1
|
Lin F, Zhu LX, Ye ZM, Peng F, Chen MC, Li XM, Zhu ZH, Zhu Y. Computed Tomography-Based Intratumor Heterogeneity Predicts Response to Immunotherapy Plus Chemotherapy in Esophageal Squamous Cell Carcinoma. Acad Radiol 2024; 31:4886-4899. [PMID: 38981774 DOI: 10.1016/j.acra.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
RATIONALE AND OBJECTIVES This study explored the intratumor heterogeneity (ITH) of esophageal squamous cell carcinoma (ESCC) using computed tomography (CT) and investigated the value of CT-based ITH in predicting the response to immune checkpoint inhibitor (ICI) plus chemotherapy in patients with ESCC. MATERIALS AND METHODS This retrospective study included 416 patients with ESCC who received ICI plus chemotherapy at two independent hospitals between January 2019 and July 2022. Multiparametric CT features were extracted from ESCC lesions and screened using hierarchical clustering and dimensionality reduction algorithms. Logistic regression and machine learning models based on selected features were developed to predict treatment response and validated in separate datasets. ITH was quantified using the score calculated by the best-performing model and visualized through feature clustering and feature contribution heatmaps. A gene set enrichment analysis (GSEA) was performed to identify the biological pathways underlying the CT-based ITH. RESULTS The extreme gradient boosting model based on CT-derived ITH had higher discriminative power, with areas under the receiver operating characteristic curve of 0.864 (95% confidence interval [CI]: 0.774-0.954) and 0.796 (95% CI: 0.698-0.893) in the internal and external validation sets. The CT-based ITH pattern differed significantly between responding and non-responding patients. The GSEA indicated that CT-based ITH was associated with immunity-, keratinization-, and epidermal cell differentiation-related pathways. CONCLUSION CT-based ITH is an effective biomarker for identifying patients with ESCC who could benefit from ICI plus chemotherapy. Immunity-, keratinization-, and epidermal cell differentiation-related pathways may influence the patient's response to ICI plus chemotherapy.
Collapse
Affiliation(s)
- Fangzeng Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.)
| | - Lian-Xin Zhu
- Medical College of Nanchang University, Nanchang 330000, Jiangxi Province, People's Republic of China (L.X.Z.); Queen Mary University of London, London, United Kingdom (L.X.Z.)
| | - Zi-Ming Ye
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, Guangdong Province, People's Republic of China (Z.M.Y., Z.H.Z.)
| | - Fang Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.P.)
| | - Mei-Cheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.)
| | - Xiang-Min Li
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou 516080, Guangdong Province, People's Republic of China (X.M.L.)
| | - Zhi-Hua Zhu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, Guangdong Province, People's Republic of China (Z.M.Y., Z.H.Z.)
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.).
| |
Collapse
|
2
|
Lin J, Zhou Y, Li C, Li B, Hao H, Tian F, Li H, Liu Z, Wang G, Shen XC, Tang R, Wang X. Hydrogel activation of Mincle receptors for tumor cell processing: A novel approach in cancer immunotherapy. Biomaterials 2024; 311:122703. [PMID: 39002516 DOI: 10.1016/j.biomaterials.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment. Within this context, tumor cells are completely eliminated by antigen-presenting cells (APCs) and processed for cross-antigen presentation. The regulatory mechanism relies on the Mincle receptor, a cell-phagocytosis-inducing C-type lectin receptor specifically activated on ChitoCa-recruited APCs, which serves as a recognition synapse, facilitating a tenfold increase in tumor cell engulfment and subsequent elimination. The ChitoCa-induced tumor cell processing further promotes the cross-presentation of tumor antigens to prime protective CD8+ T cell responses. Therefore, the ChitoCa treatment establishes an immune niche within the tumor microenvironment, resulting in effective tumor regression either used alone or in combination with other immunotherapies. This hydrogel-induced immune factory establishes a functional organ-like multicellular colony for tumor-specific immunotherapy, paving the way for innovative strategies in cancer treatment.
