chip consisted of six parallel functional units, enabling the simultaneous analysis of multiple samples. The pump-free design and hydrophilic treatment with polyethylene glycol (PEG) realized the automatic flow of reaction solutions in microchannels, eliminating the dependence on external heavy-duty pumps and significantly improving portability. In the reaction region of the chip, products generated by target-triggered CHA initiated the HCR, forming long nicked double-stranded DNA (dsDNA) on the Au nanobowl (AuNB) array surface, to which numerous SERS probes (Raman reporters and hairpin DNA-modified Cu2O octahedra) were attached. This CHA–HCR strategy generated numerous active “hot spots” around the Cu2O octahedra and AuNB surface, significantly enhancing the SERS signal intensity. Using this chip, an ultralow limit of detection (LOD) for PIK3CA E542K (1.26 aM) and TP53 (2.04 aM) was achieved, and the whole process was completed within 13 min. Finally, a tumour-bearing mouse model was established, and ctDNA levels in mouse serum at different stages were determined. To verify the experimental accuracy, the gold-standard qRT–PCR assay was utilized, and the results showed a high degree of consistency. Thus, this rapid, sensitive and cost-effective SERS microfluidic chip has potential as an ideal detection platform for ctDNA monitoring.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China. .,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Weiwei Hua
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Wenbo Lu
- College of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, People's Republic of China
| | - Yingyan Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Zhiyue Li
- The First Clinical College, Dalian Medical University, Dalian, 116027, People's Republic of China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, People's Republic of China. .,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China. .,Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
13
|
Huo J, Wu L, Zang Y. Eight-gene prognostic signature associated with hypoxia and ferroptosis for gastric cancer with general applicability. Epigenomics 2021; 13:875-890. [PMID: 33942671 DOI: 10.2217/epi-2020-0411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aims: To investigate the prognostic significance of hypoxia- and ferroptosis-related genes for gastric cancer (GC). Materials & methods: We extracted data on 259 hypoxia- and ferroptosis-related genes from The Cancer Genome Atlas and identified the differentially expressed genes between normal (n = 32) and tumor (n = 375) tissues. A risk score was established by univariate Cox regression analysis and LASSO penalized Cox regression analysis. Results: The risk score contained eight genes showed good performance in predicting overall survival and relapse-free survival in GC patients in both the training cohort (The Cancer Genome Atlas, n = 350) and the testing cohorts (GSE84437, n = 431; GSE62254, n = 300; GSE15459, n = 191; GSE26253, n = 432). Conclusion: The eight-gene signature may help to the improve the prognostic risk classification of GC.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China.,Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China
| | - Yunjin Zang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266003, China
| |
Collapse
|
14
|
Huo J, Wu L, Zang Y. Eleven immune-gene pairs signature associated with TP53 predicting the overall survival of gastric cancer: a retrospective analysis of large sample and multicenter from public database. J Transl Med 2021; 19:183. [PMID: 33926488 PMCID: PMC8086088 DOI: 10.1186/s12967-021-02846-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Growing attention have been paid to the relationship between TP53 and tumor immunophenotype, but there are still lacking enough search on the field of gastric cancer (GC). Materials and methods We identified differential expressed immune-related genes (DEIRGs) between the TP53-altered GC samples (n = 183) and without TP53-altered GC samples (n = 192) in The Cancer Genome Atlas and paired them. In the TCGA cohort (n = 350), a risk score was determined through univariate and multivariate cox regression and Lasso regression analysis. Patients were divided into two groups, high-risk and low-risk, based on the median risk score. Four independent cohorts (GSE84437,n = 431; GSE62254, n = 300; GSE15459, n = 191; GSE26901, n = 100) from the Gene Expression Omnibus (GEO) database were used to validate the reliability and universal applicability of the model. Results The signature contained 11 gene pairs showed good performance in predicting progression-free survival (PFS), disease-free survival (DFS), disease special survival (DSS), and the overall survival (OS) for GC patients in the TCGA cohort. The subgroup analysis showed that the signature was suitable for GC patients with different characteristics. The signature could capable of distinguish GC patients with good prognosis and poor prognosis in all four independent external validation cohorts. The high- and low-risk groups differed significantly in the proportion of several immune cell infiltration, especially for the T cells memory resting, T cells memory activated and follicular helper, and Macrophage M0, which was also related to the prognosis of GC patients. Conclusion The present work proposed an innovative system for evaluating the prognosis of gastric cancer. Considering its stability and general applicability, which may become a widely used tool in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02846-x.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China.,Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China
| | - Liqun Wu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China.
