1
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Jiang Z, Chen H, Zhang X, Jiang X, Tong Z, Ye J, Shi S, Shi X, Li F, Shao W, Shu Q, Yu L. Clinical characteristics and induced pluripotent stem cells (iPSCs) disease model of Harel-Yoon syndrome caused by compound heterozygous ATAD3A variants. Hum Cell 2025; 38:90. [PMID: 40246775 DOI: 10.1007/s13577-025-01214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/29/2025] [Indexed: 04/19/2025]
Abstract
ATPase family AAA-domain-containing protein 3 A (ATAD3A) is enriched on the mitochondrial membrane and is essential to the maintenance of mitochondrial structure and function. Variants of the ATAD3A gene can lead to Harel-Yoon syndrome (HAYOS), a developmental defect in neurological, cardiovascular, and other systems. This study aims to develop induced pluripotent stem cells (iPSCs) from the somatic cells of a patient (ZJUCHYLi001-A) and a negative control (ZJUCHYLi002-A) as effective tools for further investigations into the etiology of ATAD3A variant-related disease. We described and analyzed the clinical manifestations of the proband and her family members. Somatic cells from the proband and a negative control were collected and reprogrammed into iPSCs. Furthermore, we measured the ATAD3A expression levels in the iPSCs to confirm the validity of these cell lines. The proband and her elder sister were both critically ill and harbored compound heterozygous ATAD3A variants (F459S/T498 Nfs* 13). Their parents were carriers of these variants without any clinical manifestations. Both variants are located on the ATPase domain of the ATAD3A protein. Cell lines ZJUCHYLi001-A and ZJUCHYLi002-A presented typical features of pluripotent stem cells. The ATAD3A expression levels of ZJUCHYLi001-A were significantly reduced compared with ZJUCHYLi002-A. This study generated iPSCs from a patient with compound heterozygous variants of ATAD3A and a negative control as valuable tools for clarifying the molecular mechanisms underlying ATAD3A variant-related diseases.
Collapse
Affiliation(s)
- Ziyi Jiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Xianghong Zhang
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xiaoling Jiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Zhengqing Tong
- Shanghai Snow Lake Technology Co., Ltd., Shanghai, China
| | - Jingjing Ye
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Ultrasound, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Shanshan Shi
- Department of Cardiac Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xucong Shi
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Weiqin Shao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China
| | - Qiang Shu
- Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Ezer S, Ronin N, Yanovsky-Dagan S, Rotem-Bamberger S, Halstuk O, Wexler Y, Ben-Moshe Z, Plaschkes I, Benyamini H, Saada A, Inbal A, Harel T. Transcriptome analysis of atad3-null zebrafish embryos elucidates possible disease mechanisms. Orphanet J Rare Dis 2025; 20:181. [PMID: 40234890 PMCID: PMC12001410 DOI: 10.1186/s13023-025-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND ATAD3A, a nuclear gene encoding the ATAD3A protein, has diverse roles in mitochondrial processes, encompassing mitochondrial dynamics, mitochondrial DNA maintenance, metabolic pathways and inter-organellar interactions. Pathogenic variants in this gene cause neurological diseases in humans with recognizable genotype-phenotype correlations. Yet, gaps in knowledge remain regarding the underlying pathogenesis. METHODS To further investigate the gene function and its implication in health and disease, we utilized CRISPR/Cas9 genome editing to generate a knockout model of the zebrafish ortholog gene, atad3. We characterized the phenotype of the null model, performed mitochondrial and functional tests, and compared the transcriptome of null embryos to their healthy siblings. RESULTS Analysis of atad3-null zebrafish embryos revealed microcephaly, small eyes, pericardial edema and musculature thinning, closely mirroring the human rare disease phenotype. Larvae exhibited delayed hatching and embryonic lethality by 13 days post-fertilization (dpf). Locomotor activity, ATP content, mitochondrial content, and mitochondrial activity were all reduced in the mutant embryos. Transcriptome analysis at 3 dpf via RNA-sequencing indicated decline in most mitochondrial pathways, accompanied by a global upregulation of cytosolic tRNA synthetases, presumably secondary to mitochondrial stress and possibly endoplasmic reticulum (ER)-stress. Differential expression of select genes was corroborated in fibroblasts from an affected individual. CONCLUSIONS The atad3-null zebrafish model emerges as a reliable representation of human ATAD3A-associated disorders, with similarities in differentially expressed pathways and processes. Furthermore, our study underscores mitochondrial dysfunction as the primary underlying pathogenic mechanism in ATAD3A-associated disorders and identifies potential readouts for therapeutic studies.