Collapse
Affiliation(s)
- Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Benke Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haibin Hao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huixin Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhenyu Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guangchuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang, 311113, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
3
|
Brust LA, Linxweiler M, Schnatmann J, Kühn JP, Knebel M, Braun FL, Wemmert S, Menger MD, Schick B, Holick MF, Kuo F, Morris LGT, Körner S. Effects of Vitamin D on tumor cell proliferation and migration, tumor initiation and anti-tumor immune response in head and neck squamous cell carcinomas. Biomed Pharmacother 2024; 180:117497. [PMID: 39341078 DOI: 10.1016/j.biopha.2024.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinomas (HNSCCs) are among the six most common cancers, with a constantly poor prognosis. Vitamin D has been found to have antineoplastic and immunomodulatory properties in various cancers. This study investigated the impact of Vitamin D on the initiation and progression as well as antitumor immune response in HNSCCs, both in vitro and in vivo. METHODS An immunocompetent, orthotopic oral carcinogenesis mouse model was used to examine the influence of Vitamin D3 substitution on HNSCC initiation and progression in vivo. Tumor immune infiltration was analyzed by immunohistochemistry targeting CD3, CD8, NKR-P1C, FOXP3, and CD163. Two HPV- and two HPV+ HNSCC cell lines were treated with 1,25-dihydroxyvitamin D3 to analyze effects on tumor cell proliferation, migration and transcriptomic changes using RNA-sequencing, differential gene expression and gene set enrichment analysis. RESULTS Vitamin D3 treatment led to a significant suppression of HNSCC initiation and progression, while also stimulating tumor immune infiltration with CD3+, CD8+ and NKR-P1C+ cells and lowering levels of M2 macrophages and Treg cells in vivo. In vitro experiments showed an inhibition of HNSCC cell proliferation and migration in HPV+ and HPV- cell lines. RNA-sequencing showed significant regulations in IL6 JAK STAT3, hypoxia signaling and immunomodulatory pathways upon Vitamin D3 treatment. CONCLUSION The findings of our study highlight the promising potential of Vitamin D in the therapeutic repertoire for HNSCC patients given its immune modulating, anti-proliferative and anti-migratory properties. Clinical transferability of those in vitro and in vivo effects should be further validated in clinical trials.
Collapse
Affiliation(s)
- Lukas A Brust
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Jana Schnatmann
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Jan-Philipp Kühn
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Moritz Knebel
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Felix L Braun
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Silke Wemmert
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Michael D Menger
- Institute of Clinical and Experimental Surgery; Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany
| | - Michael F Holick
- Department of Physiology and Biophysics; Boston University School of Medicine, Boston, MA, USA
| | - Fengshen Kuo
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Head and Neck Service, Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sandrina Körner
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg, Germany; Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Huang X, Tian B, Ren Z, Zhang J, Yan W, Mo Y, Yuan J, Ma Y, Wang R, Liu R, Chen M, Yu J, Chen D. CD34 as a potential prognostic indicator for camrelizumab response in advanced non-small-cell lung cancer: insights from digital spatial profiling. Ther Adv Med Oncol 2024; 16:17588359241289671. [PMID: 39429466 PMCID: PMC11489950 DOI: 10.1177/17588359241289671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Given that only a small subset of patients with advanced non-small-cell lung cancer (aNSCLC) benefit from immune checkpoint inhibitors (ICIs), the effectiveness of ICIs is often compromised by the complex interplay within the tumor microenvironment (TME). Objectives To identify predictive biomarkers associated with ICI resistance at a multi-omics spatial level. Design A total of eight aNSCLC patients who received first-line anti-programmed cell death protein-1 (PD-1) monoclonal antibody camrelizumab at Shandong Cancer Hospital and Institute between 2021 and 2022 were included in the discovery cohort. An additional validation cohort of 45 samples from camrelizumab-treated aNSCLC patients was also enrolled. Methods NanoString GeoMx® digital spatial profiling was conducted at the transcriptomic and proteomic level within pan-cytokeratin (panCK+), CD45+, and CD68+ compartments. For validation, multiplex immunofluorescence (mIF) staining was performed. Results Distinct spatial expression patterns and levels of immune infiltration were observed between tumor and leukocyte compartments. Higher CD34 expression in the macrophage compartment correlated with poorer prognosis and response to camrelizumab (p < 0.05). mIF validation confirmed the association of elevated CD34 expression level with reduced progression-free survival (PFS; hazard ratio (HR) = 5.011, 95% confidence interval: 1.057-23.752, p = 0.042), outperforming traditional tumor markers in predictive accuracy. Conclusion Our findings identify CD34 as a novel spatial biomarker for anti-PD-1 therapy efficacy, potentially guiding the selection of aNSCLC patients who are more likely to benefit from ICI treatment. Trial registration ChiCTR2000040416.
