1
|
Feng X, Ma Y, Zhao Y, Zhao Z, Song Z, Lin L, Wang W. Synergistic therapeutic effect of parecoxib and ilomastat combination in osteoarthritis via inhibition of IL-17/PI3K/AKT/NF-κB activity. Mol Immunol 2025; 179:94-105. [PMID: 39933417 DOI: 10.1016/j.molimm.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Osteoarthritis is a degenerative disease, and current drug treatment is to give nonsteroidal anti-inflammatory drugs to relieve symptoms. The anti-inflammatory ability of parecoxib and ilomastat has been confirmed, but the synergistic effect of combined administration in osteoarthritis has not been clear. METHODS Mouse primary chondrocytes stimulated with IL-1β were cultured. The expression levels of inflammatory cytokines and matrix metalloproteinases were investigated by western blotting, quantitative real-time polymerase chain reaction and ELISA. The effects of parecoxib and ilomastat on chondrocyte apoptosis were evaluated by flow cytometry. In addition, the rat model of osteoarthritis was established by meniscal instability, and the morphological changes of cartilage and the expression levels of related molecules were monitored using Safranin O-Fast green and immunohistochemical staining after intra-articular injection of parecoxib, ilomastat, and the combination of the two. RESULTS In vitro experiments showed that the combined administration of parecoxib and ilomastat more effectively inhibited the expression of proinflammatory factors and matrix metalloproteinases compared with single drug administration. The combined drug treatment could more effectively inhibit IL-1β-induced chondrocyte apoptosis. The combined drug treatment alleviated the progression of osteoarthritis by inhibiting the IL-17/PI3K/AKT/NF-κB pathway. In addition, in vivo experiments showed that the combined administration could improve the further deterioration of the osteoarthritis rat model. CONCLUSIONS The combined administration of parecoxib and ilomastat to inhibit IL-17/PI3K/AKT/NF-κB transduction is beneficial to reduce the infiltration of inflammatory factors and matrix metalloproteinases in osteoarthritis.
Collapse
Affiliation(s)
- Xiaofei Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yao Ma
- Clinical Laboratory Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730000, China
| | - Yuhao Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Zhenrui Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Zhengdong Song
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Wenji Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Peng X, Chen X, Zhang Y, Tian Z, Wang M, Chen Z. Advances in the pathology and treatment of osteoarthritis. J Adv Res 2025:S2090-1232(25)00072-4. [PMID: 39889821 DOI: 10.1016/j.jare.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA), a widespread degenerative joint disease, predominantly affects individuals from middle age onwards, exhibiting non-inflammatory characteristics. OA leads to the gradual deterioration of articular cartilage and subchondral bone, causing pain and reduced mobility. The risk of OA increases with age, making it a critical health concern for seniors. Despite significant research efforts and various therapeutic approaches, the precise causes of OA remain unclear. AIM OF REVIEW This paper provides a thorough examination of OA characteristics, pathogenic mechanisms at various levels, and personalized treatment strategies for different OA stages. The review aims to enhance understanding of disease mechanisms and establish a theoretical framework for developing more effective therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW This review systematically examines OA through multiple perspectives, integrating current knowledge of clinical presentation, pathological mechanisms, and associated signaling pathways. It assesses diagnostic methods and reviews both pharmacological and surgical treatments for OA, as well as emerging tissue engineering approaches to manage the disease. While therapeutic strategies such as exercise, anti-inflammatory drugs, and surgical interventions are employed to manage symptoms and modify joint structure, none have been able to effectively halt OA's advancement or achieve long-lasting symptom relief. Tissue engineering strategies, such as cell-seeded scaffolds, supportive matrices, and growth factor delivery, have emerged as promising approaches for cartilage repair and OA treatment. To combat the debilitating effects of OA, it is crucial to investigate the molecular basis of its pathogenesis and seek out innovative therapeutic targets for more potent preventive and treatment strategies.