Collapse
Affiliation(s)
- Shlomit Ezer
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathan Ronin
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Shahar Rotem-Bamberger
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Wexler
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Zohar Ben-Moshe
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Laboratory Sciences, Hadassah Academic College , Jerusalem, Israel
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Genetics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel.
| |
Collapse
|
4
|
Kiesel AS, Laugwitz L, Buchert R, Grimmel M, Baumann S, Sturm M, Reich S, Pauly MG, Brüggemann N, Münchau A, Oleksiuk O, Synofzik M, Haack TB, Peralta S. Elevated cholesterol is a common phenotype for dominant and recessive ATAD3-associated disorders. Brain 2025; 148:e24-e28. [PMID: 39667038 PMCID: PMC11967810 DOI: 10.1093/brain/awae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024] Open
Affiliation(s)
- Ann-Sophie Kiesel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Baumann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Selina Reich
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
| | - Martje G Pauly
- Department of Neurology/Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology/Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Olga Oleksiuk
- Hertie Institute for Clinical Brain Research (HIH) and Centre for Integrative Neuroscience (CIN) Imaging Cluster, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research & Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Kirichenko TV, Zhivodernikov IV, Kozlova MA, Markin AM, Sinyov VV, Markina YV. Hypertrophic Cardiomyopathy Through the Lens of Mitochondria. Biomedicines 2025; 13:591. [PMID: 40149568 PMCID: PMC11940619 DOI: 10.3390/biomedicines13030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
The mechanisms of pathogenesis of hypertrophic cardiomyopathy are associated with mutations in the sarcomere genes of cardiomyocytes and metabolic disorders of the cell, including mitochondrial dysfunction. Mitochondria are characterized by the presence of their own DNA and enzyme complexes involved in oxidative reactions, which cause damage to mitochondrial protein structures and membranes by reactive oxygen species. Mitochondrial dysfunctions can also be associated with mutations in the genes encoding mitochondrial proteins and lead to a violation of protective functions such as mitophagy, mitochondrial fusion, and fission. Mutations in myofibril proteins can negatively affect mitochondria through increased oxidative stress due to an increased need for ATP. Mitochondrial dysfunction is associated with impaired ATP synthesis and cardiac contractility, leading to clinical manifestations of hypertrophic cardiomyopathy. The current review was designed to characterize the role of mitochondria in the pathogenesis of hypertrophic cardiomyopathy based on published data; the search for publications was based on the analysis of articles including the keywords "hypertrophic cardiomyopathy, mitochondria, dysfunction" in the PubMed and Scopus databases up to January 2025.