Collapse
Affiliation(s)
- Xinyi Huang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Baoqing Tian
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Ren
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Jingxin Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Weiwei Yan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - You Mo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yujiao Ma
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Ruiyang Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rufei Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Minxin Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Dawei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| |
Collapse
|
5
|
Culliford R, Lawrence SED, Mills C, Tippu Z, Chubb D, Cornish AJ, Browning L, Kinnersley B, Bentham R, Sud A, Pallikonda H, Frangou A, Gruber AJ, Litchfield K, Wedge D, Larkin J, Turajlic S, Houlston RS. Whole genome sequencing refines stratification and therapy of patients with clear cell renal cell carcinoma. Nat Commun 2024; 15:5935. [PMID: 39009593 PMCID: PMC11250826 DOI: 10.1038/s41467-024-49692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, but a comprehensive description of its genomic landscape is lacking. We report the whole genome sequencing of 778 ccRCC patients enrolled in the 100,000 Genomes Project, providing for a detailed description of the somatic mutational landscape of ccRCC. We identify candidate driver genes, which as well as emphasising the major role of epigenetic regulation in ccRCC highlight additional biological pathways extending opportunities for therapeutic interventions. Genomic characterisation identified patients with divergent clinical outcome; higher number of structural copy number alterations associated with poorer prognosis, whereas VHL mutations were independently associated with a better prognosis. The observations that higher T-cell infiltration is associated with better overall survival and that genetically predicted immune evasion is not common supports the rationale for immunotherapy. These findings should inform personalised surveillance and treatment strategies for ccRCC patients.
Collapse
Affiliation(s)
- Richard Culliford
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Samuel E D Lawrence
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Charlie Mills
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Zayd Tippu
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Robert Bentham
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Husayn Pallikonda
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Anna Frangou
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
- Algebraic Systems Biology, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Algebraic Systems Biology, Centre for Systems Biology Dresden, Dresden, Germany
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - David Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
6
|
Zhang Y, Huang X, Yu M, Zhang M, Zhao L, Yan Y, Zhang L, Wang X. The integrate profiling of single-cell and spatial transcriptome RNA-seq reveals tumor heterogeneity, therapeutic targets, and prognostic subtypes in ccRCC. Cancer Gene Ther 2024; 31:917-932. [PMID: 38480978 DOI: 10.1038/s41417-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 06/23/2024]
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common type of RCC; however, the intratumoral heterogeneity in ccRCC remains unclear. We first identified markers and biological features of each cell cluster using bioinformatics analysis based on single-cell and spatial transcriptome RNA-sequencing data. We found that gene copy number loss on chromosome 3p and amplification on chromosome 5q were common features in ccRCC cells. Meanwhile, NNMT and HILPDA, which are associated with the response to hypoxia and metabolism, are potential therapeutic targets for ccRCC. In addition, CD8+ exhausted T cells (LAG3+ HAVCR2+), CD8+ proliferated T cells (STMN+), and M2-like macrophages (CD68+ CD163+ APOC1+), which are closely associated with immunosuppression, played vital roles in ccRCC occurrence and development. These results were further verified by whole exome sequencing, cell line and xenograft experiments, and immunofluorescence staining. Finally, we divide patients with ccRCC into three subtypes using unsupervised cluster analysis. and generated a classifier to reproduce these subtypes using the eXtreme Gradient Boosting algorithm. Our classifier can help clinicians evaluate prognosis and design personalized treatment strategies for ccRCC. In summary, our work provides a new perspective for understanding tumor heterogeneity and will aid in the design of antitumor therapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Yanlong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Minghang Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Menghan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Li Zhao
- Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Yong Yan
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Liyun Zhang
- Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| | - Xi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
7
|
Wang J, Zhao E, Geng B, Zhang W, Li Z, Liu Q, Liu W, Zhang W, Hou W, Zhang N, Liu Z, You B, Wu P, Li X. Downregulation of UBB potentiates SP1/VEGFA-dependent angiogenesis in clear cell renal cell carcinoma. Oncogene 2024; 43:1386-1396. [PMID: 38467852 PMCID: PMC11065696 DOI: 10.1038/s41388-024-03003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) presents a unique profile characterized by high levels of angiogenesis and robust vascularization. Understanding the underlying mechanisms driving this heterogeneity is essential for developing effective therapeutic strategies. This study revealed that ubiquitin B (UBB) is downregulated in ccRCC, which adversely affects the survival of ccRCC patients. UBB exerts regulatory control over vascular endothelial growth factor A (VEGFA) by directly interacting with specificity protein 1 (SP1), consequently exerting significant influence on angiogenic processes. Subsequently, we validated that DNA methyltransferase 3 alpha (DNMT3A) is located in the promoter of UBB to epigenetically inhibit UBB transcription. Additionally, we found that an unharmonious UBB/VEGFA ratio mediates pazopanib resistance in ccRCC. These findings underscore the critical involvement of UBB in antiangiogenic therapy and unveil a novel therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Bo Geng
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhuolun Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qing Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Department of Radiation Oncology, Urology, and Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Weiyang Liu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenfu Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhiming Liu
- Department of Urology, Shanghai Fengxian District Central Hospital, Shanghai, 200233, China
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui, 230001, China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, China.