Collapse
Affiliation(s)
- Xueliang Peng
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Xuanning Chen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200215, China
| | - Yifan Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhichao Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Meihua Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
| |
Collapse
|
3
|
Thomas BL, Montero‐Melendez T, Oggero S, Kaneva MK, Chambers D, Pinto AL, Nerviani A, Lucchesi D, Austin‐Williams S, Hussain MT, Pitzalis C, Allen B, Malcangio M, Dell'Accio F, Norling LV, Perretti M. Molecular Determinants of Neutrophil Extracellular Vesicles That Drive Cartilage Regeneration in Inflammatory Arthritis. Arthritis Rheumatol 2024; 76:1705-1718. [PMID: 39041647 PMCID: PMC11605269 DOI: 10.1002/art.42958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE This study was undertaken to establish the potential therapeutic profile of neutrophil-derived extracellular vesicles (EVs) in experimental inflammatory arthritis and associate pharmacological activity with specific EV components, focusing on microRNAs. METHODS Neutrophil EVs were administered intra-articularly through a prophylactic or therapeutic protocol to male C57BL/6 mice undergoing serum-transfer-induced inflammatory arthritis. Transcriptomic analysis of knees was performed on joints following EV administration, naive and arthritic mice (untreated; n = 4/group) and EV-treated diseased mice (intra-articular administration) with contralateral (vehicle-treated; n = 8/group). Comparison of healthy donor and patients with rheumatoid arthritis (RA) neutrophil EVs was performed. RESULTS EVs afforded cartilage protection with an increase in collagen-II and reduced collagen-X expression within the joint. To gain mechanistic insights, RNA sequencing of the arthritic joints was conducted. A total of 5,231 genes were differentially expressed (P < 0.05), with 257 unique to EV treatment. EVs affected key regenerative pathways involved in joint development, including Wnt and Notch signaling. This wealth of genomic alteration prompted to identify microRNAs in EVs, 10 of which are associated with RA. As a proof of concept, we focused on miR-455-3p, which was detected in both healthy donor and RA EVs. EV addition to chondrocyte cultures elevated miR-455-3p and exerted anticatabolic effects upon interleukin-1β stimulation; these effects were blocked by actinomycin or miR-455-3p antagomir. CONCLUSION Neutrophils from patients with RA yielded EVs with composition, efficacy, and miR-455-3p content similar to those of healthy volunteers, suggesting that neutrophil EVs could be developed as an autologous treatment to protect and repair joint tissue of patients affected by inflammatory arthritides.
Collapse
Affiliation(s)
| | | | - Silvia Oggero
- Queen Mary University of London and Kings College London, Guys’ CampusLondonUnited Kingdom
| | | | | | - Andreia L. Pinto
- Royal Brompton & Harefield NHS Foundation TrustLondonUnited Kingdom
| | - Alessandra Nerviani
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research CentreLondonUnited Kingdom
| | | | | | | | - Costantino Pitzalis
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research CentreLondonUnited Kingdom
| | | | | | - Francesco Dell'Accio
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research CentreLondonUnited Kingdom
| | | | | |
Collapse
|
4
|
Wang Y, Wu Z, Wang C, Wu N, Wang C, Hu S, Shi J. The role of WWP1 and WWP2 in bone/cartilage development and diseases. Mol Cell Biochem 2024; 479:2907-2919. [PMID: 38252355 DOI: 10.1007/s11010-023-04917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Bone and cartilage diseases are often associated with trauma and senescence, manifested as pain and limited mobility. The repair of bone and cartilage lesion by mesenchymal stem cells is regulated by various transcription factors. WW domain-containing protein 1 (WWP1) and WW domain-containing protein 2 (WWP2) are named for WW domain which recognizes PPXY (phono Ser Pro and Pro Arg) motifs of substrate. WWP1and WWP2 are prominent components of the homologous to the E6-AP carboxyl terminus (HECT) subfamily, a group of the ubiquitin ligase. Recently, some studies have found that WWP1 and WWP2 play an important role in the pathogenesis of bone and cartilage diseases and regulate the level and the transactivation of various transcription factors through ubiquitination. Therefore, this review summarizes the distribution and effects of WWP1 and WWP2 in the development of bone and cartilage, discusses the potential mechanism and therapeutic drugs in bone and cartilage diseases such as osteoarthritis, fracture, and osteoporosis.