| | - Yunjin Zang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266003, China
| |
Collapse
|
15
|
Cheng Q, Li Y, Guo X, Li H. Involvement of mTOR/Survivin signaling pathway in TUA(2β, 3β, 23-trihydroxy-urs-12-ene-28-olic acid)-induced apoptosis in human gastric cancer cell line BGC823 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113437. [PMID: 33011370 DOI: 10.1016/j.jep.2020.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE A natural ursolic compound, 2β,3β,23-trihydroxy-urs-12-ene-28-olic acid (TUA) was isolated from the root of Actinidiafulvicoma Hance. (A.fulvicoma Radix), which is used as a traditional hebal medicine to cure innominate inflammation of unknown origin of the digestive tract in the She nationality. AIM OF THE STUDY The aim of present study was to investigate the effects of TUA on gastric cancer and to clarify the potential mechanisms in human gastric cancer cell line BGC823 cells in vitro and in vivo. MATERIALS AND METHODS Cell proliferation, apoptosis, cell cycle, autophagy were all measured by MTS assay, flow cytometry following exposure to TUA. The mRNA expressions of PI3K, AKT, mTOR, P70S6K, Survivin and the protein expressions of p-PI3K, p-AKT, p-mTOR, p-P70S6K, Survivin were determined by qRT-PCR and Western blotting analysis, respectively. In vivo antitumor activity of TUA was assessed in a xenograft model. RESULTS In vitro studies showed that TUA significantly suppressed the viability of BGC823 cells in a concentration- and time-dependent manner but not GES-1 non-tumorigenic human gastric epithelial cells. TUA also significantly increased the apoptosis rate and the sub G2 population by cell cycle analysis in a concentration dependent manner. Exposure to TUA decreased PI3K, AKT, mTOR, P70S6K, Survivin mRNA, inhibited the phosphorylation of major receptors involved in autophagy and apoptosis, such as PI3K, AKT, mTOR and P70S6K, while reduced the expression of Survivin in BGC cells. In vivo studies showed that TUA decreased tumor volume and tumor weight and also down regulated the autophagy-related proteins expression. CONCLUSIONS TUA occupies underlying antitumor effects, the potential mechanisms may involve the suppression of mTOR/Survivin pathways connected to autophagy and the activation of apoptotic pathways in gastric cancer cells.
Collapse
Affiliation(s)
- Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - Yingchen Li
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, Hunan Province, PR China.
| | - Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China
| | - Hongliang Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
16
|
Kim ST, Sa JK, Oh SY, Kim K, Hong JY, Kang WK, Kim KM, Lee J. Comprehensive molecular characterization of gastric cancer patients from phase II second-line ramucirumab plus paclitaxel therapy trial. Genome Med 2021; 13:11. [PMID: 33494793 PMCID: PMC7836461 DOI: 10.1186/s13073-021-00826-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a heterogenous disease consisted of several subtypes with distinct molecular traits. The clinical implication of molecular classification has been limited especially in association with treatment efficacy of ramucirumab or various targeted agents. METHODS We conducted a prospective non-randomized phase II single-arm trial of ramucirumab plus paclitaxel as second-line chemotherapy in 62 patients with metastatic GC who failed to respond to first-line fluoropyrimidine plus platinum treatment. For integrative molecular characterization, all patients underwent pre-ramucirumab treatment tissue biopsy for whole-exome/whole-transcriptome sequencing to categorize patients based on molecular subtypes. We also systematically performed integrative analysis, combining genomic, transcriptomic, and clinical features, to identify potential molecular predictors of sensitivity and resistance to ramucirumab treatment. RESULTS Sixty-two patients were enrolled in this study between May 2016 and October 2017. Survival follow-up in all patients was completed as of the date of cut-off on January 2, 2019. No patient attained complete response (CR), while 22 patients achieved confirmed partial response (PR), resulting in a response rate (RR) of 35.5% (95% CI, 23.6-47.4). According to TCGA molecular classification, there were 30 GS, 18 CIN, 3 EBV, and 0 MSI tumors. The RR was 33% in GS (10/30), 33% in CIN (6/18), and 100% in EBV-positive GC patients with significant statistical difference for EBV(+) against EBV(-) tumors (P = 0.016; chi-squared test). Moreover, responsive patients were marked by activation of angiogenesis, VEGF, and TCR-associated pathways, while non-responder patients demonstrated enrichments of sonic hedgehog signaling pathway and metabolism activity. Integrative multi-layer data analysis further identified molecular determinants, including EBV status, and somatic mutation in GNAQ to ramucirumab activity. CONCLUSIONS Prospective molecular characterization identified a subset of GC patients with distinct clinical response to ramucirumab therapy, and our results demonstrate the feasibility of personalized therapeutic opportunities in gastric cancer. TRIAL REGISTRATION The study was registered on ClinicalTrial.gov ( NCT02628951 ) on June 12, 2015.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jason K Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Oh
- Dong-A University School of Medicine, Busan, Republic of Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
17
|