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China.
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
8
|
Yang S, Yang X, Hou Z, Zhu L, Yao Z, Zhang Y, Chen Y, Teng J, Fang C, Chen S, Jia M, Liu Z, Kang S, Chen Y, Li G, Niu Y, Cai Q. Rationale for immune checkpoint inhibitors plus targeted therapy for advanced renal cell carcinoma. Heliyon 2024; 10:e29215. [PMID: 38623200 PMCID: PMC11016731 DOI: 10.1016/j.heliyon.2024.e29215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Renal cell carcinoma (RCC) is a frequent urological malignancy characterized by a high rate of metastasis and lethality. The treatment strategy for advanced RCC has moved through multiple iterations over the past three decades. Initially, cytokine treatment was the only systemic treatment option for patients with RCC. With the development of medicine, antiangiogenic agents targeting vascular endothelial growth factor and mammalian target of rapamycin and immunotherapy, immune checkpoint inhibitors (ICIs) have emerged and received several achievements in the therapeutics of advanced RCC. However, ICIs have still not brought completely satisfactory results due to drug resistance and undesirable side effects. For the past years, the interests form researchers have been attracted by the combination of ICIs and targeted therapy for advanced RCC and the angiogenesis and immunogenic tumor microenvironmental variations in RCC. Therefore, we emphasize the potential principle and the clinical progress of ICIs combined with targeted treatment of advanced RCC, and summarize the future direction.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xianrui Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zekai Hou
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liang Zhu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhili Yao
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Yanzhuo Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Teng
- Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng Fang
- Taihe County People's Hospital, Anhui, China
| | - Songmao Chen
- Department of Urology, Fujian Provincial Hospital, Fujian, China
- Provincial Clinical Medical College of Fujian Medical University, Fujian, China
| | - Mingfei Jia
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Zhifei Liu
- Department of Urology, Tangshan People's Hospital, Hebei, China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Weng KQ, Liu JY, Li H, She LL, Qiu JL, Qi H, Qi HY, Li YS, Dai YB. Identification of Treg-related prognostic molecular subtypes and individualized characteristics in clear cell renal cell carcinoma through single-cell transcriptomes and bulk RNA sequencing. Int Immunopharmacol 2024; 130:111746. [PMID: 38442575 DOI: 10.1016/j.intimp.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND In clear cell renal cell carcinoma (ccRCC), the role of Regulatory T cells (Treg cells) as prognostic and immunotherapy response predictors is not fully explored. METHODS Analyzing renal clear cell carcinoma datasets from TISCH, TCGA, and GEO, we focused on 8 prognostic Treg genes to study patient subtypes in ccRCC. We assessed Treg subtypes in relation to patient prognosis, tumor microenvironment, metabolism. Using Cox regression and principal component analysis, we devised Treg scores for individual patient characterization and explored the molecular role of C1QL1, a critical gene in the Treg model, through in vivo and in vitro studies. RESULTS Eight Treg-associated prognostic genes were identified, classifying ccRCC patients into cluster A and B. Cluster A patients showed poorer prognosis with distinct clinical and molecular profiles, potentially benefiting more from immunotherapy. Low Treg scores correlated with worse outcomes and clinical progression. Low scores also suggested that patients might respond better to immunotherapy and targeted therapies. In ccRCC, C1QL1 knockdown reduced tumor proliferation and invasion via NF-kb-EMT pathways and decreased Treg cell infiltration, enhancing immune efficacy. CONCLUSIONS The molecular subtype and Treg score in ccRCC, based on Treg cell marker genes, are crucial in personalizing ccRCC treatment and underscore C1QL1's potential as a tumor biomarker and target for immunotherapy.