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Na Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Chenyu Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Shiyu Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Guo Z, Di J, Zhang Z, Chen S, Mao X, Wang Z, Yan Z, Li X, Tian Z, Mu C, Xiang C, Xiang C. Antihypertensive drug-associated adverse events in osteoarthritis: a study of a large real-world sample based on the FAERS database. Front Pharmacol 2024; 15:1404427. [PMID: 39286630 PMCID: PMC11402654 DOI: 10.3389/fphar.2024.1404427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Hypertension is a common complication in patients with osteoarthritis (OA). There is increasing interest in the relationship between hypertension and OA. However, hypertension has been reported to negatively affect symptoms and quality of life in patients with OA. Therefore, treating hypertension is crucial for patients with OA. However, there is a lack of real-world studies on the effects of medications for treating hypertension on OA. Methods Data from the FAERS database from January 2004 to December 2023 were extracted for disproportionality analyses, and proportional reporting ratios (PRRs) were used to assess the association between medications for hypertension and all types of arthritis. Adverse event signals were identified and determined using reporting odds ratios (RORs) Adverse event signals were considered to have occurred if a drug-induced adverse event was recorded more than or equal to 3 and the lower limit of the ROR confidence interval was more than 1. We selected five classes of drugs including, calcium channel blockers (CCBs), angiotensin converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), thiazide diuretics and β-blockers and representative drugs were analysed for osteoarthritis-related adverse reactions, and age and gender subgroups were analysed for drugs of significance. We also analysed the occurrence of AEs in relation to time using the Weibull distribution. Results In terms of overall data, we found significant OA adverse reaction signals only for ARBs among the five drug classes.ARB AEs for spinal osteoarthritis (ROR 4.64, 95% CI 3.62-5.94), osteoarthritis (ROR 3.24 95% CI 2.82-3.72) and gouty arthritis (ROR 3.27 95% CI 1.22-8.75) were the three adverse reactions with the loudest signals. Next, we found that valsartan had strong osteoarthritis adverse reaction signals among the three ARBs, namely, irbesartan, cloxartan, and valsartan. We also analysed age and gender subgroups and found that osteoarthritis signals were strongest in the 18-65 and 65+ population, while females seem to be more prone to valsartan-related OA AEs. Conclusion ARBs, especially valsartan, have significant positive signals for OA AEs. Therefore, ARB drugs, especially valsartan, should be used with caution when treating patients with OA combined with hypertension.
Collapse
Affiliation(s)
- Zijian Guo
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingkai Di
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhibo Zhang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Chen
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zehua Wang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zehui Yan
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoke Li
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zui Tian
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Changjiang Mu
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Zhang JY, Xiang XN, Yu X, Liu Y, Jiang HY, Peng JL, He CQ, He HC. Mechanisms and applications of the regenerative capacity of platelets-based therapy in knee osteoarthritis. Biomed Pharmacother 2024; 178:117226. [PMID: 39079262 DOI: 10.1016/j.biopha.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in the elderly population and its substantial morbidity and disability impose a heavy economic burden on patients and society. Knee osteoarthritis (KOA) is the most common subtype of OA, which is characterized by damage to progressive articular cartilage, synovitis, and subchondral bone sclerosis. Most current treatments for OA are palliative, primarily aim at symptom management, and do not prevent the progression of the disease or restore degraded cartilage. The activation of α-granules in platelets releases various growth factors that are involved in multiple stages of tissue repair, suggesting potential for disease modification. In recent years, platelet-based therapies, such as platelet-rich plasma, platelet-rich fibrin, and platelet lysates, have emerged as promising regenerative treatments for KOA, but their related effects and mechanisms are still unclear. Therefore, this review aims to summarize the biological characteristics and functions of platelets, classify the products of platelet-based therapy and related preparation methods. Moreover, we summarize the basic research of platelet-based regeneration strategies for KOA and discuss the cellular effects and molecular mechanisms. Further, we describe the general clinical application of platelet-based therapy in the treatment of KOA and the results of the meta-analysis of randomized controlled trials.