Oh JW, Oh YJ, Han S, Her NG, Nam DH. High-Content Analysis-Based Sensitivity Prediction and Novel Therapeutics Screening for c-Met-Addicted Glioblastoma. Cancers (Basel) 2021; 13:cancers13030372. [PMID: 33498427 PMCID: PMC7864197 DOI: 10.3390/cancers13030372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Real-time ex vivo drug testing tailors individual therapeutics based on predicted drug responses. Most technologies to date rely on conventional drug screening that provides low confidence data. Here, we present high-content analysis-based drug testing of glioblastoma patients to identify the right glioblastoma patients for a given drug. This generates multi-parameter biomarker and phenotype readouts providing a better reliability of the assay. Additionally, we showed a high-content drug repurposing screen and defined a new c-Met-inhibiting function of the CDK4/6 inhibitor Abemaciclib. Large-scale high throughput screening results demonstrate that Abemaciclib sensitivity in glioblastoma patients is highly correlated with the c-Met inhibitors sensitivity, further supporting the accuracy of the platform and important new clinical implications regarding multiple functions of Abemaciclib. Abstract (1) Background: Recent advances in precision oncology research rely on indicating specific genetic alterations associated with treatment sensitivity. Developing ex vivo systems to identify cancer patients who will respond to a specific drug remains important. (2) Methods: cells from 12 patients with glioblastoma were isolated, cultured, and subjected to high-content screening. Multi-parameter analyses assessed the c-Met level, cell viability, apoptosis, cell motility, and migration. A drug repurposing screen and large-scale drug sensitivity screening data across 59 cancer cell lines and patient-derived cells were obtained from 125 glioblastoma samples. (3) Results: High-content analysis of patient-derived cells provided robust and accurate drug responses to c-Met-targeted agents. Only the cells of one glioblastoma patient (PDC6) showed elevated c-Met level and high susceptibility to the c-Met inhibitors. Multi-parameter image analysis also reflected a decreased c-Met expression and reduced cell growth and motility by a c-Met-targeting antibody. In addition, a drug repurposing screen identified Abemaciclib as a distinct CDK4/6 inhibitor with a potent c-Met-inhibitory function. Consistent with this, we present large-scale drug sensitivity screening data showing that the Abemaciclib response correlates with the response to c-Met inhibitors. (4) Conclusions: Our study provides a new insight into high-content screening platforms supporting drug sensitivity prediction and novel therapeutics screening.
Collapse
Affiliation(s)
- Jeong-Woo Oh
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (J.-W.O.); (Y.J.O.)
- Department of Health Sciences & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Yun Jeong Oh
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (J.-W.O.); (Y.J.O.)
| | - Suji Han
- Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Nam-Gu Her
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (J.-W.O.); (Y.J.O.)
- R&D Center, AIMEDBIO Inc., Seoul 15835, Korea
- Correspondence: (N.-G.H.); (D.-H.N.); Tel.: +82-2-6285-0827
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea; (J.-W.O.); (Y.J.O.)
- Department of Health Sciences & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (N.-G.H.); (D.-H.N.); Tel.: +82-2-6285-0827
| |
Collapse
|
18
|
RNF11 at the Crossroads of Protein Ubiquitination. Biomolecules 2020; 10:biom10111538. [PMID: 33187263 PMCID: PMC7697665 DOI: 10.3390/biom10111538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis.
Collapse
|
19
|
Huang B, Lin M, Lu L, Chen W, Tan J, Zhao J, Cao Z, Zhu X, Lin J. Identification of mini-chromosome maintenance 8 as a potential prognostic marker and its effects on proliferation and apoptosis in gastric cancer. J Cell Mol Med 2020; 24:14415-14425. [PMID: 33155430 PMCID: PMC7753872 DOI: 10.1111/jcmm.16062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Mini‐chromosome maintenance (MCM) proteins play important roles in initiating eukaryotic genome replication. The MCM family of proteins includes several members associated with the development and progression of certain cancers. We performed online data mining to assess the expression of MCMs in gastric cancer (GC) and the correlation between their expression and survival in patients with GC. Notably, MCM8 expression was undoubtedly up‐regulated in GC, and higher expression correlated with shorter overall survival (OS) and progression‐free survival (PFS) in patients with GC. However, the role of MCM8 in GC has not been previously explored. Our in vitro experiments revealed that MCM8 knockdown inhibited cell growth and metastasis. Moreover, MCM8 knockdown induced apoptosis. Mechanistically, the expression levels of Bax and cleaved caspase‐3 were increased, whereas Bcl‐2 expression decreased. Additionally, we demonstrated that MCM8 knockdown suppressed tumorigenesis in vivo. Overall, these results suggest that MCM8 plays a significant role in GC progression.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minghe Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lisha Lu
- Department of Oncology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wujin Chen
- Department of Oncology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jingzhuang Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoqin Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|