1
|
Snaith AE, Moran RA, Hall RJ, Casey A, Ratcliffe L, van Schaik W, Whitehouse T, McNally A. Longitudinal genomic surveillance of a UK intensive care unit shows a lack of patient colonisation by multi-drug-resistant Gram-negative bacterial pathogens. Microb Genom 2024; 10:001314. [PMID: 39494554 PMCID: PMC11533117 DOI: 10.1099/mgen.0.001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Vulnerable patients in an intensive care unit (ICU) setting are at high risk of infection from bacteria including gut-colonising Escherichia coli and Klebsiella species. Complex ICU procedures often depend on successful antimicrobial treatment, underscoring the importance of understanding the extent of patient colonisation by multi-drug-resistant organisms (MDROs) in large UK ICUs. Previous work on ICUs globally uncovered high rates of colonisation by transmission of MDROs, but the situation in UK ICUs is less understood. Here, we investigated the diversity and antibiotic resistance gene (ARG) carriage of bacteria present in one of the largest UK ICUs at the Queen Elizabeth Hospital Birmingham (QEHB), focusing primarily on E. coli as both a widespread commensal and a globally disseminated multi-drug-resistant pathogen. Samples were taken during highly restrictive coronavirus disease 2019 (COVID-19) control measures from May to December 2021. Whole-genome and metagenomic sequencing were used to detect and report strain-level colonisation of patients, focusing on E. coli sequence types (STs), their colonisation dynamics and antimicrobial resistance gene carriage. We found a lack of multi-drug resistance (MDR) in the QEHB. Only one carbapenemase-producing organism was isolated, a Citrobacter carrying bla KPC-2. There was no evidence supporting the spread of this strain, and there was little evidence overall of nosocomial acquisition or circulation of colonising E. coli. Whilst 22 different E. coli STs were identified, only 1 strain of the pandemic ST131 lineage was isolated. This ST131 strain was non-MDR and was found to be a clade A strain, associated with low levels of antibiotic resistance. Overall, the QEHB ICU had very low levels of pandemic or MDR strains, a result that may be influenced in part by the strict COVID-19 control measures in place at the time. Employing some of these infection prevention and control measures where reasonable in all ICUs might therefore assist in maintaining low levels of nosocomial MDR.
Collapse
Affiliation(s)
- Ann E. Snaith
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert A. Moran
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Liz Ratcliffe
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tony Whitehouse
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Holmes CL, Albin OR, Mobley HLT, Bachman MA. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 2024:10.1038/s41579-024-01105-2. [PMID: 39420097 DOI: 10.1038/s41579-024-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Owen R Albin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Thorpe HA, Pesonen M, Corbella M, Pesonen H, Gaiarsa S, Boinett CJ, Tonkin-Hill G, Mäklin T, Pöntinen AK, MacAlasdair N, Gladstone RA, Arredondo-Alonso S, Kallonen T, Jamrozy D, Lo SW, Chaguza C, Blackwell GA, Honkela A, Schürch AC, Willems RJL, Merla C, Petazzoni G, Feil EJ, Cambieri P, Thomson NR, Bentley SD, Sassera D, Corander J. Pan-pathogen deep sequencing of nosocomial bacterial pathogens in Italy in spring 2020: a prospective cohort study. THE LANCET. MICROBE 2024; 5:100890. [PMID: 39178869 DOI: 10.1016/s2666-5247(24)00113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Nosocomial infections pose a considerable risk to patients who are susceptible, and this is particularly acute in intensive care units when hospital-associated bacteria are endemic. During the first wave of the COVID-19 pandemic, the surge of patients presented a significant obstacle to the effectiveness of infection control measures. We aimed to assess the risks and extent of nosocomial pathogen transmission under a high patient burden by designing a novel bacterial pan-pathogen deep-sequencing approach that could be integrated with standard clinical surveillance and diagnostics workflows. METHODS We did a prospective cohort study in a region of northern Italy that was severely affected by the first wave of the COVID-19 pandemic. Inpatients on both ordinary and intensive care unit (ICU) wards at the San Matteo hospital, Pavia were sampled on multiple occasions to identify bacterial pathogens from respiratory, nasal, and rectal