Collapse
Affiliation(s)
- Jiang-Yin Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yan Liu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Ying Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia-Lei Peng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Chen He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
7
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
8
|
Liu K, Zhang B, Zhang X. Promoting Articular Cartilage Regeneration through Microenvironmental Regulation. J Immunol Res 2024; 2024:4751168. [PMID: 39104594 PMCID: PMC11300091 DOI: 10.1155/2024/4751168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
In recent years, as the aging population continues to grow, osteoarthritis (OA) has emerged as a leading cause of disability, with its incidence rising annually. Current treatments of OA include exercise and medications in the early stages and total joint replacement in the late stages. These approaches only relieve pain and reduce inflammation; however, they have significant side effects and high costs. Therefore, there is an urgent need to identify effective treatment methods that can delay the pathological progression of this condition. The changes in the articular cartilage microenvironment, which are complex and diverse, can aggravate the pathological progression into a vicious cycle, inhibiting the repair and regeneration of articular cartilage. Understanding these intricate changes in the microenvironment is crucial for devising effective treatment modalities. By searching relevant research articles and clinical trials in PubMed according to the keywords of articular cartilage, microenvironment, OA, mechanical force, hypoxia, cytokine, and cell senescence. This study first summarizes the factors affecting articular cartilage regeneration, then proposes corresponding treatment strategies, and finally points out the future research direction. We find that regulating the opening of mechanosensitive ion channels, regulating the expression of HIF-1, delivering growth factors, and clearing senescent cells can promote the formation of articular cartilage regeneration microenvironment. This study provides a new idea for the treatment of OA in the future, which can promote the regeneration of articular cartilage through the regulation of the microenvironment so as to achieve the purpose of treating OA.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and MinistryGuangxi Medical University, Nanning, Guangxi 530021, China
| | - Bingjun Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoling Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and MinistryGuangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
9
|
Saleh AS, Abdel-Gabbar M, Gabr H, Shams A, Tamur S, Mahdi EA, Ahmed OM. Ameliorative effects of undifferentiated and differentiated BM-MSCs in MIA-induced osteoarthritic Wistar rats: roles of NF-κB and MMPs signaling pathways. Am J Transl Res 2024; 16:2793-2813. [PMID: 39114694 PMCID: PMC11301505 DOI: 10.62347/fghv2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative joint condition that is persistent. OA affects millions of people throughout the world. Both people and society are heavily economically burdened by osteoarthritis. There is currently no medication that can structurally alter the OA processes or stop the disease from progressing. Stem cells have the potential to revolutionize medicine due to their capacity to differentiate into chondrocytes, capacity to heal tissues and organs including osteoarthritic joints, and immunomodulatory capabilities. Therefore, the goal of the current investigation was to determine how bone marrow-derived mesenchymal stem cells (BM-MSCs) and chondrogenic differentiated mesenchymal stem cells (CD-MSCs) affected the treatment of OA in rats with monosodium iodoacetate (MIA)-induced osteoarthritis. METHODS Male Wistar rats were injected three times with MIA (1 mg)/100 µL isotonic saline to induce osteoarthritis in the ankle joint of the right hind leg. Following the MIA injection, the osteoarthritic rats were given weekly treatments of 1 × 106 BM-MSCs and CD-MSCs into the tail vein for three weeks. RESULTS The obtained results showed that in osteoarthritic rats, BM-MSCs and CD-MSCs dramatically decreased ankle diameter measurements, decreased oxidized glutathione (GSSG) level, and boosted glutathione peroxidase (GPx) and glutathione reductase (GR) activities. Additionally, in rats with MIA-induced OA, BM-MSCs and CD-MSCs dramatically boosted interleukin-10 (IL-10) serum levels while considerably decreasing serum anticitrullinated protein antibodies (ACPA), tumour necrosis factor-α (TNF-α), and interleukin-17 (IL-17) levels as well as ankle transforming growth factor-β1 (TGF-β1) expression. Analysis of histology, immunohistochemistry, and western blots in osteoarthritic joints showed that cartilage breakdown and joint inflammation gradually decreased over time. CONCLUSIONS It is possible to conclude from these results that BM-MSCs and CD-MSCs have anti-arthritic potential in MIA-induced OA, which may be mediated via inhibitory effects on oxidative stress, MMPs and inflammation through suppressing the NF-κB pathway. In osteoarthritis, using CD-MSCs as a treatment is more beneficial therapeutically than using BM-MSCs.