Collapse
Affiliation(s)
- Tatiana V. Kirichenko
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Petrovsky Medical University, 119435 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | | | - Maria A. Kozlova
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Alexander M. Markin
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Petrovsky Medical University, 119435 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia Named After Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| | - Vasily V. Sinyov
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Petrovsky Medical University, 119435 Moscow, Russia
| |
Collapse
|
6
|
Dong Z, Liao N, Luo Y, Zhang Y, Huang L, Chen P, Lu C, Pan M. BmATAD3A mediates mitochondrial ribosomal protein expression to maintain the mitochondrial energy metabolism of the silkworm, Bombyx mori. INSECT SCIENCE 2025; 32:193-208. [PMID: 38616538 DOI: 10.1111/1744-7917.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
ATAD3A is a mitochondrial membrane protein belonging to the ATPase family that contains the AAA+ domain. It is widely involved in mitochondrial metabolism, protein transport, cell growth, development and other important life processes. It has previously been reported that the deletion of ATAD3A causes growth and development defects in humans, mice and Caenorhabditis elegans. To delve into the mechanism underlying ATAD3A defects and their impact on development, we constructed a Bombyx mori ATAD3A (BmATAD3A) defect model in silkworm larvae. We aim to offer a reference for understanding ATAD3A genetic defects and elucidating the molecular regulatory mechanisms. The results showed that knockout of the BmATAD3A gene significantly affected the weight, survival rate, ATPase production and mitochondrial metabolism of individuals after 24 h of incubation. Combined metabolomics and transcriptomics analysis further demonstrated that BmATAD3A knockout inhibits amino acid biosynthesis through the regulation of mitochondrial ribosomal protein expression. Simultaneously, our findings indicate that BmATAD3A knockout impeded mitochondrial activity and ATPase synthesis and suppressed the mitochondrial oxidative phosphorylation pathway through B. mori mitochondrial ribosomal protein L11 (BmmRpL11). These results provide novel insights into the molecular mechanisms involved in the inhibition of development caused by ATAD3A deficiency, offering a potential direction for targeted therapy in diseases associated with abnormal ATAD3A expression.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Nachuan Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yan Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ya Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Liang Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Brügel M, Kiesel AS, Haack TB, Peralta S. Mutations in mitochondrial ATAD3 gene and disease, lessons from in vivo models. Front Neurosci 2024; 18:1496142. [PMID: 39605788 PMCID: PMC11599198 DOI: 10.3389/fnins.2024.1496142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in the ATAD3 gene cluster have been associated with different neurodevelopmental disorders showing clinical symptoms like global developmental delay, muscular hypotonia, cardiomyopathy, congenital cataracts, and cerebellar atrophy. ATAD3A encodes for a mitochondrial ATPase whose function is unclear and has been considered one of the five most common nuclear genes associated with mitochondrial diseases in childhood. However, the mechanism causing ATAD3-associated disorders is still unknown. In vivo models have been used to identify ATAD3 function. Here we summarize the features of mouse models with ATAD3 loss of function and Drosophila models overexpressing pathogenic ATAD3 variants. We discuss how these models have contributed to our understanding of ATAD3 function and the pathomechanism of the ATAD3-associated disease.
Collapse
Affiliation(s)
| | | | | | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Goel D, Kumar S. Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms. Adv Biol Regul 2024; 93:101041. [PMID: 38909398 DOI: 10.1016/j.jbior.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.
Collapse
Affiliation(s)
- Divya Goel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Liu LC, Liang JY, Liu YH, Liu B, Dong XH, Cai WH, Zhang N. The Intersection of cerebral cholesterol metabolism and Alzheimer's disease: Mechanisms and therapeutic prospects. Heliyon 2024; 10:e30523. [PMID: 38726205 PMCID: PMC11079309 DOI: 10.1016/j.heliyon.2024.e30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of β-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Li-cheng Liu
- Pharmaceutical Branch, Harbin Pharmaceutical Group Co., Harbin, Heilongjiang Province, China
| | - Jun-yi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yan-hong Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-hong Dong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Wen-hui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
10
|
Muñoz-Oreja M, Sandoval A, Bruland O, Perez-Rodriguez D, Fernandez-Pelayo U, de Arbina AL, Villar-Fernandez M, Hernández-Eguiazu H, Hernández I, Park Y, Goicoechea L, Pascual-Frías N, Garcia-Ruiz C, Fernandez-Checa J, Martí-Carrera I, Gil-Bea FJ, Hasan MT, Gegg ME, Bredrup C, Knappskog PM, Gereñu-Lopetegui G, Varhaug KN, Bindoff LA, Spinazzola A, Yoon WH, Holt IJ. Elevated cholesterol in ATAD3 mutants is a compensatory mechanism that leads to membrane cholesterol aggregation. Brain 2024; 147:1899-1913. [PMID: 38242545 PMCID: PMC11068212 DOI: 10.1093/brain/awae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.