Collapse
Affiliation(s)
- Kang Qiang Weng
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jin Yu Liu
- The Affiliated Hospital of Putian University, 999 DongZhen East Rd, Putian 351100, Fujian, China.
| | - Hu Li
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Lin Lu She
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jun Liang Qiu
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Hao Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Hui Yue Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Yong Sheng Li
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xin-quan Road, Fuzhou, China.
| | - Ying Bo Dai
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
10
|
Hu J, Wang SG, Hou Y, Chen Z, Liu L, Li R, Li N, Zhou L, Yang Y, Wang L, Wang L, Yang X, Lei Y, Deng C, Li Y, Deng Z, Ding Y, Kuang Y, Yao Z, Xun Y, Li F, Li H, Hu J, Liu Z, Wang T, Hao Y, Jiao X, Guan W, Tao Z, Ren S, Chen K. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nat Genet 2024; 56:442-457. [PMID: 38361033 PMCID: PMC10937392 DOI: 10.1038/s41588-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Li
- Shanghai Luming Biotech, Shanghai, China
| | - Nisha Li
- Shanghai Luming Biotech, Shanghai, China
- Shanghai OE Biotech, Shanghai, China
| | - Lijie Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Yang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liping Wang
- Department of Pathology, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchun Kuang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Philadelphia, PA, USA
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shancheng Ren
- Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Stühler V, Alemi B, Rausch S, Stenzl A, Schwab M, Schaeffeler E, Bedke J. Analysis of the immunological markers BTLA, TIM-3, and PD-L1 at the invasion front and tumor center in clear cell renal cell carcinoma. World J Urol 2024; 42:53. [PMID: 38244072 DOI: 10.1007/s00345-023-04721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) are then backbone in the therapy of metastatic renal cell carcinoma (RCC). The aim of this analysis was to explore the different expression of the ICI PD-L1, BTLA, and TIM-3 at the different tumor locations of the invasion front and the tumor center. METHODS Large-area sections of the tumor center and invasion front of 44 stage pT1-4 clear cell RCCs were examined immunohistochemically using antibodies against BTLA, TIM-3, and PD-L1 and subsequently correlated with clinicopathologic data. RESULTS TIM-3 was most strongly expressed at the invasion front (mean ± SD: 84.1 ± 46.6, p = 0.094). BTLA expression was highest in normal tissue, with weak staining in the tumor center and at the invasion front [110.2 vs. 18.6 (p < 0.001) vs. 32.2 (p = 0.248)]. PD-L1 was weakly expressed at the tumor center (n = 5/44) and at the invasion front (n = 5/44). Correlation with clinicopathological parameters revealed significantly higher BTLA expression in ≥ T3 tumors compared to T1/2 tumors (tumor center p = 0.009; invasion front p = 0.005). BTLA-positive tumors at the tumor center correlated with worse CSS (median 48.46 vs. 68.91 months, HR 4.43, p = 0.061). PD-L1 expression was associated with worse CSS (median 1.66 vs. 4.5 years, HR 1.63, p = 0.652). For TIM-3, there were no significant associations with clinicopathological parameters and survival. CONCLUSION The present results show heterogeneous intratumoral and intertumoral expression of the investigated checkpoint receptors PD-L1, BTLA, and TIM-3. In the clinical practice tumor sampling should include different tumor locations, and multiple inhibition of different checkpoint receptors seems reasonable to increase the therapeutic success.
Collapse
Affiliation(s)
- Viktoria Stühler
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Bilal Alemi
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Faculty of Medicine, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tübingen, Germany.