Collapse
Affiliation(s)
- Ablaa S Saleh
- Department of Biochemistry, Faculty of Science, Beni-Suef UniversityBeni-Suef 62521, Egypt
| | - Mohammed Abdel-Gabbar
- Department of Biochemistry, Faculty of Science, Beni-Suef UniversityBeni-Suef 62521, Egypt
| | - Hala Gabr
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo UniversityCairo 11435, Egypt
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif UniversityTaif 26432, Saudi Arabia
- High Altitude Research Center, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shadi Tamur
- Department of Pediatric, College of Medicine, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Emad A Mahdi
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef UniversityBeni-Suef 62521, Egypt
| | - Osama M Ahmed
- Division of Physiology, Department of Zoology, Faculty of Science, Beni-Suef UniversityBeni-Suef 62521, Egypt
| |
Collapse
|
10
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Guo DG, Zhu J, Wang HJ, Pan BW. Investigating the Effects and Mechanisms of Cyclomorusin on Osteoclasts in a High Glucose Environment. Chem Biodivers 2024; 21:e202301741. [PMID: 38477870 DOI: 10.1002/cbdv.202301741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Diabetes mellitus is an endocrine disease characterized by prolonged hyperglycemia. Prolonged high blood sugar levels interfere with the differentiation and maturation process of OBs and OCs, leading to the onset of osteoporosis. However, OCs differentiation and maturation is a complex regulatory process. In this study, we used a co-culture system of RAW264.7 and MC3T3-E1 cells under HG concentration to explore the effect of CYM on OCs in a HG environment. The effects of CYM on the formation and function of OCs were observed using TRAP-positive cell counts and bone resorption pits. Then, mRNA and protein expression levels of OCs-related genes were detected by real-time qPCR and western blotting. The results showed that CYM had an inhibitory effect on OCs differentiation and bone resorption, reduced mRNAs expression of OCs-associated genes, and downregulated RANKL/RANK/TRAF6 pathway that mediates OCs differentiation. CYM could be a promising natural compound against diabetic osteoporosis.
Collapse
Affiliation(s)
- Dong-Gui Guo
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550025, China
| | - Jun Zhu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Hui-Juan Wang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Bo-Wen Pan
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
12
|
Yao Z, Gan F, Zeng Y, Ren L, Zeng Y. Elucidating Cyathula Officinals' mechanism in osteoarthritis treatment: Network pharmacology and empirical evidence on anti-inflammatory actions. Heliyon 2024; 10:e27999. [PMID: 38524622 PMCID: PMC10958415 DOI: 10.1016/j.heliyon.2024.e27999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, we explored the therapeutic potential of Cyathula Officinals (CNX) in Knee Osteoarthritis (KOA) treatment. Utilizing network pharmacology and in vitro experiments, we identified active ingredients, action targets and pathways in CNX. Our analysis, integrating databases like TCMSP, SwissTarget Prediction, Genecards, CTD, STRING, and DAVID, highlighted 396 action targets and 283 disease targets, pinpointing 64 intersection genes linked to KOA. The significant involvement of the MAPK and NF-κB pathways in CNX's anti-inflammatory action was validated through qPCR, which might underlie CNX's efficacy in inhibiting chondrocyte apoptosis and IL-6 expression. These findings suggest CNX's potential in KOA management, offering insights for its clinical application.
Collapse
Affiliation(s)
- Zhicheng Yao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Fengping Gan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Yuqing Zeng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Litong Ren
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Yirong Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Department of Orthopedics, China
| |
Collapse
|
13
|
Jasiński T, Turek B, Kaczorowski M, Brehm W, Skierbiszewska K, Bonecka J, Domino M. Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines 2024; 12:542. [PMID: 38540155 PMCID: PMC10968442 DOI: 10.3390/biomedicines12030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
Osteoarthritis (OA) of the temporomandibular joint (TMJ) occurs spontaneously in humans and various animal species, including horses. In humans, obtaining tissue samples is challenging and clinical symptoms appear late in the disease progression. Therefore, genetically modified, induced, and naturally occurring animal models play a crucial role in understanding the pathogenesis and evaluating potential therapeutic interventions for TMJ OA. Among the naturally occurring models, the equine TMJ OA model is characterized by slow, age-related progression, a wide range of clinical examinations, and imaging modalities that can be performed on horses, as well as easy tissue and synovial fluid collection. The morphological and functional similarities of TMJ structures in both species make the equine model of TMJ OA an excellent opportunity to track disease progression and response to treatment. However, much work remains to be carried out to determine the utility of human TMJ OA biomarkers in horses. Among the main TMJ OA biomarkers, IL-1, IL-6, TGF-β, TNF-α, and PGE2 have been recently investigated in the equine model. However, the majority of biomarkers for cartilage degradation, chondrocyte hypertrophy, angiogenesis, and TMJ overload-as well as any of the main signaling pathways-have not been studied so far. Therefore, it would be advisable to focus further research on equine specimens, considering both mediators and signaling.