Collapse
Affiliation(s)
- Mikel Muñoz-Oreja
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
| | - Abigail Sandoval
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Uxoa Fernandez-Pelayo
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Amaia Lopez de Arbina
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Marina Villar-Fernandez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | | | - Ixiar Hernández
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
| | - Yohan Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Nerea Pascual-Frías
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Jose Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Itxaso Martí-Carrera
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- Pediatric Neurology, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | | | - Mazahir T Hasan
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, E-48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Cecilie Bredrup
- Department of Ophthalmology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
| | | | - Gorka Gereñu-Lopetegui
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Kristin N Varhaug
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
- Department of Neurology, Haukeland University Hospital, Bergen 5021, Norway
| | - Laurence A Bindoff
- Department of Ophthalmology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen 5020, Norway
- Department of Neurology, Haukeland University Hospital, Bergen 5021, Norway
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian J Holt
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- University of the Basque Country—Bizkaia Campus, 48940 Bilbao, Spain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Gaudó P, de Tomás-Mateo E, Garrido-Pérez N, Santana A, Ruiz-Pesini E, Montoya J, Bayona-Bafaluy P. "ATAD3C regulates ATAD3A assembly and function in the mitochondrial membrane". Free Radic Biol Med 2024; 211:114-126. [PMID: 38092275 DOI: 10.1016/j.freeradbiomed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.
Collapse
Affiliation(s)
- Paula Gaudó
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Elena de Tomás-Mateo
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Nuria Garrido-Pérez
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018, Zaragoza, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35001, Las Palmas de Gran Canaria, Spain; Clinical Genetics Unit, Complejo Hospitarlario Universitario Insular-Materno Infantil de Las Palamas de Gran Canaria, 35016, Las Palmas de Gran Canaria, Spain
| | - Eduardo Ruiz-Pesini
- Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain.
| | - Julio Montoya
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain
| | - Pilar Bayona-Bafaluy
- Biochemistry and Molecular Biology Department. Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain; Institute for Health Research (IIS) de Aragón, 50009, Zaragoza, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), 28029, Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
12
|
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J, Liu P. The SIRT3-ATAD3A axis regulates MAM dynamics and mitochondrial calcium homeostasis in cardiac hypertrophy. Int J Biol Sci 2024; 20:831-847. [PMID: 38250153 PMCID: PMC10797690 DOI: 10.7150/ijbs.89253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024] Open
Abstract
Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zeyu Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Chenjia Lin
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Zheng Y, Yu X, Zhang T, Hu L, Zhou D, Huang X. ATAD3A gene variations in a family with Harel-Yoon syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:738-743. [PMID: 38105692 PMCID: PMC10764186 DOI: 10.3724/zdxbyxb-2023-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
An 11-day-old female neonate was admitted for cough with mouth foaming and feeding difficulties. The laboratory results indicated hyperlactatemia, elevated markers of myocardial injury and inflammation, and high levels of acylcarnitine octanoylcarnitine and decanoylcarnitine in tandem mass spectrometry. Ultrasonography and MRI suggested cardiac insufficiency and hypertrophic cardiomyopathy. Whole exome sequencing showed that both the proband and her elderly sister had a compound heterozygous variant of c.1492dup (p.T498Nfs*13) and c.1376T>C (p.F459S) in the ATAD3A gene, inherited from their father and mother, respectively. The diagnosis of Harel-Yoon syndrome was confirmed. The proband and her sister were born with clinical manifestations of metabolic acidosis, hyperlactatemia, feeding difficulties, elevated markers of myocardial injury as well as cardiac insufficiency, and both died in early infancy.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Xinyu Yu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Ting Zhang
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lingwei Hu
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Duo Zhou
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xinwen Huang
- Department of Genetic and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
14
|
Liu Z, Sun L, Zheng B, Wang H, Qin X, Zhang P, Wo Q, Li H, Mou Y, Zhang D, Wang S. The value of ATAD3A as a potential biomarker for bladder cancer. Cancer Med 2023; 12:22395-22406. [PMID: 38018291 PMCID: PMC10757082 DOI: 10.1002/cam4.6759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/28/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a highly malignant tumor, and if left untreated, it can develop severe hematuria and tumor metastasis, thereby endangering the patient's life. The purpose of this paper was to detect the expression of ATAD3A in BCa and research the relationship between ATAD3A and pathological features of bladder cancer and the prognosis of patients. METHODS First, the expression of ATAD3A in BCa and normal bladder tissues was analyzed based on the UALCAN and Oncomine public databases. Second, 491 cases of surgically resected bladder cancer specimens and 110 cases of normal adjacent tissues were immunohistochemically stained. The expression of ATAD3A was quantified, and the value and prognosis of ATAD3A as a biomarker of BCa were evaluated. RESULTS The expression of ATAD3A in bladder cancer tissues was higher than that in normal bladder mucosa. High expression of ATAD3A was correlated with patient age, tumor size, number of tumors, distant metastasis, lymph node metastasis, lymphovascular invasion, and TNM stage (p < 0.05). Overexpression of ATAD3A is closely related to cancer patient survival. The mean survival time of bladder cancer patients with high ATAD3A expression was shorter than those with low ATAD3A levels. According to the relative comparing result, the high ATAD3A expression herald reduced overall survival in BCa patients. CONCLUSIONS The abnormal overexpression of ATAD3A may be related to the initiation and progress of bladder cancer. The upregulation of ATAD3A can be used as an effective indicator to diagnose bladder cancer and predict tumor progression. Furthermore, the combination of information from public databases and the results of clinical sample analysis can help us better understand the mechanism of action of molecular oncogenes in bladder cancer.
