1
|
Prajjwal P, Marsool MDM, Yadav V, Kanagala RSD, Reddy YB, John J, Lam JR, Karra N, Amiri B, Islam MU, Nithya V, Marsool ADM, Gadam S, Vora N, Hussin OA. Neurological, cardiac, musculoskeletal, and renal manifestations of scleroderma along with insights into its genetics, pathophysiology, diagnostic, and therapeutic updates. Health Sci Rep 2024; 7:e2072. [PMID: 38660003 PMCID: PMC11040569 DOI: 10.1002/hsr2.2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Background Scleroderma, also referred to as systemic sclerosis, is a multifaceted autoimmune condition characterized by abnormal fibrosis and impaired vascular function. Pathologically, it encompasses the persistent presence of inflammation, abnormal collagen buildup, and restructuring of blood vessels in various organs, resulting in a wide range of clinical symptoms. This review incorporates the most recent scientific literature on scleroderma, with a particular emphasis on its pathophysiology, clinical manifestations, diagnostic approaches, and treatment options. Methodology A comprehensive investigation was carried out on numerous databases, such as PubMed, MEDLINE, Scopus, Web of Science, and Google Scholar, to collect pertinent studies covering diverse facets of scleroderma research. Results Scleroderma presents with a range of systemic manifestations, such as interstitial lung disease, gastrointestinal dysmotility, Raynaud's phenomenon, pulmonary arterial hypertension, renal complications, neurological symptoms, and cardiac abnormalities. Serological markers, such as antinuclear antibodies, anti-centromere antibodies, and anti-topoisomerase antibodies, are important for classifying diseases and predicting their outcomes. Discussion The precise identification of scleroderma is crucial for promptly and correctly implementing effective treatment plans. Treatment approaches aim to improve symptoms, reduce complications, and slow down the progression of the disease. An integrated approach that combines pharmacological agents, including immunosuppressants, endothelin receptor antagonists, and prostanoids, with nonpharmacological interventions such as physical and occupational therapy is essential for maximizing patient care. Conclusion Through the clarification of existing gaps in knowledge and identification of emerging trends, our goal is to improve the accuracy of diagnosis, enhance the effectiveness of therapeutic interventions, and ultimately enhance the overall quality of life for individuals suffering from scleroderma. Ongoing cooperation and creative research are necessary to advance the field and achieve improved patient outcomes and new therapeutic discoveries.
Collapse
Affiliation(s)
| | | | - Vikas Yadav
- Department of Internal MedicinePt. B. D. S. Postgraduate Institute of Medical SciencesRohtakIndia
| | | | | | - Jobby John
- Department of Internal MedicineDr. Somervell Memorial CSI Medical College and HospitalNeyyāttinkaraIndia
| | - Justin Riley Lam
- Department of Internal MedicineCebu Institute of MedicineCebuPhilippines
| | - Nanditha Karra
- Department of Internal MedicineOsmania Medical CollegeHyderabadTelanganaIndia
| | - Bita Amiri
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Moiz Ul Islam
- Department of Internal MedicinePunjab Medical CollegeFaisalabadPakistan
| | - Venkatesh Nithya
- Department of Internal MedicineS. D. Asfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | | | | | | | - Omniat Amir Hussin
- Department of MedicineAlmanhal University Academy of ScienceKhartoumSudan
| |
Collapse
|
2
|
Kopf KW, Harral JW, Staker EA, Summers ME, Petrache I, Kheyfets V, Irwin DC, Majka SM. Optimization of combined measures of airway physiology and cardiovascular hemodynamics in mice. Pulm Circ 2020; 10:2045894020912937. [PMID: 32206308 PMCID: PMC7074541 DOI: 10.1177/2045894020912937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension may arise as a complication of chronic lung disease typically associated with tissue hypoxia, as well as infectious agents or injury eliciting a type 2 immune response. The onset of pulmonary hypertension in this setting (classified as Group 3) often complicates treatment and worsens prognosis of chronic lung disease. Chronic lung diseases such as chronic obstructive lung disease (COPD), emphysema, and interstitial lung fibrosis impair airflow and alter lung elastance in addition to affecting pulmonary vascular hemodynamics that may culminate in right ventricle dysfunction. To date, functional endpoints in murine models of chronic lung disease have typically been limited to separately measuring airway and lung parenchyma physiology. These approaches may be lengthy and require a large number of animals per experiment. Here, we provide a detailed protocol for combined assessment of airway physiology with cardiovascular hemodynamics in mice. Ultimately, a comprehensive overview of pulmonary function in murine models of injury and disease will facilitate the integration of studies of the airway and vascular biology necessary to understand underlying pathophysiology of Group 3 pulmonary hypertension.