samples. Diagnostic samples collected between April 7 and May 10, 2020 were cultured on six different selective media designed to enrich for Acinetobacter baumannii, Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae, and DNA from each plate with positive growth was deep sequenced en masse. We used mSWEEP and mGEMS to bin sequencing reads by sequence cluster for each species, followed by mapping with snippy to generate high quality alignments. Antimicrobial resistance genes were detected by use of ARIBA and CARD. Estimates of hospital transmission were obtained from pairwise bacterial single nucleotide polymorphism distances, partitioned by within-patient and between-patient samples. Finally, we compared the accuracy of our binned Acinetobacter baumannii genomes with those obtained by single colony whole-genome sequencing of isolates from the same hospital. FINDINGS We recruited patients from March 1 to May 7, 2020. The pathogen population among the patients was large and diverse, with 2148 species detections overall among the 2418 sequenced samples from the 256 patients. In total, 55 sequence clusters from key pathogen species were detected at least five times. The antimicrobial resistance gene prevalence was correspondingly high, with key carbapenemase and extended spectrum ß-lactamase genes detected in at least 50 (40%) of 125 patients in ICUs. Using high-resolution mapping to infer transmission, we established that hospital transmission was likely to be a significant mode of acquisition for each of the pathogen species. Finally, comparison with single colony Acinetobacter baumannii genomes showed that the resolution offered by deep sequencing was equivalent to single-colony sequencing, with the additional benefit of detection of co-colonisation of highly similar strains. INTERPRETATION Our study shows that a culture-based deep-sequencing approach is a possible route towards improving future pathogen surveillance and infection control at hospitals. Future studies should be designed to directly compare the accuracy, cost, and feasibility of culture-based deep sequencing with single colony whole-genome sequencing on a range of bacterial species. FUNDING Wellcome Trust, European Research Council, Academy of Finland Flagship program, Trond Mohn Foundation, and Research Council of Norway.
Collapse
Affiliation(s)
- Harry A Thorpe
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Maiju Pesonen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Henri Pesonen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stefano Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Gerry Tonkin-Hill
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Tommi Mäklin
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Anna K Pöntinen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil MacAlasdair
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Rebecca A Gladstone
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Teemu Kallonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Dorota Jamrozy
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | | | - Antti Honkela
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Anita C Schürch
- Department of Medical Microbiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands
| | - Cristina Merla
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Greta Petazzoni
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Medical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Edward J Feil
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Patrizia Cambieri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK; Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Byarugaba DK, Osman TS, Sayyouh OM, Wokorach G, Kigen CK, Muturi JW, Onyonyi VN, Said MM, Nasrat SA, Gazo M, Erima B, Alafi S, Kabatesi HO, Wabwire-Mangen F, Kibuuka H, Sapre AP, Bartlett KV, Lebreton F, Martin MJ, Mahugu EW, Smith HJ, Musila LA. Genomic Epidemiology of Multidrug-Resistant Escherichia coli and Klebsiella pneumoniae in Kenya, Uganda, and Jordan. Emerg Infect Dis 2024; 30:33-40. [PMID: 39530852 PMCID: PMC11559566 DOI: 10.3201/eid3014.240370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Surveillance of antimicrobial resistance in Kenya, Uganda, and Jordan identified multidrug-resistant high-risk bacterial clones: Escherichia coli sequence types 131, 1193, 69, 167, 10, 648, 410, 405 and Klebsiella pneumoniae sequence types 14, 147, 307, 258. Clones emerging in those countries exhibited high resistance mechanism diversity, highlighting a serious threat for multidrug resistance.