Collapse
Affiliation(s)
- Zhenghong Liu
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Li Sun
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Bin Zheng
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Heng Wang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Pu Zhang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qijun Wo
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haichang Li
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Yixuan Mou
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Dahong Zhang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Shuai Wang
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
15
|
Chen L, Li Y, Zambidis A, Papadopoulos V. ATAD3A: A Key Regulator of Mitochondria-Associated Diseases. Int J Mol Sci 2023; 24:12511. [PMID: 37569886 PMCID: PMC10419812 DOI: 10.3390/ijms241512511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants.
Collapse
Affiliation(s)
| | | | | | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 99089, USA; (L.C.); (Y.L.); (A.Z.)
| |
Collapse
|
16
|
Skopkova M, Stufkova H, Rambani V, Stranecky V, Brennerova K, Kolnikova M, Pietrzykova M, Karhanek M, Noskova L, Tesarova M, Hansikova H, Gasperikova D. ATAD3A-related pontocerebellar hypoplasia: new patients and insights into phenotypic variability. Orphanet J Rare Dis 2023; 18:92. [PMID: 37095554 PMCID: PMC10127305 DOI: 10.1186/s13023-023-02689-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/02/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Pathogenic variants in the ATAD3A gene lead to a heterogenous clinical picture and severity ranging from recessive neonatal-lethal pontocerebellar hypoplasia through milder dominant Harel-Yoon syndrome up to, again, neonatal-lethal but dominant cardiomyopathy. The genetic diagnostics of ATAD3A-related disorders is also challenging due to three paralogous genes in the ATAD3 locus, making it a difficult target for both sequencing and CNV analyses. RESULTS Here we report four individuals from two families with compound heterozygous p.Leu77Val and exon 3-4 deletion in the ATAD3A gene. One of these patients was characterized as having combined OXPHOS deficiency based on decreased complex IV activities, decreased complex IV, I, and V holoenzyme content, as well as decreased levels of COX2 and ATP5A subunits and decreased rate of mitochondrial proteosynthesis. All four reported patients shared a strikingly similar clinical picture to a previously reported patient with the p.Leu77Val variant in combination with a null allele. They presented with a less severe course of the disease and a longer lifespan than in the case of biallelic loss-of-function variants. This consistency of the phenotype in otherwise clinically heterogenous disorder led us to the hypothesis that the severity of the phenotype could depend on the severity of variant impact. To follow this rationale, we reviewed the published cases and sorted the recessive variants according to their impact predicted by their type and the severity of the disease in the patients. CONCLUSION The clinical picture and severity of ATAD3A-related disorders are homogenous in patients sharing the same combinations of variants. This knowledge enables deduction of variant impact severity based on known cases and allows more accurate prognosis estimation, as well as a better understanding of the ATAD3A function.
