1
|
Jensen M, Smolen C, Tyryshkina A, Pizzo L, Banerjee D, Oetjens M, Shimelis H, Taylor CM, Pounraja VK, Song H, Rohan L, Huber E, El Khattabi L, van de Laar I, Tadros R, Bezzina C, van Slegtenhorst M, Kammeraad J, Prontera P, Caberg JH, Fraser H, Banka S, Van Dijck A, Schwartz C, Voorhoeve E, Callier P, Mosca-Boidron AL, Marle N, Lefebvre M, Pope K, Snell P, Boys A, Lockhart PJ, Ashfaq M, McCready E, Nowacyzk M, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Bruccheri MG, Mandarà GML, Mari F, Privitera F, Longo I, Curró A, Renieri A, Keren B, Charles P, Cuinat S, Nizon M, Pichon O, Bénéteau C, Stoeva R, Martin-Coignard D, Blesson S, Le Caignec C, Mercier S, Vincent M, Martin C, Mannik K, Reymond A, Faivre L, Sistermans E, Kooy RF, Amor DJ, Romano C, Andrieux J, Girirajan S. Genetic modifiers and ascertainment drive variable expressivity of complex disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312158. [PMID: 39252907 PMCID: PMC11383473 DOI: 10.1101/2024.08.27.24312158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Cora M. Taylor
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Hyebin Song
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafik Tadros
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Connie Bezzina
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janneke Kammeraad
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Harry Fraser
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddhartha Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Central Manchester University Hospitals, NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, UK
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Els Voorhoeve
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick Callier
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Nathalie Marle
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Amber Boys
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Nowacyzk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Teresa Mattina
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Francesca Mari
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Longo
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Curró
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Renieri
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | - Perrine Charles
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | | | | | | | | | - Radka Stoeva
- CHU Nantes, Medical Genetics Department, Nantes, France
| | | | - Sophia Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Sandra Mercier
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Marie Vincent
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Christa Martin
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Katrin Mannik
- Institute of Genomics, University of Tartu, Estonia
- Health2030 Genome Center, Fondation Campus Biotech, Geneva, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurence Faivre
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Joris Andrieux
- Institut de Genetique Medicale, Hopital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Wei A, Border R, Fu B, Cullina S, Brandes N, Jang SK, Sankararaman S, Kenny E, Udler MS, Ntranos V, Zaitlen N, Arboleda V. Investigating the sources of variable impact of pathogenic variants in monogenic metabolic conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.14.23295564. [PMID: 37745486 PMCID: PMC10516069 DOI: 10.1101/2023.09.14.23295564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Over three percent of people carry a dominant pathogenic variant, yet only a fraction of carriers develop disease. Disease phenotypes from carriers of variants in the same gene range from mild to severe. Here, we investigate underlying mechanisms for this heterogeneity: variable variant effect sizes, carrier polygenic backgrounds, and modulation of carrier effect by genetic background (marginal epistasis). We leveraged exomes and clinical phenotypes from the UK Biobank and the Mt. Sinai BioMe Biobank to identify carriers of pathogenic variants affecting cardiometabolic traits. We employed recently developed methods to study these cohorts, observing strong statistical support and clinical translational potential for all three mechanisms of variable carrier penetrance and disease severity. For example, scores from our recent model of variant pathogenicity were tightly correlated with phenotype amongst clinical variant carriers, they predicted effects of variants of unknown significance, and they distinguished gain- from loss-of-function variants. We also found that polygenic scores predicted phenotypes amongst pathogenic carriers and that epistatic effects can exceed main carrier effects by an order of magnitude.
Collapse
|
3
|
Smolen C, Jensen M, Dyer L, Pizzo L, Tyryshkina A, Banerjee D, Rohan L, Huber E, El Khattabi L, Prontera P, Caberg JH, Van Dijck A, Schwartz C, Faivre L, Callier P, Mosca-Boidron AL, Lefebvre M, Pope K, Snell P, Lockhart PJ, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Luana Mandarà GM, Bruccheri MG, Pichon O, Le Caignec C, Stoeva R, Cuinat S, Mercier S, Bénéteau C, Blesson S, Nordsletten A, Martin-Coignard D, Sistermans E, Kooy RF, Amor DJ, Romano C, Isidor B, Juusola J, Girirajan S. Assortative mating and parental genetic relatedness contribute to the pathogenicity of variably expressive variants. Am J Hum Genet 2023; 110:2015-2028. [PMID: 37979581 PMCID: PMC10716518 DOI: 10.1016/j.ajhg.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.