Collapse
|
5
|
Cho ST, Mills EG, Griffith MP, Nordstrom HR, McElheny CL, Harrison LH, Doi Y, Van Tyne D. Evolution of extended-spectrum β-lactamase-producing ST131 Escherichia coli at a single hospital over 15 years. Sci Rep 2024; 14:19750. [PMID: 39187604 PMCID: PMC11347647 DOI: 10.1038/s41598-024-70540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Escherichia coli multi-locus sequence type ST131 is a globally distributed pandemic lineage that causes multidrug-resistant extra-intestinal infections. ST131 E. coli frequently produce extended-spectrum β-lactamases (ESBLs), which confer resistance to many β-lactam antibiotics and make infections difficult to treat. We sequenced the genomes of 154 ESBL-producing E. coli clinical isolates belonging to the ST131 lineage from patients at the University of Pittsburgh Medical Center (UPMC) between 2004 and 2018. Isolates belonged to the well described ST131 clades A (8%), B (3%), and C (89%). Time-dated phylogenetic analysis estimated that the most recent common ancestor (MRCA) for all clade C isolates emerged around 1989, consistent with previous studies. We identified multiple genes potentially under selection in clade C, including the cell wall assembly gene ftsI, the LPS biosynthesis gene arnC, and the yersiniabactin uptake receptor fyuA. Diverse ESBL-encoding genes belonging to the blaCTX-M, blaSHV, and blaTEM families were identified; these genes were found at varying numbers of loci and in variable numbers of copies across isolates. Analysis of ESBL flanking regions revealed diverse mobile elements that varied by ESBL type. Overall, our findings show that ST131 subclade C dominated among patients and uncover possible signals of ongoing adaptation within this ST131 lineage.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emma G Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marissa P Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomics Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayley R Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee H Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomics Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Wu CT, Shropshire WC, Bhatti MM, Cantu S, Glover IK, Anand SS, Liu X, Kalia A, Treangen TJ, Chemaly RF, Spallone A, Shelburne S. Rapid Whole Genome Characterization of High-Risk Pathogens Using Long-Read Sequencing to Identify Potential Healthcare Transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312266. [PMID: 39228727 PMCID: PMC11370528 DOI: 10.1101/2024.08.19.24312266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objective Routine use of whole genome sequencing (WGS) has been shown to help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time-intensive. In light of recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource utilization approach capable of providing accurate WGS-based comparisons of HAI pathogens within a time frame allowing for infection prevention and control (IPC) interventions. Methods WGS was prospectively performed on antimicrobial-resistant pathogens at increased risk of potential healthcare transmission using the ONT MinION sequencer with R10.4.1 flow cells and Dorado basecalling algorithm. Potential transmission was assessed via Ridom SeqSphere+ for core genome multilocus sequence typing and MINTyper for reference-based core genome single nucleotide polymorphisms using previously published cut-off values. The accuracy of our ONT pipeline was determined relative to Illumina-based WGS data generated from the same genomic DNA sample. Results Over a six-month period, 242 bacterial isolates from 216 patients were sequenced by a single operator. Compared to the Illumina gold-standard data, our ONT pipeline achieved a Q score of 60 for assembled genomes, even with a coverage rate of as low as 40X. The mean time from initiating DNA extraction to complete genetic analysis was 2 days (IQR 2-3.25 days). We identified five potential transmission clusters comprising 21 isolates (8.7% of all sequenced strains). Combining ONT WGS data with epidemiological data, >70% (15/21) of the isolates originated from patients with potential healthcare transmission links. Conclusions Via a stand-alone ONT pipeline, we detected potentially transmitted HAI pathogens rapidly and accurately, aligning closely with epidemiological data. Our low-resource method has the potential to assist in the efficient detection and deployment of preventative measures against HAI transmission.
Collapse
|
7
|
Xu H, Tan C, Li C, Li J, Han Y, Tang Y, Lei C, Wang H. ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of bla CTX-M-55. Int J Antimicrob Agents 2024; 63:107145. [PMID: 38494146 DOI: 10.1016/j.ijantimicag.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Extracellular vesicles (EVs) have become the focus of research as an emerging method of horizontal gene transfer. In recent years, studies on the association between EVs and the spread of bacterial resistance have emerged, but there is a lack of research on the role of EVs secreted by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in the spread of β-lactam resistance. Therefore, the aim of this study was to investigate the role of EVs in the transmission of β-lactam resistance. METHODS In this study, the role of EVs in the transmission of β-lactam resistance in E. coli was evaluated by the EVs-mediated bacterial resistance to β-lactam antibiotics test and the EVs-mediated blaCTX-M-55 transfer experiments using EVs secreted by ESBL-E. coli. RESULTS The results showed that ESBL-EVs were protective against β-lactam antibiotic-susceptible bacteria, and this protective effect was dependent on the integrity of the EVs and showed dose- and time-dependent effects. At the same time, ESBL-EVs can also mediate the horizontal transmission of blaCTX-M-55, and EVs-mediated gene transfer is selective, preferring to transfer in more closely related species. CONCLUSIONS In this study, we demonstrated the important role of EVs in the transmission of β-lactam resistance in chicken ESBL-E. coli, and evaluated the risk of EVs-mediated horizontal gene transfer, which provided a theoretical basis for elucidating the mechanism of EVs-mediated resistance transmission.
Collapse
Affiliation(s)
- Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Chang Tan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China; Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China.