Collapse
Affiliation(s)
- Martina Skopkova
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Hana Stufkova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vibhuti Rambani
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katarina Brennerova
- Department of Paediatrics, Medical Faculty of Comenius University, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Miriam Kolnikova
- Department of Paediatric Neurology, Medical Faculty of Comenius University, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Michaela Pietrzykova
- Department of Clinical Genetics, Institute of Medical Biology, Genetics and Clinical Genetics, Medical Faculty of Comenius University, University Hospital in Bratislava, Bratislava, Slovakia
| | - Miloslav Karhanek
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marketa Tesarova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Daniela Gasperikova
- Department of Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center SAS, Bratislava, Slovakia.
| |
Collapse
|
17
|
Chen Y, Rong S, Luo H, Huang B, Hu F, Chen M, Li C. Ketogenic Diet Attenuates Refractory Epilepsy of Harel-Yoon Syndrome With ATAD3A Variants: A Case Report and Review of Literature. Pediatr Neurol 2023; 143:79-83. [PMID: 37031571 DOI: 10.1016/j.pediatrneurol.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/07/2023] [Accepted: 03/04/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Harel-Yoon syndrome is a disease caused by variants in the ATAD3A gene, which manifest as global developmental delay, hypotonia, intellectual disability, and axonal neuropathy. The aim of this study is to summarize the clinical and gene mutation characteristics of a child with refractory epilepsy caused by ATAD3A gene mutation. METHODS The whole-exome sequencing combined with copy number variation analysis could help to understand the genetic diversity and underlying disease mechanisms in ATAD3A gene mutation. RESULTS We report a Chinese boy with Harel-Yoon syndrome presenting with refractory epilepsy, hypotonia, global developmental delay, and congenital cataract through whole-exome sequencing. Genetic analysis showed a missense mutation, c.251T>C(p.Thr84Met) in the ATAD3A gene (NM_001170535.1). Further copy number variation analysis identified a novel heterozygous deletion on chromosome1p36.33, which spans ATAD3A exon 1 and 2 regions. Multiple antiepileptic drugs failed to control his seizures. Eventually, seizure was controlled through ketogenic diet (KD). CONCLUSION Our case shows the potential diagnostic role of whole-exome sequencing in Harel-Yoon syndrome and expands the ATAD3A gene mutation spectrum. Multiple antiepileptic drugs failed to control refractory epilepsy in Harel-Yoon syndrome. The KD therapy may be effective for patients with refractory epilepsy who carry the ATAD3A variants.
Collapse
Affiliation(s)
- Yinhui Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Shiwen Rong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Han Luo
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Binglong Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Fang Hu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Min Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China.
| |
Collapse
|
18
|
Tawfik CA, Zaitoun R, Farag AA. Harel Yoon syndrome: a novel mutation in ATAD3A gene and expansion of the clinical spectrum. Ophthalmic Genet 2023; 44:226-233. [PMID: 36856321 DOI: 10.1080/13816810.2023.2183223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Harel-Yoon syndrome (HAYOS) is a recently described neurodevelopmental disorder characterized by psychomotor delay, truncal hypotonia, appendicular spasticity, and peripheral neuropathy. It is caused by mutations in ATAD3A gene located on chromosome 1p.36.33 whose functions include mitochondrial DNA stabilization, the regulation of mitochondrial fission/fusion, and cholesterol homeostasis. MATERIALS AND METHODS An 11-year-old male patient of consanguineous Egyptian parents, who present with neuroregression and ptosis along with progressive impaired vision, undergoes complete ophthalmological and neurological examination. Additionally, color fundus photography, fundus autofluorescence (FAF), spectral domain optical coherence tomography (SD-OCT) of both the macula and optic nerve head, full field electroretinogram (ERG), and visual field perimetry were obtained. Whole-exome sequencing and mitochondrial genome sequencing were done in a commercial laboratory from a peripheral blood sample. RESULTS A novel mutation in ATAD3A gene c.624_644del was identified by whole-exome sequencing consistent with a diagnosis of Harel-Yoon Syndrome (HAYOS). The 11-year-old boy had characteristic features of neurodevelopmental delay, hypotonia, and peripheral neuropathy. However, we documented some novel features as fatiguable ptosis, facial weakness, progressive bulbar palsy, obsessive-compulsive disorder (OCD) in addition to cone system dysfunction. CONCLUSION Our study reports a novel mutation in ATAD3A gene and expands the clinical spectrum of Harel-Yoon Syndrome. Future research aiming at better understanding of gene function will lead to better genotype-phenotype correlation and could pave the way to more treatment options.