Collapse
Affiliation(s)
- Katrina W Kopf
- Biological Resource Center, National Jewish Health, Denver, USA
| | - Julie W Harral
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Emily A Staker
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Megan E Summers
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA
| | - Vitaly Kheyfets
- Department of Bioengineering, Anschutz Medical Campus University of Colorado, Aurora, USA
| | - David C Irwin
- Department of Medicine, Division of Cardiology, Anschutz Medical Campus University of Colorado, Aurora, USA
| | - Susan M Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA.,Department of Biomedical Research, National Jewish Health, Denver, USA.,Gates Center for Regenerative Medicine and Stem Cell Biology and Cardiology University of Colorado Medical Center, Aurora, USA
| |
Collapse
|
3
|
Hsu T, Nguyen-Tran HH, Trojanowska M. Active roles of dysfunctional vascular endothelium in fibrosis and cancer. J Biomed Sci 2019; 26:86. [PMID: 31656195 PMCID: PMC6816223 DOI: 10.1186/s12929-019-0580-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is the underlying pathological condition that results in fibrotic diseases. More recently, many forms of cancer have also been linked to chronic tissue inflammation. While stromal immune cells and myofibroblasts have been recognized as major contributors of cytokines and growth factors that foster the formation of fibrotic tissue, the endothelium has traditionally been regarded as a passive player in the pathogenic process, or even as a barrier since it provides a physical divide between the circulating immune cells and the inflamed tissues. Recent findings, however, have indicated that endothelial cells in fact play a crucial role in the inflammatory response. Endothelial cells can be activated by cytokine signaling and express inflammatory markers, which can sustain or exacerbate the inflammatory process. For example, the activated endothelium can recruit and activate leukocytes, thus perpetuating tissue inflammation, while sustained stimulation of endothelial cells may lead to endothelial-to-mesenchymal transition that contributes to fibrosis. Since chronic inflammation has now been recognized as a significant contributing factor to tumorigenesis, it has also emerged that activation of endothelium also occurs in the tumor microenvironment. This review summarizes recent findings characterizing the molecular and cellular changes in the vascular endothelium that contribute to tissue fibrosis, and potentially to cancer formation.
Collapse
Affiliation(s)
- Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China. .,Center for Chronic Disease Research, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China.
| | - Hieu-Huy Nguyen-Tran
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| |
Collapse
|
4
|
Michalska-Jakubus M, Cutolo M, Smith V, Krasowska D. Imbalanced serum levels of Ang1, Ang2 and VEGF in systemic sclerosis: Integrated effects on microvascular reactivity. Microvasc Res 2019; 125:103881. [PMID: 31075243 DOI: 10.1016/j.mvr.2019.103881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/03/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND AIM Microangiopathy is a hallmark of systemic sclerosis (SSc). It is a progressive process from an early inflammatory and proangiogenic environment to insufficient microvascular repair with loss of microvessels. The exact underlying mechanisms remain ill-defined. Aim of the study was to investigate whether imbalanced angiopoietins/VEGF serum profile should be related in SSc to the altered microvascular reactivity characterized by aberrant angiogenesis and avascularity. MATERIALS AND METHODS Serum levels of Angiopoietin-1 (Ang1), Angiopoietin-2 (Ang2) and VEGF were measured by ELISA in 47 SSc patients and 27 healthy controls. Microvascular alterations were assessed by nailfold videocapillaroscopy (NVC). RESULTS Serum concentrations of Ang1 were significantly lower [mean (S.D.): 21516.04 (11,441.035) pg/ml], and Ang2 significantly increased [25,89.55 (934.225) pg/ml] in SSc as compared with the control group [Ang1: 28,457.08 (10,431.905) pg/ml; Ang2: 1556.23 (481.255) pg/ml, p < 0.01, respectively], whereas VEGF did not differ significantly. The ratios of Ang1/Ang2 and Ang1/VEGF were significantly lower in SSc patients (8.346 ± 4.523 and 95.17 ± 75.0, respectively) than in healthy subjects (17.612 ± 6.731 p < 0.000001 and 183.11 ± 137.73; p = 0.004]. Formation of giant capillaries with vascular leakage and collapse was associated with significant increase in VEGF and concomitant Ang1 deficiency. Capillary loss was related to significant increase in VEGF with respect to those with preserved capillary number (395.12 ± 256.27 pg/mL vs. 254.80 ± 213.61 pg/mL) whereas elevated Ang2 levels induced more advanced capillary damage as indicated by the presence of the "Late" NVC pattern. CONCLUSIONS We found that serum levels of Ang1, Ang2 and VEGF are differentially expressed in SSc and altered Ang1/Ang2 profile might underlay the aberrant angiogenesis in SSc despite increase in VEGF. For the first time we identified that significant deficiency of Ang1 might be involved in early capillary enlargement, followed by collapse and lack of stable newly-formed vessels in VEGF-enriched environment, whereas Ang2 levels seem to increase later in disease progression and advanced microvascular damage ("Late" NVC pattern).