- Department of Urology and Transplantation Surgery, Klinikum Stuttgart, Kriegsbergstraße 60, 70174, Stuttgart, Germany.
| |
Collapse
|
12
|
Ge LP, Jin X, Ma D, Wang ZY, Liu CL, Zhou CZ, Zhao S, Yu TJ, Liu XY, Di GH, Shao ZM, Jiang YZ. ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy resistance in triple-negative breast cancer. Cell Res 2024; 34:58-75. [PMID: 38168642 PMCID: PMC10770380 DOI: 10.1038/s41422-023-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease characterized by remarkable intratumor heterogeneity (ITH), which poses therapeutic challenges. However, the clinical relevance and key determinant of ITH in TNBC are poorly understood. Here, we comprehensively characterized ITH levels using multi-omics data across our center's cohort (n = 260), The Cancer Genome Atlas cohort (n = 134), and four immunotherapy-treated cohorts (n = 109). Our results revealed that high ITH was associated with poor patient survival and immunotherapy resistance. Importantly, we identified zinc finger protein 689 (ZNF689) deficiency as a crucial determinant of ITH formation. Mechanistically, the ZNF689-TRIM28 complex was found to directly bind to the promoter of long interspersed element-1 (LINE-1), inducing H3K9me3-mediated transcriptional silencing. ZNF689 deficiency reactivated LINE-1 retrotransposition to exacerbate genomic instability, which fostered ITH. Single-cell RNA sequencing, spatially resolved transcriptomics and flow cytometry analysis confirmed that ZNF689 deficiency-induced ITH inhibited antigen presentation and T-cell activation, conferring immunotherapy resistance. Pharmacological inhibition of LINE-1 significantly reduced ITH, enhanced antitumor immunity, and eventually sensitized ZNF689-deficient tumors to immunotherapy in vivo. Consistently, ZNF689 expression positively correlated with favorable prognosis and immunotherapy response in clinical samples. Altogether, our study uncovers a previously unrecognized mechanism underlying ZNF689 deficiency-induced ITH and suggests LINE-1 inhibition combined with immunotherapy as a novel treatment strategy for TNBC.
Collapse
Affiliation(s)
- Li-Ping Ge
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Yu Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao-Zheng Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Houlston R, Culliford R, Lawrence S, Mills C, Tippu Z, Chubb D, Cornish A, Browining L, Kinnersley B, Bentham R, Sud A, Pallikonda H, Frangou A, Gruber A, Litchfield K, Wedge D, Larkin J, Turajlic S. Whole genome sequencing refines stratification and therapy of patients with clear cell renal cell carcinoma. RESEARCH SQUARE 2023:rs.3.rs-3675752. [PMID: 38106039 PMCID: PMC10723546 DOI: 10.21203/rs.3.rs-3675752/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, but a comprehensive description of its genomic landscape is lacking. We report the whole genome sequencing of 778 ccRCC patients enrolled in the 100,000 Genomes Project, providing the most detailed somatic mutational landscape to date. We identify new driver genes, which as well as emphasising the major role of epigenetic regulation in ccRCC highlight additional biological pathways extending opportunities for drug repurposing. Genomic characterisation identified patients with divergent clinical outcome; higher number of structural copy number alterations associated with poorer prognosis, whereas VHL mutations were independently associated with a better prognosis. The twin observations that higher T-cell infiltration is associated with better outcome and that genetically predicted immune evasion is not common supports the rationale for immunotherapy. These findings should inform personalised surveillance and treatment strategies for ccRCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Amit Sud
- The Institute of Cancer Research
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Xu J, Lan T, Zhou C, Liu P. The loss of neoantigens is an important reason for immune escape in multiple myeloma patients with high intratumor heterogeneity. Cancer Med 2023; 12:21651-21665. [PMID: 37965778 PMCID: PMC10757111 DOI: 10.1002/cam4.6721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/30/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVES Intratumor heterogeneity (ITH) is an important factor for clinical outcomes in patients with multiple myeloma (MM). High ITH has been proven to be a key reason for tumor immune escape and treatment resistance. Neoantigens are thought to be associated with ITH, but the specific correlation and functional basis for this remains unclear. METHODS We study this question through the whole-exome sequencing (WES) data from 43 high ITH newly diagnosed MM patients in our center. Mutant allele tumor heterogeneity (MATH) was conducted to quantify ITH. The cutoff value for high intratumor heterogeneity was determined by comparing MATH of different kinds of tumors. NeoPredPipe was performed to predict neoantigens and binding affinity. RESULTS Compared to other tumors, MM has a relatively low tumor mutation burden but a high ITH. Patients with high MATH had significantly shorter progression-free survival times than those with low MATH (p = 0.001). In high ITH samples, there is a decrease in strong-binding neoantigens (p = 0.019). The loss of strong-binding neoantigens is a key factor for insensitivity to therapy (p = 0.015). Loss of heterozygosity in HLA was not observed. In addition, patients with fewer neoantigens loss had higher rates of disease remission (p = 0.047). CD8 + T cells (p = 0.012) and NK cells (p = 0.011) decreased significantly in patients with high neoantigens loss rate. A prediction model based on neoantigens was built to evaluate the strength of immune escape. CONCLUSION The loss of strong-binding neoantigens explains why tumors with high ITH have a higher degree of immune escape and may be feasible for deciding the clinical treatment of MM.