Collapse
Affiliation(s)
- Caroline Atef Tawfik
- Department of ophthalmology, Ain Shams University, Cairo, Egypt
- Watany Eye Hospital, Cairo, Egypt
| | | | | |
Collapse
|
19
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Ebihara T, Nagatomo T, Sugiyama Y, Tsuruoka T, Osone Y, Shimura M, Tajika M, Ichimoto K, Naruke Y, Akiyama N, Lim SC, Yatsuka Y, Nitta KR, Kishita Y, Fushimi T, Okazaki A, Ohtake A, Okazaki Y, Murayama K. Severe spinal cord hypoplasia due to a novel ATAD3A compound heterozygous deletion. Mol Genet Metab Rep 2022; 33:100912. [PMID: 36061954 PMCID: PMC9428837 DOI: 10.1016/j.ymgmr.2022.100912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022] Open
Abstract
Biallelic deletions extending into the ATPase family AAA-domain containing protein 3A (ATAD3A) gene lead to infantile lethality with severe pontocerebellar hypoplasia (PCH). However, only 12 such cases have been reported worldwide to date, and the genotype–phenotype correlations are not well understood. We describe cases associated with the same novel biallelic deletions of the ATAD3A and ATAD3B/3A regions in Japanese siblings with severe spinal cord hypoplasia and multiple malformations, including PCH, leading to neonatal death. The ATAD3A protein is essential for normal interaction between mitochondria and endoplasmic reticulum and is important for mitochondrial biosynthesis. The cases were evaluated using whole-genome sequencing for genetic diagnosis of mitochondrial disease. Spinal cord lesions associated with biallelic compound heterozygous deletion extending into the ATAD3A gene have not been reported. In addition, the ATAD3A deletion was 19 base pairs long, which is short compared with those reported previously. This deletion introduced a frameshift, resulting in a premature termination codon, and was expected to be a null allele. The pathological findings of the atrophic spinal cord showed gliosis and tissue destruction of the gray and white matter. We describe spinal cord lesions as a new central nervous system phenotype associated with a biallelic compound heterozygous deletion extending into the ATAD3A gene. Biallelic ATAD3A deletions should be considered in cases of mitochondrial disease with spinal cord hypoplasia and PCH.
Collapse
|
21
|
Yanovsky-Dagan S, Frumkin A, Lupski JR, Harel T. CRISPR/Cas9-induced gene conversion between ATAD3 paralogs. HGG ADVANCES 2022; 3:100092. [PMID: 35199044 PMCID: PMC8844715 DOI: 10.1016/j.xhgg.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Paralogs and pseudogenes are abundant within the human genome, and can mediate non-allelic homologous recombination (NAHR) or gene conversion events. The ATAD3 locus contains three paralogs situated in tandem, and is therefore prone to NAHR-mediated deletions and duplications associated with severe neurological phenotypes. To study this locus further, we aimed to generate biallelic loss-of-function variants in ATAD3A by CRISPR/Cas9 genome editing. Unexpectedly, two of the generated clones underwent gene conversion, as evidenced by replacement of the targeted sequence of ATAD3A by a donor sequence from its paralog ATAD3B. We highlight the complexity of CRISPR/Cas9 design, end-product formation, and recombination repair mechanisms for CRISPR/Cas9 delivery as a nucleic acid molecular therapy when targeting genes that have paralogs or pseudogenes, and advocate meticulous evaluation of resultant clones in model organisms. In addition, we suggest that endogenous gene conversion may be used to repair missense variants in genes with paralogs or pseudogenes.