Collapse
Affiliation(s)
- Małgorzata Michalska-Jakubus
- Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Vanessa Smith
- Faculty of Internal Medicine, Ghent University, Belgium.
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
5
|
Flower VA, Barratt SL, Ward S, Pauling JD. The Role of Vascular Endothelial Growth Factor in Systemic Sclerosis. Curr Rheumatol Rev 2019; 15:99-109. [DOI: 10.2174/1573397114666180809121005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 07/23/2018] [Indexed: 11/22/2022]
Abstract
The pathological hallmarks of Systemic Sclerosis (SSc) constitute an inter-related triad of autoimmunity, vasculopathy and tissue remodeling. Many signaling mediators have been implicated in SSc pathology; most focusing on individual components of this pathogenic triad and current treatment paradigms tend to approach management of such as distinct entities. The present review shall examine the role of Vascular Endothelial Growth Factor (VEGF) in SSc pathogenesis. We shall outline potential mechanisms whereby differential Vascular Endothelial Growth Factor-A (VEGF-A) isoform expression (through conventional and alternative VEGF-A splicing,) may influence the relevant burden of vasculopathy and fibrosis offering novel insight into clinical heterogeneity and disease progression in SSc. Emerging therapeutic approaches targeting VEGF signaling pathways might play an important role in the management of SSc, and differential VEGF-A splice isoform expression may provide a tool for personalized medicine approaches to disease management.
Collapse
Affiliation(s)
- Victoria A. Flower
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Shaney L. Barratt
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, BS10 5NB, United Kingdom
| | - Stephen Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - John D. Pauling
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
6
|
Romano E, Manetti M, Rosa I, Fioretto BS, Ibba-Manneschi L, Matucci-Cerinic M, Guiducci S. Slit2/Robo4 axis may contribute to endothelial cell dysfunction and angiogenesis disturbance in systemic sclerosis. Ann Rheum Dis 2018; 77:1665-1674. [PMID: 30021803 DOI: 10.1136/annrheumdis-2018-213239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/11/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE In systemic sclerosis (SSc), early microvascular injury is followed by impaired angiogenesis and peripheral capillary loss. Here, we investigated the possible contribution of the neurovascular guidance molecule Slit2 and its Roundabout (Robo) receptors to SSc-related endothelial cell dysfunction. METHODS Circulating Slit2 levels were measured in patients with SSc and healthy controls. Slit2, Robo1 and Robo4 expression was investigated in SSc and healthy skin biopsies and explanted dermal microvascular endothelial cells (MVECs). Slit2/Robo4 function in MVEC angiogenesis was studied by cell viability, wound healing and capillary-like tube formation assays. RESULTS Circulating Slit2 was significantly increased in either SSc or patients with a very early diagnosis of SSc (VEDOSS) compared with controls. Interestingly, serum Slit2 levels were raised in patients with VEDOSS with nailfold videocapillaroscopy (NVC) abnormalities, while they were similar in VEDOSS with normal NVC and controls. In SSc, Slit2 and Robo4 expression was upregulated in clinically affected skin and explanted MVECs in respect to controls. The angiogenic performance of healthy MVECs was significantly reduced after challenge with recombinant human Slit2 or SSc sera. These inhibitory effects were significantly attenuated when SSc sera were preincubated with an anti-Slit2 blocking antibody. In vitro angiogenesis was severely compromised in SSc-MVECs and could be significantly ameliorated by Slit2 neutralisation or ROBO4 gene silencing. Slit2/Robo4 axis interfered with angiogenesis through the inhibition of Src kinase phosphorylation. CONCLUSIONS In SSc, increased circulating levels of Slit2 and activation of the Slit2/Robo4 antiangiogenic axis may contribute to peripheral microangiopathy since the very early phase of the disease.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy.,Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
7
|
Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol 2018; 9:1383. [PMID: 29967618 PMCID: PMC6015881 DOI: 10.3389/fimmu.2018.01383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by a complex pathological process where the main scenario is represented by progressive loss of microvascular bed, with the consequent progressive fibrotic changes in involved organ and tissues. Although most aspects of vascular injury in scleroderma are poorly understood, recent data suggest that the scleroderma impairment of neovascularization could be related to both angiogenesis and vasculogenesis failure. Particularly, compensatory angiogenesis does not occur normally in spite of an important increase in many angiogenic factors either in SSc skin or serum. Besides insufficient angiogenesis, the contribution of defective vasculogenesis to SSc vasculopathy has been extensively studied. Over the last decades, our understanding of the processes responsible for the formation of new vessels after tissue ischemia has increased. In the past, adult neovascularization was thought to depend mainly on angiogenesis (a process by which new vessels are formed by the proliferation and migration of mature endothelial cells). More recently, increased evidence suggests that stem cells mobilize from the bone marrow into the peripheral blood (PB), differentiate in circulating endothelial progenitors (EPCs), and home to site of ischemia to contribute to de novo vessel formation. Significant advances have been made in understanding the biology of EPCs, and molecular mechanisms regulating EPC function. Autologous EPCs now are becoming a novel treatment option for therapeutic vascularization and vascular repair, mainly in ischemic diseases. However, different diseases, such as cardiovascular diseases, diabetes, and peripheral artery ischemia are related to EPC dysfunction. Several studies have shown that EPCs can be detected in the PB of patients with SSc and are impaired in their function. Based on an online literature search (PubMed, EMBASE, and Web of Science, last updated December 2017) using keywords related to “endothelial progenitor cells” and “Systemic Sclerosis,” “scleroderma vasculopathy,” “angiogenesis,” “vasculogenesis,” this review gives an overview on the large body of data of current research in this issue, including controversies over the identity and functions of EPCs, their meaning as biomarker of SSc microangiopathy and their clinical potency.
Collapse
|
8
|
Ciechomska M, Skalska U. Targeting interferons as a strategy for systemic sclerosis treatment. Immunol Lett 2017; 195:45-54. [PMID: 29106987 DOI: 10.1016/j.imlet.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Systemic Sclerosis (SSc) is an autoimmune disease characterised by vasculopathy, uncontrolled inflammation and enhanced fibrosis which can subsequently lead to the loss of organ function or even premature death. Interferons (IFNs) are pleiotropic cytokines that are critical not only in mounting an effective immune response against viral and bacterial infections but also strongly contribute to the pathogenesis of SSc. Furthermore, elevated levels of IFNs are found in SSc patients and correlate with skin thickness and disease activity suggesting potential role of IFNs as biomarkers. In this review, we summarise existing knowledge regarding all types of IFNs and IFN-inducible genes in the pathogenesis of SSc. We then argue why IFN-blocking strategies are promising therapeutic targets in SSc and other autoimmune diseases.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Urszula Skalska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
9
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
10
|
Manetti M, Pratesi S, Romano E, Bellando-Randone S, Rosa I, Guiducci S, Fioretto BS, Ibba-Manneschi L, Maggi E, Matucci-Cerinic M. Angiogenic T cell expansion correlates with severity of peripheral vascular damage in systemic sclerosis. PLoS One 2017; 12:e0183102. [PMID: 28797111 PMCID: PMC5552290 DOI: 10.1371/journal.pone.0183102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/29/2017] [Indexed: 11/23/2022] Open
Abstract