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China.
| |
Collapse
|
8
|
El Chaar M, Khoury Y, Douglas GM, El Kazzi S, Jisr T, Soussi S, Merhi G, Moghnieh RA, Shapiro BJ. Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in critical care patients. Microbiol Spectr 2024; 12:e0312823. [PMID: 38171007 PMCID: PMC10846182 DOI: 10.1128/spectrum.03128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Colonization with multidrug-resistant Escherichia coli strains causes a substantial health burden in hospitalized patients. We performed a longitudinal genomics study to investigate the colonization of resistant E. coli strains in critically ill patients and to identify evolutionary changes and strain replacement events within patients. Patients were admitted to the intensive care unit and hematology wards at a major hospital in Lebanon. Perianal swabs were collected from participants on admission and during hospitalization, which were screened for extended-spectrum beta-lactamases and carbapenem-resistant Enterobacterales. We performed whole-genome sequencing and analysis on E. coli strains isolated from patients at multiple time points. The E. coli isolates were genetically diverse, with 11 sequence types (STs) identified among 22 isolates sequenced. Five patients were colonized by E. coli sequence type 131 (ST131)-encoding CTX-M-27, an emerging clone not previously observed in clinical samples from Lebanon. Among the eight patients whose resident E. coli strains were tracked over time, five harbored the same E. coli strain with relatively few mutations over the 5 to 10 days of hospitalization. The other three patients were colonized by different E. coli strains over time. Our study provides evidence of strain diversity within patients during their hospitalization. While strains varied in their antimicrobial resistance profiles, the number of resistance genes did not increase over time. We also show that ST131-encoding CTX-M-27, which appears to be emerging as a globally important multidrug-resistant E. coli strain, is also prevalent among critical care patients and deserves further monitoring.IMPORTANCEUnderstanding the evolution of bacteria over time in hospitalized patients is of utmost significance in the field of infectious diseases. While numerous studies have surveyed genetic diversity and resistance mechanisms in nosocomial infections, time series of within-patient dynamics are rare, and high-income countries are over-represented, leaving low- and middle-income countries understudied. Our study aims to bridge these research gaps by conducting a longitudinal survey of critically ill patients in Lebanon. This allowed us to track Escherichia coli evolution and strain replacements within individual patients over extended periods. Through whole-genome sequencing, we found extensive strain diversity, including the first evidence of the emerging E. coli sequence type 131 clone encoding the CTX-M-27 beta-lactamase in a clinical sample from Lebanon, as well as likely strain replacement events during hospitalization.
Collapse
Affiliation(s)
- Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Yaralynn Khoury
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Gavin M. Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Samir El Kazzi
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Tamima Jisr
- Clinical Laboratory Department, Makassed General Hospital, Beirut, Lebanon
| | - Shatha Soussi
- Clinical Laboratory Department, Makassed General Hospital, Beirut, Lebanon
| | - Georgi Merhi
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Rima A. Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center, Beirut, Lebanon
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Borcan AM, Radu G, Simoiu M, Costea EL, Rafila A. A Five-Year Analysis of Antibiotic Resistance Trends among Bacteria Identified in Positive Urine Samples in a Tertiary Care Hospital from Bucharest, Romania. Antibiotics (Basel) 2024; 13:160. [PMID: 38391546 PMCID: PMC10885884 DOI: 10.3390/antibiotics13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The rise of multidrug-resistant bacteria (MDR) has resulted in limited treatment options and poorer outcomes for patients. The objective of this study was to analyze the overall antibiotic resistance trends and distribution for pathogens identified in urine samples at the National Institute of Infectious Diseases "Prof. Dr. Matei Balș" from Bucharest, Romania, over a 5-year period. Antibiotic susceptibility testing was performed using automatic systems and the disk diffusion method. ESBL- and carbapenemases-producing strains were identified using immunochromatography tests, and ROSCO Diagnostica kits were used for definitive confirmation. All results were interpreted according to EUCAST clinical breakpoints. Gram-negative rods (GNR) had overall resistance rates higher than 50% for penicillin and 40% for 3rd- and 4th-generation cephalosporins. Escherichia coli resistance to fosfomycin (3%) and nitrofurantoin (2%) remains low, and 33.30% of E. coli, 48% of Klebsiella spp., and 37% of Pseudomonas aeruginosa isolates were multidrug-resistant (MDR). All Acinetobacter baumannii isolates were MDR by the last year of the study. For Gram-positive cocci (GPC), 37% of all Enterococcus faecium strains and 2% of Enterococcus faecalis were vancomycin-resistant (VRE). E. coli's incidence in UTIs' etiology is on a downward trend. The incidence of Klebsiella spp. and GPCs is rising. Antibiotic stewardship strategies should be implemented after carefully considering regional variations in etiology and resistance trends.