Collapse
Affiliation(s)
| | - Ayala Frumkin
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Corresponding author
| |
Collapse
|
22
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
23
|
miRNA-27a Transcription Activated by c-Fos Regulates Myocardial Ischemia-Reperfusion Injury by Targeting ATAD3a. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2514947. [PMID: 34413925 PMCID: PMC8369174 DOI: 10.1155/2021/2514947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
MicroRNA-27a (miR-27a) has been implicated in myocardial ischemia-reperfusion injury (MIRI), but the underlying mechanism is not well understood. This study is aimed at determining the role of miR-27a in MIRI and at investigating upstream molecules that regulate miR-27a expression and its downstream target genes. miR-27a expression was significantly upregulated in myocardia exposed to ischemia/reperfusion (I/R) and cardiomyocytes exposed to hypoxia/reoxygenation (H/R). c-Fos could regulate miR-27a expression by binding to its promoter region. Moreover, overexpression of miR-27a led to a decrease in cell viability, an increase in LDH and CK-MB secretion, and an increase in apoptosis rates. In contrast, suppression of miR-27a expression resulted in the opposite effects. ATPase family AAA-domain-containing protein 3A (ATAD3a) was identified as a target of miR-27a. miR-27a regulated the translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and H/R-induced apoptosis via the regulation of ATAD3a. It was found that inhibiting miR-27a in vivo by injecting a miR-27a sponge could ameliorate MIRI in an isolated rat heart model. In conclusion, our study demonstrated that c-Fos functions as an upstream regulator of miR-27a and that miR-27a regulates the translocation of AIF from the mitochondria to the nucleus by targeting ATAD3a, thereby contributing to MIRI. These findings provide new insight into the role of the c-Fos/miR-27a/ATAD3a axis in MIRI.
Collapse
|
24
|
Yap ZY, Park YH, Wortmann SB, Gunning AC, Ezer S, Lee S, Duraine L, Wilichowski E, Wilson K, Mayr JA, Wagner M, Li H, Kini U, Black ED, Monaghan KG, Lupski JR, Ellard S, Westphal DS, Harel T, Yoon WH. Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Med 2021; 13:55. [PMID: 33845882 PMCID: PMC8042885 DOI: 10.1186/s13073-021-00873-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane-anchored protein involved in diverse processes including mitochondrial dynamics, mitochondrial DNA organization, and cholesterol metabolism. Biallelic deletions (null), recessive missense variants (hypomorph), and heterozygous missense variants or duplications (antimorph) in ATAD3A lead to neurological syndromes in humans. Methods To expand the mutational spectrum of ATAD3A variants and to provide functional interpretation of missense alleles in trans to deletion alleles, we performed exome sequencing for identification of single nucleotide variants (SNVs) and copy number variants (CNVs) in ATAD3A in individuals with neurological and mitochondrial phenotypes. A Drosophila Atad3a Gal4 knockin-null allele was generated using CRISPR-Cas9 genome editing technology to aid the interpretation of variants. Results We report 13 individuals from 8 unrelated families with biallelic ATAD3A variants. The variants included four missense variants inherited in trans to loss-of-function alleles (p.(Leu77Val), p.(Phe50Leu), p.(Arg170Trp), p.(Gly236Val)), a homozygous missense variant p.(Arg327Pro), and a heterozygous non-frameshift indel p.(Lys568del). Affected individuals exhibited findings previously associated with ATAD3A pathogenic variation, including developmental delay, hypotonia, congenital cataracts, hypertrophic cardiomyopathy, and cerebellar atrophy. Drosophila studies indicated that Phe50Leu, Gly236Val, Arg327Pro, and Lys568del are severe loss-of-function alleles leading to early developmental lethality. Further, we showed that Phe50Leu, Gly236Val, and Arg327Pro cause neurogenesis defects. On the contrary, Leu77Val and Arg170Trp are partial loss-of-function alleles that cause progressive locomotion defects and whose expression leads to an increase in autophagy and mitophagy in adult muscles. Conclusion Our findings expand the allelic spectrum of ATAD3A variants and exemplify the use of a functional assay in Drosophila to aid variant interpretation.
Collapse
Affiliation(s)
- Zheng Yie Yap
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yo Han Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Saskia B Wortmann
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria.,Radboud Centre for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Adam C Gunning
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK.,Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, POB 12000, 9112001, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, POB 12000, 9112001, Jerusalem, Israel
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lita Duraine
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ekkehard Wilichowski
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hong Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emily Davis Black
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK.,Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Dominik S Westphal
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, POB 12000, 9112001, Jerusalem, Israel. .,Faculty of Medicine, Hebrew University of Jerusalem, POB 12000, 9112001, Jerusalem, Israel.
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|