Collapse
Affiliation(s)
- Yue Wang
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiadai Xu
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Tianwei Lan
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Chi Zhou
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Peng Liu
- Department of Hematology, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Zhang X, Tao T, Qiu Y, Guo X, Zhu X, Zhou X. Copper-mediated novel cell death pathway in tumor cells and implications for innovative cancer therapies. Biomed Pharmacother 2023; 168:115730. [PMID: 37864891 DOI: 10.1016/j.biopha.2023.115730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Previous investigations have unraveled an array of cellular demise modalities, encompassing apoptosis, necrosis, pyroptosis, iron death, and several others. These diverse pathways of cell death have been harnessed as therapeutic strategies for eradicating tumor cells. Recent scientific inquiries have unveiled a novel mode of cell death, namely copper death, which is contingent upon intracellular copper levels. Diverging from conventional cell death mechanisms, copper death exhibits a heightened reliance on mitochondrial respiration, specifically the tricarboxylic acid (TCA) cycle. Tumor cells exhibit distinctive metabolic profiles and an elevated copper content compared to their normal counterparts. The emergence of copper death presents a tantalizing prospect for targeted therapies in the realm of cancer treatment. Thus, the primary objective of this review is to introduce the proteins and intricate mechanisms underlying copper death, while comprehensively summarizing the extensive body of knowledge concerning its ramifications across diverse tumor types. The insights garnered from this comprehensive synthesis will serve as an invaluable reference for driving the development of tailor-made therapeutic interventions for tumors.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yishu Qiu
- Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Xiaojun Guo
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
16
|
Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res 2023; 10:52. [PMID: 37941075 PMCID: PMC10631149 DOI: 10.1186/s40779-023-00486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhong-Pei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Liu J, Wang Y, Zhao Z, Ge Y. Bioinformatics analysis and experimental validation of tumorigenic role of PPIA in gastric cancer. Sci Rep 2023; 13:19116. [PMID: 37926757 PMCID: PMC10625987 DOI: 10.1038/s41598-023-46508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor with high incidence rate and mortality. Due to the lack of effective diagnostic indicators, most patients are diagnosed in late stage and have a poor prognosis. An increasing number of studies have proved that Peptidylprolyl isomerase A (PPIA) can play an oncogene role in various cancer types. However, the precise mechanism of PPIA in GC is still unclear. Herein, we analyzed the mRNA levels of PPIA in pan-cancer. The prognostic value of PPIA on GC was also evaluated using multiple databases. Additionally, the relationship between PPIA expression and clinical factors in GC was also examined. We further confirmed that PPIA expression was not affected by genetic alteration and DNA methylation. Moreover, the upstream regulator miRNA and lncRNA of PPIA were identified, which suggested that LINC10232/miRNA-204-5p/PPIA axis might act as a potential biological pathway in GC. Finally, this study revealed that PPIA was negatively correlated with immune checkpoint expression, immune cell biomarkers, and immune cell infiltration in GC.
Collapse
Affiliation(s)
- Jichao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Yanjun Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Zhiwei Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Yanhui Ge
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China.