Collapse
Affiliation(s)
- Alina Maria Borcan
- The National Institute of Infectious Diseases "Prof. Dr. Matei Balș", 021105 Bucharest, Romania
- Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
| | - Georgiana Radu
- Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
| | - Mădălina Simoiu
- The National Institute of Infectious Diseases "Prof. Dr. Matei Balș", 021105 Bucharest, Romania
- Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
| | - Elena Liliana Costea
- Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
| | - Alexandru Rafila
- The National Institute of Infectious Diseases "Prof. Dr. Matei Balș", 021105 Bucharest, Romania
- Faculty of Medicine, The University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
| |
Collapse
|
10
|
Pöntinen AK, Gladstone RA, Pesonen H, Pesonen M, Cléon F, Parcell BJ, Kallonen T, Simonsen GS, Croucher NJ, McNally A, Parkhill J, Johnsen PJ, Samuelsen Ø, Corander J. Modulation of multidrug-resistant clone success in Escherichia coli populations: a longitudinal, multi-country, genomic and antibiotic usage cohort study. THE LANCET. MICROBE 2024; 5:e142-e150. [PMID: 38219757 DOI: 10.1016/s2666-5247(23)00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The effect of antibiotic usage on the success of multidrug-resistant (MDR) clones in a population remains unclear. With this genomics-based molecular epidemiology study, we aimed to investigate the contribution of antibiotic use to Escherichia coli clone success, relative to intra-strain competition for colonisation and infection. METHODS We sequenced all the available E coli bloodstream infection isolates provided by the British Society for Antimicrobial Chemotherapy (BSAC) from 2012 to 2017 (n=718) and combined these with published data from the UK (2001-11; n=1090) and Norway (2002-17; n=3254). Defined daily dose (DDD) data from the European Centre for Disease Prevention and Control (retrieved on Sept 21, 2021) for major antibiotic classes (β-lactam, tetracycline, macrolide, sulfonamide, quinolone, and non-penicillin β-lactam) were used together with sequence typing, resistance profiling, regression analysis, and non-neutral Wright-Fisher simulation-based modelling to enable systematic comparison of resistance levels, clone success, and antibiotic usage between the UK and Norway. FINDINGS Sequence type (ST)73, ST131, ST95, and ST69 accounted for 892 (49·3%) of 1808 isolates in the BSAC collection. In the UK, the proportion of ST69 increased between 2001-10 and 2011-17 (p=0·0004), whereas the proportions of ST73 and ST95 did not vary between periods. ST131 expanded quickly after its emergence in 2003 and its prevalence remained consistent throughout the study period (apart from a brief decrease in 2009-10). The extended-spectrum β-lactamase (ESBL)-carrying, globally disseminated MDR clone ST131-C2 showed overall greater success in the UK (154 [56·8%] of 271 isolates in 2003-17) compared with Norway (51 [18·3%] of 278 isolates in 2002-17; p<0·0001). DDD data indicated higher total use of antimicrobials in the UK, driven mainly by the class of non-penicillin β-lactams, which were used between 2·7-times and 5·1-times more in the UK per annum (ratio mean 3·7 [SD 0·8]). This difference was associated with the higher success of the MDR clone ST131-C2 (pseudo-R2 69·1%). A non-neutral Wright-Fisher model replicated the observed expansion of non-MDR and MDR sequence types under higher DDD regimes. INTERPRETATION Our study indicates that resistance profiles of contemporaneously successful clones can vary substantially, warranting caution in the interpretation of correlations between aggregate measures of resistance and antibiotic usage. Our study further suggests that in countries with low-to-moderate use of antibiotics, such as the UK and Norway, the extent of non-penicillin β-lactam use modulates rather than determines the success of widely disseminated MDR ESBL-carrying E coli clones. Detailed understanding of underlying causal drivers of success is important for improved control of resistant pathogens. FUNDING Trond Mohn Foundation, Marie Skłodowska-Curie Actions, European Research Council, Royal Society, and Wellcome Trust.
Collapse
Affiliation(s)
- Anna K Pöntinen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rebecca A Gladstone
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Henri Pesonen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maiju Pesonen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital Research Support Services, Oslo, Norway
| | - François Cléon
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Teemu Kallonen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interaction, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK; Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, Drigo B, Wyrsch ER, Reid CJ, Donner E, Howden BP. Genomic surveillance for antimicrobial resistance - a One Health perspective. Nat Rev Genet 2024; 25:142-157. [PMID: 37749210 DOI: 10.1038/s41576-023-00649-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.