Collapse
Affiliation(s)
- Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Assistance Publique-Hôpitaux de Paris, Department of Medical Genetics, Armand Trousseau and Pitié-Salpêtrière Hospitals, Paris, France
| | - Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia", Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Laurence Faivre
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d'Enfants, CHU Dijon, Dijon, France; GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Patrick Callier
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d'Enfants, CHU Dijon, Dijon, France; GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | | | - Mathilde Lefebvre
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Kate Pope
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Penny Snell
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Bruce Lefroy Center, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Teresa Mattina
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy; Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Olivier Pichon
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France; ToNIC, Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Radka Stoeva
- Service de Cytogenetique, CHU de Le Mans, Le Mans, France
| | | | - Sandra Mercier
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | | | - Sophie Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | | | | | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, the Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J Amor
- Bruce Lefroy Center, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Corrado Romano
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; Medical Genetics, ASP Ragusa, Ragusa, Italy
| | | | | | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Smolen C, Jensen M, Dyer L, Pizzo L, Tyryshkina A, Banerjee D, Rohan L, Huber E, El Khattabi L, Prontera P, Caberg JH, Van Dijck A, Schwartz C, Faivre L, Callier P, Mosca-Boidron AL, Lefebvre M, Pope K, Snell P, Lockhart PJ, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Mandarà GML, Bruccheri MG, Pichon O, Le Caignec C, Stoeva R, Cuinat S, Mercier S, Bénéteau C, Blesson S, Nordsletten A, Martin-Coignard D, Sistermans E, Kooy RF, Amor DJ, Romano C, Isidor B, Juusola J, Girirajan S. Assortative mating and parental genetic relatedness drive the pathogenicity of variably expressive variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.18.23290169. [PMID: 37292616 PMCID: PMC10246151 DOI: 10.1101/2023.05.18.23290169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examined more than 38,000 spouse pairs from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents associated with neurodevelopmental disease risk in children. We identified correlations between six phenotypes in parents and children, including correlations of clinical diagnoses such as obsessive-compulsive disorder (R=0.31-0.49, p<0.001), and two measures of sub-clinical autism features in parents affecting several autism severity measures in children, such as bi-parental mean Social Responsiveness Scale (SRS) scores affecting proband SRS scores (regression coefficient=0.11, p=0.003). We further describe patterns of phenotypic and genetic similarity between spouses, where spouses show both within- and cross-disorder correlations for seven neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R=0.25-0.72, p<0.001) and a cross-disorder correlation between schizophrenia and personality disorder (R=0.20-0.57, p<0.001). Further, these spouses with similar phenotypes were significantly correlated for rare variant burden (R=0.07-0.57, p<0.0001). We propose that assortative mating on these features may drive the increases in genetic risk over generations and the appearance of "genetic anticipation" associated with many variably expressive variants. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse correlations with burden and pathogenicity of rare variants and propose that parental relatedness drives disease risk by increasing genome-wide homozygosity in children (R=0.09-0.30, p<0.001). Our results highlight the utility of assessing parent phenotypes and genotypes in predicting features in children carrying variably expressive variants and counseling families carrying these variants.
Collapse
Affiliation(s)
- Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Neuroscience Graduate program, Pennsylvania State University, University Park, PA 16802
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Assistance Publique–Hôpitaux de Paris, Department of Medical Genetics, Armand Trousseau and Pitié-Salpêtrière Hospitals, Paris, France
| | - Paolo Prontera
- Medical Genetics Unit, Hospital “Santa Maria della Misericordia”, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Laurence Faivre
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d’Enfants, CHU Dijon, Dijon, France
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Patrick Callier
- Centre de Genetique et Cenre de Référence Anomalies du développement et syndromes malformatifs, Hôpital d’Enfants, CHU Dijon, Dijon, France
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | | | - Mathilde Lefebvre
- GAD INSERM UMR1231, FHU TRANSLAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Kate Pope
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Penny Snell
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul J. Lockhart
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Bruce Lefroy Center, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Teresa Mattina
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Olivier Pichon
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- ToNIC, Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Radka Stoeva
- Service de Cytogenetique, CHU de Le Mans, Le Mans, France
| | | | - Sandra Mercier
- CHU Nantes, Department of Medical Genetics, Nantes, France
| | | | - Sophie Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | | | | | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Bruce Lefroy Center, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Corrado Romano
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Medical Genetics, ASP Ragusa, Ragusa, Italy
| | | | | | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Neuroscience Graduate program, Pennsylvania State University, University Park, PA 16802
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Ahmed F, Gi Ho S, Samantasinghar A, Memon FH, Rahim CSA, Soomro AM, Pratibha, Sunildutt N, Kim KH, Choi KH. Drug repurposing in psoriasis, performed by reversal of disease-associated gene expression profiles. Comput Struct Biotechnol J 2022; 20:6097-6107. [DOI: 10.1016/j.csbj.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
|