The mechanisms underlying endothelial cell injury and defective vascular repair in systemic sclerosis (SSc) remain unclear. Since the recently discovered angiogenic T cells (Tang) may have an important role in the repair of damaged endothelium, this study aimed to analyze the Tang population in relation to disease-related peripheral vascular features in SSc patients. Tang (CD3+CD31+CXCR4+) were quantified by flow cytometry in peripheral blood samples from 39 SSc patients and 18 healthy controls (HC). Circulating levels of the CXCR4 ligand stromal cell-derived factor (SDF)-1α and proangiogenic factors were assessed in paired serum samples by immunoassay. Serial skin sections from SSc patients and HC were subjected to CD3/CD31 and CD3/CXCR4 double immunofluorescence. Circulating Tang were significantly increased in SSc patients with digital ulcers (DU) compared either with SSc patients without DU or with HC. Tang levels were significantly higher in SSc patients with late nailfold videocapillaroscopy (NVC) pattern than in those with early/active NVC patterns and in HC. No difference in circulating Tang was found when comparing either SSc patients without DU or patients with early/active NVC patterns and HC. In SSc peripheral blood, Tang percentage was inversely correlated to levels of SDF-1α and CD34+CD133+VEGFR-2+ endothelial progenitor cells (EPC), and positively correlated to levels of vascular endothelial growth factor and matrix metalloproteinase-9. Tang were frequently detected in SSc dermal perivascular inflammatory infiltrates. In summary, our findings demonstrate for the first time that Tang cells are selectively expanded in the circulation of SSc patients displaying severe peripheral vascular complications like DU. In SSc, Tang may represent a potentially useful biomarker reflecting peripheral vascular damage severity. Tang expansion may be an ineffective attempt to compensate the need for increased angiogenesis and EPC function. Further studies are required to clarify the function of Tang cells and investigate the mechanisms responsible for their change in SSc.
Collapse
Affiliation(s)
- Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- * E-mail:
| | - Sara Pratesi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| |
Collapse
|
11
|
Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000249] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by early microvascular abnormalities, immune dysregulation and chronic inflammation, and subsequent fibrosis of the skin and internal organs. Excessive fibrosis, distinguishing hallmark of SSc, is the end result of a complex series of interlinked vascular injury and immune activation, and represents a maladaptive repair process. Activated vascular, epithelial, and immune cells generate pro-fibrotic cytokines, chemokines, growth factors, lipid mediators, autoantibodies, and reactive oxygen species. These paracrine and autocrine cues in turn induce activation, differentiation, and survival of mesenchymal cells, ensuing tissue fibrosis through increased collagen synthesis, matrix deposition, tissue rigidity and remodeling, and vascular rarefaction. This review features recent insights of the pathogenic process of SSc, highlighting three major characteristics of SSc, microvasculopathy, excessive fibrosis, and immune dysregulation, and sheds new light on the understanding of molecular and cellular mechanisms contributing to the pathogenesis of SSc and providing novel avenues for targeted therapies.
Collapse
|
12
|
Matucci-Cerinic M, Manetti M, Bruni C, Chora I, Bellando-Randone S, Lepri G, De Paulis A, Guiducci S. The "myth" of loss of angiogenesis in systemic sclerosis: a pivotal early pathogenetic process or just a late unavoidable event? Arthritis Res Ther 2017; 19:162. [PMID: 28683836 PMCID: PMC5501068 DOI: 10.1186/s13075-017-1370-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Systemic sclerosis is considered a disease dominated by a "loss of angiogenesis", although in its early phases evidence indicates a disturbed angiogenic response only. In fact, microvascular changes are primarily due to endothelial cell injury, triggering downstream significant enlargement of the capillary in an inflammatory environment, followed by capillary rupture (microhemorrhages). Subsequent pro-angiogenic efforts lead to an aberrant angiogenesis and, eventually, to a total loss of vessel repair and regeneration (loss of angiogenesis). This clearly suggests that the pathogenetic process has a steady progression: from an early excessive pro-angiogenesis, to an aberrant microvascular regeneration, then ending with a late loss of angiogenesis. Herein, we suggest the loss of angiogenesis should not be considered as an overall "myth" characterizing systemic sclerosis but as a very late event of the vascular pathogenesis. Future research should be oriented essentially on the earlier phases dominated by excessive pro-angiogenesis and microvascular aberration.
Collapse
Affiliation(s)
- Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Viale Pieraccini 18, 50139, Florence, Italy.