| |
Collapse
|
18
|
Pezzicoli G, Ciciriello F, Musci V, Salonne F, Ragno A, Rizzo M. Genomic Profiling and Molecular Characterization of Clear Cell Renal Cell Carcinoma. Curr Oncol 2023; 30:9276-9290. [PMID: 37887570 PMCID: PMC10605358 DOI: 10.3390/curroncol30100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) treatment has undergone three major paradigm shifts in recent years, first with the introduction of molecular targeted therapies, then with immune checkpoint inhibitors, and, more recently, with immune-based combinations. However, to date, molecular predictors of response to targeted agents have not been identified for ccRCC. The WHO 2022 classification of renal neoplasms introduced the molecularly defined RCC class, which is a first step in the direction of a better molecular profiling of RCC. We reviewed the literature data on known genomic alterations of clinical interest in ccRCC, discussing their prognostic and predictive role. In particular, we explored the role of VHL, mTOR, chromatin modulators, DNA repair genes, cyclin-dependent kinases, and tumor mutation burden. RCC is a tumor whose pivotal genomic alterations have pleiotropic effects, and the interplay of these effects determines the tumor phenotype and its clinical behavior. Therefore, it is difficult to find a single genomic predictive factor, but it is more likely to identify a signature of gene alterations that could impact prognosis and response to specific treatment. To accomplish this task, the interpolation of large amounts of clinical and genomic data is needed. Nevertheless, genomic profiling has the potential to change real-world clinical practice settings.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Francesco Salonne
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
19
|
Tang C, Xie AX, Liu EM, Kuo F, Kim M, DiNatale RG, Golkaram M, Chen YB, Gupta S, Motzer RJ, Russo P, Coleman J, Carlo MI, Voss MH, Kotecha RR, Lee CH, Tansey W, Schultz N, Hakimi AA, Reznik E. Immunometabolic coevolution defines unique microenvironmental niches in ccRCC. Cell Metab 2023; 35:1424-1440.e5. [PMID: 37413991 PMCID: PMC10603615 DOI: 10.1016/j.cmet.2023.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Tumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences remain poorly understood. To study IMH, we profiled tumor/normal regions from clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all patients, characterized by correlated fluctuations in the abundance of metabolites and processes associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that the immune composition of the microenvironment, especially the abundance of myeloid cells, drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles from the RNA sequencing data of ccRCC patients enrolled in 7 clinical trials, and we ultimately identifyied metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic phenotypes, therefore, emerge in tandem with the immune microenvironment, influence ongoing tumor evolution, and are associated with therapeutic sensitivity.
Collapse
Affiliation(s)
- Cerise Tang
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Amy X Xie
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minsoo Kim
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renzo G DiNatale
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Ying-Bei Chen
- Department of Pathology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sounak Gupta
- Department of Pathology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria I Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ritesh R Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wesley Tansey
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ed Reznik
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Wang Y, Wang Y, Liu B, Gao X, Li Y, Li F, Zhou H. Mapping the tumor microenvironment in clear cell renal carcinoma by single-cell transcriptome analysis. Front Genet 2023; 14:1207233. [PMID: 37533434 PMCID: PMC10392130 DOI: 10.3389/fgene.2023.1207233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Clear cell renal cell carcinoma (ccRCC) is associated with unfavorable clinical outcomes. To identify viable therapeutic targets, a comprehensive understanding of intratumoral heterogeneity is crucial. In this study, we conducted bioinformatic analysis to scrutinize single-cell RNA sequencing data of ccRCC tumor and para-tumor samples, aiming to elucidate the intratumoral heterogeneity in the ccRCC tumor microenvironment (TME). Methods: A total of 51,780 single cells from seven ccRCC tumors and five para-tumor samples were identified and grouped into 11 cell lineages using bioinformatic analysis. These lineages included tumor cells, myeloid cells, T-cells, fibroblasts, and endothelial cells, indicating a high degree of heterogeneity in the TME. Copy number variation (CNV) analysis was performed to compare CNV frequencies between tumor and normal cells. The myeloid cell population was further re-clustered into three major subgroups: monocytes, macrophages, and dendritic cells. Differential expression analysis, gene ontology, and gene set enrichment analysis were employed to assess inter-cluster and intra-cluster functional heterogeneity within the ccRCC TME. Results: Our findings revealed that immune cells in the TME predominantly adopted an inflammatory suppression state, promoting tumor cell growth and immune evasion. Additionally, tumor cells exhibited higher CNV frequencies compared to normal cells. The myeloid cell subgroups demonstrated distinct functional properties, with monocytes, macrophages, and dendritic cells displaying diverse roles in the TME. Certain immune cells exhibited pro-tumor and immunosuppressive effects, while others demonstrated antitumor and immunostimulatory properties. Conclusion: This study contributes to the understanding of intratumoral heterogeneity in the ccRCC TME and provides potential therapeutic targets for ccRCC treatment. The findings emphasize the importance of considering the diverse functional roles of immune cells in the TME for effective therapeutic interventions.
Collapse
Affiliation(s)
- Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Jilin, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|