Collapse
Affiliation(s)
- Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia.
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia.
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Torsten Seemann
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Barbara Drigo
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Cameron J Reid
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, South Australia, Australia
| | - Benjamin P Howden
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Cho ST, Mills EG, Griffith MP, Nordstrom HR, McElheny CL, Harrison LH, Doi Y, Van Tyne D. Evolution of extended-spectrum β-lactamase-producing ST131 Escherichia coli at a single hospital over 15 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571174. [PMID: 38168243 PMCID: PMC10760032 DOI: 10.1101/2023.12.11.571174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Escherichia coli belonging to sequence type ST131 constitute a globally distributed pandemic lineage that causes multidrug-resistant extra-intestinal infections. ST131 E. coli frequently produce extended-spectrum β-lactamases (ESBLs), which confer resistance to many β-lactam antibiotics and make infections difficult to treat. We sequenced the genomes of 154 ESBL-producing E. coli clinical isolates belonging to the ST131 lineage from patients at the University of Pittsburgh Medical Center (UPMC) between 2004 and 2018. Isolates belonged to the well described ST131 clades A (8%), B (3%), C1 (33%), and C2 (54%). An additional four isolates belonged to another distinct subclade within clade C and encoded genomic characteristics that have not been previously described. Time-dated phylogenetic analysis estimated that the most recent common ancestor (MRCA) for all clade C isolates from UPMC emerged around 1989, consistent with previous studies. We identified multiple genes potentially under selection in clade C, including the cell wall assembly gene ftsI, the LPS biosynthesis gene arnC, and the yersiniabactin uptake receptor fyuA. Diverse ESBL genes belonging to the blaCTX-M, blaSHV, and blaTEM families were identified; these genes were found at varying numbers of loci and in variable numbers of copies across isolates. Analysis of ESBL flanking regions revealed diverse mobile elements that varied by ESBL type. Overall, our findings show that ST131 subclades C1 and C2 dominated and were stably maintained among patients in the same hospital and uncover possible signals of ongoing adaptation within the clade C ST131 lineage.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emma G. Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marissa P. Griffith
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayley R. Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi L. McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee H. Harrison
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Bergkessel M, Forte B, Gilbert IH. Small-Molecule Antibiotic Drug Development: Need and Challenges. ACS Infect Dis 2023; 9:2062-2071. [PMID: 37819866 PMCID: PMC10644355 DOI: 10.1021/acsinfecdis.3c00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 10/13/2023]
Abstract
The need for new antibiotics is urgent. Antimicrobial resistance is rising, although currently, many more people die from drug-sensitive bacterial infections. The continued evolution of drug resistance is inevitable, fueled by pathogen population size and exposure to antibiotics. Additionally, opportunistic pathogens will always pose a threat to vulnerable patients whose immune systems cannot efficiently fight them even if they are sensitive to available antibiotics, according to clinical microbiology tests. These problems are intertwined and will worsen as human populations age, increase in density, and experience disruptions such as war, extreme weather events, or declines in standard of living. The development of appropriate drugs to treat all the world's bacterial infections should be a priority, and future success will likely require combinations of multiple approaches. However, the highest burden of bacterial infection is in Low- and Middle-Income Countries, where limited medical infrastructure is a major challenge. For effectively managing infections in these contexts, small-molecule-based treatments offer significant advantages. Unfortunately, support for ongoing small-molecule antibiotic discovery has recently suffered from significant challenges related both to the scientific difficulties in treating bacterial infections and to market barriers. Nevertheless, small-molecule antibiotics remain essential and irreplaceable tools for fighting infections, and efforts to develop novel and improved versions deserve ongoing investment. Here, we first describe the global historical context of antibiotic treatment and then highlight some of the challenges surrounding small-molecule development and potential solutions. Many of these challenges are likely to be common to all modalities of antibacterial treatment and should be addressed directly.