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Viale Pieraccini 18, 50139, Florence, Italy.,Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Viale Pieraccini 18, 50139, Florence, Italy
| | - Ines Chora
- Department of Internal Medicine, São João Hospital Center, Al Prof Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Viale Pieraccini 18, 50139, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Viale Pieraccini 18, 50139, Florence, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences, Centre for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Corso Umberto I, 40, 80138, Naples, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology and Scleroderma Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Viale Pieraccini 18, 50139, Florence, Italy
| |
Collapse
|
13
|
Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando-Randone S, Bruni C, Lepri G, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther 2017; 19:27. [PMID: 28183357 PMCID: PMC5301388 DOI: 10.1186/s13075-017-1233-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Background Systemic sclerosis (SSc) is characterized by endothelial cell (EC) apoptosis, impaired angiogenesis and peripheral microvasculopathy. Soluble α-Klotho (sKl) is a pleiotropic molecule with multiple effects on ECs, including antioxidant and vasculoprotective activities. On the EC surface, sKl interacts with vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) and transient receptor potential canonical-1 (TRPC-1) cation channel to control EC homeostasis. Here, we investigated whether sKl might act as a protective factor to improve angiogenesis in dermal microvascular endothelial cells (MVECs) from SSc patients (SSc-MVECs). Methods Wound healing assay was performed on healthy dermal MVECs (H-MVECs) challenged with sera from healthy controls or SSc patients with or without the addition of sKl. Capillary morphogenesis on Matrigel was assessed in H-MVECs and SSc-MVECs at basal conditions and treated with sKl, as well as in H-MVECs challenged with healthy or SSc sera in presence or absence of sKl. The expression of α-Klotho, VEGF165b, VEGFR-2, TRPC-1, Ki67 and active caspase-3 in H-MVECs and SSc-MVECs was investigated by western blotting. Immunostaining for α-Klotho was performed in H-MVECs and SSc-MVECs, and in healthy and SSc skin sections. Results Treatment with sKl effectively counteracted the inihibitory effects of SSc sera on wound healing ability and angiogenic performance of H-MVECs. The addition of sKl significantly improved angiogenesis and maintained over time capillary-like tube formation in vitro by SSc-MVECs. Stimulation of SSc-MVECs with sKl resulted in the upregulation of the proliferation marker Ki67 in parallel with the downregulation of proapoptotic active caspase-3. The expression of α-Klotho was significantly lower in SSc-MVECs than in H-MVECs. The expression of TRPC-1 was also significantly decreased, while that of VEGFR-2 and VEGF165b was significantly increased, in SSc-MVECs compared with H-MVECs. Challenge with sKl either significantly increased TRPC-1 or decreased VEGF165b in SSc-MVECs. Ex vivo analyses revealed that α-Klotho immunostaining was almost absent in the dermal microvascular network of SSc skin compared with control skin. Conclusions Our findings provide the first evidence that α-Klotho is significantly decreased in the microvasculature in SSc skin and that sKl administration may effectively improve SSc-MVEC functions in vitro by acting as a powerful proangiogenic factor.
Collapse
Affiliation(s)
- Celestina Mazzotta
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy.
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy.,Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Jelena Blagojevic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, AOUC, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
14
|
Abstract
INTRODUCTION Treatment of systemic sclerosis (SSc) is challenging despite advances in medical therapeutics for other rheumatologic diseases. Significant disease modifying therapy is lacking for most patients with SSc, due to the heterogeneous multisystem nature of SSc and its complex pathophysiology. The emergence of organ based management strategies has provided guidance in patient care as well as research and drug development. Areas covered: Design and development of new compounds focused on the underlying fibrotic disease processes have been sparse. Therefore, organ based strategies with targeted approaches have been directed towards the most devastating and life threatening features of systemic sclerosis. These include pulmonary arterial hypertension, interstitial lung disease, peripheral vasculopathy and skin thickening. In this context, new treatment regimens using older drugs as well as discovery of novel compounds based on recent insights of the disease pathophysiology are discussed. Expert opinion: Systemic sclerosis is a heterogeneous rare disease that carries a high burden of morbidity and mortality. Organ based management strategies have improved the natural history of systemic sclerosis using targeted interventions or strategies, particularly vascular features. However, more research is required to better understand disease mechanisms, including an ultimate unifying pathway that explains the multisystem nature of systemic sclerosis.
Collapse
Affiliation(s)
- Jason J Lee
- a Schulich School of Medicine , Western University , London , Ontario , Canada
| | - Janet E Pope
- b Schulich School of Medicine , Western University, St. Joseph's Health Care , London , Ontario , Canada
| |
Collapse
|