Collapse
Affiliation(s)
- Megan Bergkessel
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Barbara Forte
- Drug
Discovery Unit and Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| | - Ian H. Gilbert
- Drug
Discovery Unit and Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
14
|
Li JG, Gao LL, Wang CC, Tu JM, Chen WH, Wu XL, Wu JX. Colonization of multidrug-resistant Gram-negative bacteria increases risk of surgical site infection after hemorrhoidectomy: a cross-sectional study of two centers in southern China. Int J Colorectal Dis 2023; 38:243. [PMID: 37779168 PMCID: PMC10543959 DOI: 10.1007/s00384-023-04535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE The present study aims to determine the rectoanal colonization rate and risk factors for the colonization of present multidrug-resistant bacteria (MDRBs). In addition, the relationship between MDRB colonization and surgical site infection (SSI) following hemorrhoidectomy was explored. METHODS A cross-sectional study was conducted in the Department of Colorectal Surgery of two hospitals. Patients with hemorrhoid disease, who underwent hemorrhoidectomy, were included. The pre-surgical screening of multidrug-resistant Gram-negative bacteria (MDR-GNB) colonization was performed using rectal swabs on the day of admission. Then, the MDRB colonization rate was determined through the rectal swab. Logistic regression models were established to determine the risk factors for MDRB colonization and SSI after hemorrhoidectomy. A p-value of < 0.05 was considered statistically significant. RESULTS A total of 432 patients met the inclusion criteria, and the MDRB colonization prevalence was 21.06% (91/432). The independent risk factors for MDRB colonization were as follows: patients who received ≥ 2 categories of antibiotic treatment within 3 months (odds ratio (OR): 3.714, 95% confidence interval (CI): 1.436-9.605, p = 0.007), patients with inflammatory bowel disease (IBD; OR: 6.746, 95% CI: 2.361-19.608, p < 0.001), and patients with high serum uric acid (OR: 1.006, 95% CI: 1.001-1.010, p = 0.017). Furthermore, 41.57% (37/89) of MDRB carriers and 1.81% (6/332) of non-carriers developed SSIs, with a total incidence of 10.21% (43/421). Based on the multivariable model, the rectoanal colonization of MDRBs (OR: 32.087, 95% CI: 12.052-85.424, p < 0.001) and hemoglobin < 100 g/L (OR: 4.130, 95% CI: 1.556-10.960, p = 0.004) were independently associated with SSI after hemorrhoidectomy. CONCLUSION The rectoanal colonization rate of MDRBs in hemorrhoid patients is high, and this was identified as an independent risk factor for SSI after hemorrhoidectomy.
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Colorectal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Li-Lian Gao
- Department of Colorectal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Cun-Chuan Wang
- Department of Colorectal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Jia-Min Tu
- Department of Colorectal Surgery, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Wen-Hui Chen
- Department of Colorectal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiang-Lin Wu
- Department of Colorectal Surgery, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| | - Jin-Xia Wu
- Department of Colorectal Surgery, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Shropshire WC, Strope B, Selvaraj Anand S, Bremer J, McDaneld P, Bhatti MM, Flores AR, Kalia A, Shelburne SA. Temporal dynamics of genetically heterogeneous extended-spectrum cephalosporin-resistant Escherichia coli bloodstream infections. mSphere 2023; 8:e0018323. [PMID: 37427953 PMCID: PMC10449519 DOI: 10.1128/msphere.00183-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R-Ec) is an urgent public health threat with sequence type clonal complex 131 (STc131), phylogroup B2 strains being particularly concerning as the dominant cause of ESC-R-Ec infections. To address the paucity of recent ESC-R-Ec molecular epidemiology data in the United States, we used whole-genome sequencing (WGS) to fully characterize a large cohort of invasive ESC-R-Ec at a tertiary care cancer center in Houston, Texas, collected from 2016 to 2020. During the study time frame, there were 1,154 index E. coli bloodstream infections (BSIs) of which 389 (33.7%) were ESC-R-Ec. Using time series analyses, we identified a temporal dynamic of ESC-R-Ec distinct from ESC-susceptible E. coli (ESC-S-Ec), with cases peaking in the last 6 months of the calendar year. WGS of 297 ESC-R-Ec strains revealed that while STc131 strains accounted for ~45% of total BSIs, the proportion of STc131 strains remained stable across the study time frame with infection peaks driven by genetically heterogeneous ESC-R-Ec clonal complexes. bla CTX-M variants accounted for most β-lactamases conferring the ESC-R phenotype (89%; 220/248 index ESC-R-Ec), and amplification of bla CTX-M genes was widely detected in ESC-R-Ec strains, particularly in carbapenem non-susceptible, recurrent BSI strains. Bla CTX-M-55 was significantly enriched within phylogroup A strains, and we identified bla CTX-M-55 plasmid-to-chromosome transmission occurring across non-B2 strains. Our data provide important information regarding the current molecular epidemiology of invasive ESC-R-Ec infections at a large tertiary care cancer center and provide novel insights into the genetic basis of observed temporal variability for these clinically important pathogens. IMPORTANCE Given that E. coli is the leading cause of worldwide ESC-R Enterobacterales infections, we sought to assess the current molecular epidemiology of ESC-R-Ec using a WGS analysis of many BSIs over a 5-year period. We identified fluctuating temporal dynamics of ESC-R-Ec infections, which have also recently been identified in other geographical regions such as Israel. Our WGS data allowed us to visualize the stable nature of STc131 over the study period and demonstrate a limited but genetically diverse group of ESC-R-Ec clonal complexes are detected during infection peaks. Additionally, we provide a widespread assessment of β-lactamase gene copy number in ESC-R-Ec infections and delineate mechanisms by which such amplifications are achieved in a diverse array of ESC-R-Ec strains. These data suggest that serious ESC-R-Ec infections are driven by a diverse array of strains in our cohort and impacted by environmental factors suggesting that community-based monitoring could inform novel preventative measures.
Collapse
Affiliation(s)
- William C. Shropshire
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin Strope
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, Texas, USA
| | - Selvalakshmi Selvaraj Anand
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, Texas, USA
| | - Jordan Bremer
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick McDaneld
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Micah M. Bhatti
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anthony R. Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Awdhesh Kalia
- Program in Diagnostic Genetics and Genomics, MD Anderson Cancer Center School of Health Professions, Houston, Texas, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Li D, Elankumaran P, Kudinha T, Kidsley AK, Trott DJ, Jarocki VM, Djordjevic SP. Dominance of Escherichia coli sequence types ST73, ST95, ST127 and ST131 in Australian urine isolates: a genomic analysis of antimicrobial resistance and virulence linked to F plasmids. Microb Genom 2023; 9:mgen001068. [PMID: 37471138 PMCID: PMC10438821 DOI: 10.1099/mgen.0.001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical E. coli isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 E. coli isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying senB-cjrABC (126/231; 55%) virulence genes were a feature of this collection. These senB-cjrABC+ plasmids were split into two categories: pUTI89-like (F29:A-:B10 and/or >95 % identity to pUTI89) (n=73) and non-pUTI89-like (n=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with senB-cjrABC+/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.
Collapse
Affiliation(s)
- Dmitriy Li
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Paarthiphan Elankumaran
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Timothy Kudinha
- Central West Pathology Laboratory, Charles Sturt University, Orange, NSW, Australia
| | - Amanda K. Kidsley
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J. Trott
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Veronica Maria Jarocki
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | - Steven Philip Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| |
Collapse
|
17
|
Lee KY, Lavelle K, Huang A, Atwill ER, Pitesky M, Li X. Assessment of Prevalence and Diversity of Antimicrobial Resistant Escherichia coli from Retail Meats in Southern California. Antibiotics (Basel) 2023; 12:antibiotics12040782. [PMID: 37107144 PMCID: PMC10135137 DOI: 10.3390/antibiotics12040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Retail meat products may serve as reservoirs and conduits for antimicrobial resistance, which is frequently monitored using Escherichia coli as indicator bacteria. In this study, E. coli isolation was conducted on 221 retail meat samples (56 chicken, 54 ground turkey, 55 ground beef, and 56 pork chops) collected over a one-year period from grocery stores in southern California. The overall prevalence of E. coli in retail meat samples was 47.51% (105/221), with E. coli contamination found to be significantly associated with meat type and season of sampling. From antimicrobial susceptibility testing, 51 isolates (48.57%) were susceptible to all antimicrobials tested, 54 (51.34%) were resistant to at least 1 drug, 39 (37.14%) to 2 or more drugs, and 21 (20.00%) to 3 or more drugs. Resistance to ampicillin, gentamicin, streptomycin, and tetracycline were significantly associated with meat type, with poultry counterparts (chicken or ground turkey) exhibiting higher odds for resistance to these drugs compared to non-poultry meats (beef and pork). From the 52 E. coli isolates selected to undergo whole-genome sequencing (WGS), 27 antimicrobial resistance genes (ARGs) were identified and predicted phenotypic AMR profiles with an overall sensitivity and specificity of 93.33% and 99.84%, respectively. Clustering assessment and co-occurrence networks revealed that the genomic AMR determinants of E. coli from retail meat were highly heterogeneous, with a sparsity of shared gene networks.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|