Collapse
Affiliation(s)
- Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | - Bernard Turek
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | | | - Walter Brehm
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, 04103 Leipzig, Germany;
| | - Katarzyna Skierbiszewska
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | - Joanna Bonecka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| |
Collapse
|
14
|
Shao C, Niu G, Su P, Zhang J, Zhu X, Han G, Xu P, Bai J, Sun K, Sun Y. circFOXK2 promotes the progression of osteoarthritis by regulating the miR-4640-5p/NOTCH2 axis. Mod Rheumatol 2024; 34:422-432. [PMID: 36537124 DOI: 10.1093/mr/roac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 02/17/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common age-related chronic and disabling joint disease, frequently causing pain and disability in the adult population. Given that there are no proven disease-modifying drugs for OA, it is urgent to gain a deeper understanding of OA pathogenesis. This study intended to uncover the circFOXK2 regulation in OA. METHODS First, an in vitro OA cell model was constructed by treating murine chondrocytes with interleukin (IL)-1β. Then, a series of functional assays were conducted to evaluate the effect of circFOXK2 on OA progression in murine chondrocytes. Bioinformatics analysis and mechanism investigations were performed to investigate the competitive endogenous ribonucleic acid (RNA) network of circFOXK2 in OA. RESULTS circFOXK2 is overexpressed in IL-1β-treated chondrocyte. We confirmed the cyclic structure and cytoplasmic distribution of circFOXK2. Functionally, circFOXK2 promotes chondrocyte apoptosis and extracellular matrix degradation but inhibits chondrocyte proliferation. Mechanically, circFOXK2 competitively binds to microRNA-4640-5p (miR-4640-5p) to enhance NOTCH2 expression in OA, affecting OA progression. Besides, circFOXK2 could motivate the NOTCH pathway to accelerate OA progression. CONCLUSIONS The circFOXK2/miR-4640-5p/NOTCH2 axis stimulates the NOTCH pathway to promote the transcription of inflammatory cytokines (IL33, IL17F, and IL6), consequently facilitating OA progression in murine chondrocytes.
Collapse
Affiliation(s)
- Chen Shao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Guoqi Niu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Peng Su
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingquan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Xunbing Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Guansheng Han
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Panpan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Jianzhong Bai
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Digital Orthopedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Kui Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Zhou J, Wu J, Fu F, Yao S, Zheng W, Du W, Luo H, Jin H, Tong P, Wu C, Ruan H. α-Solanine attenuates chondrocyte pyroptosis to improve osteoarthritis via suppressing NF-κB pathway. J Cell Mol Med 2024; 28:e18132. [PMID: 38345195 PMCID: PMC10863976 DOI: 10.1111/jcmm.18132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
α-Solanine has been shown to exhibit anti-inflammatory and anti-tumour properties; however, its efficacy in treating osteoarthritis (OA) remains ambiguous. The study aimed to evaluate the therapeutic effects of α-solanine on OA development in a mouse OA model. The OA mice were subjected to varying concentrations of α-solanine, and various assessments were implemented to assess OA progression. We found that α-solanine significantly reduced osteophyte formation, subchondral sclerosis and OARSI score. And it decreased proteoglycan loss and calcification in articular cartilage. Specifically, α-solanine inhibited extracellular matrix degradation by downregulating collagen 10, matrix metalloproteinase 3 and 13, and upregulating collagen 2. Importantly, α-solanine reversed chondrocyte pyroptosis phenotype in articular cartilage of OA mice by inhibiting the elevated expressions of Caspase-1, Gsdmd and IL-1β, while also mitigating aberrant angiogenesis and sensory innervation in subchondral bone. Mechanistically, α-solanine notably hindered the early stages of OA progression by reducing I-κB phosphorylation and nuclear translocation of p65, thereby inactivating NF-κB signalling. Our findings demonstrate the capability of α-solanine to disrupt chondrocyte pyroptosis and sensory innervation, thereby improving osteoarthritic pathological progress by inhibiting NF-κB signalling. These results suggest that α-solanine could serve as a promising therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Jinyi Zhou
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
- The First People's Hospital of WenlingTaizhouChina
| | - Jinting Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
- Xinchang County Hospital of Traditional Chinese MedicineShaoxingChina
| | - Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Sai Yao
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Weibin Du
- Research Institute of OrthopedicsThe Affiliated JiangNan Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
16
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
17
|
Čeh T, Šarabon N. Effects of adding glucosamine or glucosamine combined with chondroitin to exercise on pain and physical function in adults with knee osteoarthritis: a systematic review and meta-analysis. Eur J Transl Myol 2023; 33:12013. [PMID: 37997783 PMCID: PMC10811636 DOI: 10.4081/ejtm.2023.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
It is well known that different types of exercise significantly improve physical function and relieve pain in knee osteoarthritis (KOA) patients. The aim of this study was to investigate the added effects of glucosamine or glucosamine and chondroitin supplementation in combination with an exercise program in the management of KOA. The randomized controlled trials on adding glucosamine (G) or G combined with chondroitin (C) to an exercise program in the treatment of KOA were searched in the PubMed, Cochrane Central Register of Controlled Trials, PEDro, and Web of Science online databases. The Pedro scale tool was used to assess quality of literature. A meta-analysis was performed using the Review Manager 5.4 software. In total, 6 studies (including 297 participants) were included for the final meta-analysis. According to the PEDro scale, the average quality of the studies was rated as good (mean = 8.2 (2)). The results showed that the effect of G, or G and C, in combination with exercise is not significant, as indicated by the assessed knee pain (WOMAC pain: SMD -0.18, 95% CI -0.47 to 0.11, p = 0.23; and VAS pain: SMD -0.34, 95% CI -0.85 to 0.17, p = 0.20) and physical function (SMD -0.13, 95% CI -0.95 to 0.69, p = 0.76). Adding glucosamine alone or a combination of glucosamine and chondroitin to exercise, has no effect on knee pain and physical function compared with exercise alone in KOA patients. Keywords: treatment, dietary supplement, physical activity, older adults.
Collapse
Affiliation(s)
- Tina Čeh
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia; Community Healthcare Centre Dr. Adolf Drolc, Maribor.
| | - Nejc Šarabon
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia; S2P, Science to practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia; InnoRennew Center of excellence, Izola.
| |
Collapse
|
18
|
Chen Y, Zhang Y, Ge Y, Ren H. Integrated single-cell and bulk RNA sequencing analysis identified pyroptosis-related signature for diagnosis and prognosis in osteoarthritis. Sci Rep 2023; 13:17757. [PMID: 37853066 PMCID: PMC10584952 DOI: 10.1038/s41598-023-44724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Osteoarthritis (OA), a degenerative disease of the joints, has one of the highest disability rates worldwide. This study investigates the role of pyroptosis-related genes in osteoarthritis and their expression in different chondrocyte subtypes at the individual cell level. Using OA-related datasets for single-cell RNA sequencing and RNA-seq, the study identified PRDEGs and DEGs and conducted Cox regression analysis to identify independent prognostic factors for OA. CASP6, NOD1, and PYCARD were found to be prognostic factors. Combined Weighted Gene Correlation Network Analysis with PPI network, a total of 15 hub genes related to pyroptosis were involved in the notch and oxidative phosphorylation pathways, which could serve as biomarkers for the diagnosis and prognosis of OA patients. The study also explored the heterogeneity of chondrocytes between OA and normal samples, identifying 19 single-cell subpopulation marker genes that were significantly different among 7 chondrocyte cell clusters. AGT, CTSD, CYBC, and THYS1 were expressed differentially among different cell subpopulations, which were associated with cartilage development and metabolism. These findings provide valuable insights into the molecular mechanisms underlying OA and could facilitate the development of new therapeutic strategies for this debilitating disease.
Collapse
Affiliation(s)
- Yanzhong Chen
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 10084, China
| | - Yaonan Zhang
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 10084, China
- Department of Orthopedics, Beijing Hospital, Beijing, 10000, China
| | - Yongwei Ge
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 10084, China
| | - Hong Ren
- School of Sport Science, Beijing Sport University, Beijing, 100084, China.
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, 10084, China.
| |
Collapse
|
19
|
He L, Xu Z, Niu X, Li R, Wang F, You Y, Gao J, Zhao L, Shah KM, Fan J, Liu M, Luo J. GPRC5B protects osteoarthritis by regulation of autophagy signaling. Acta Pharm Sin B 2023; 13:2976-2989. [PMID: 37521864 PMCID: PMC10372909 DOI: 10.1016/j.apsb.2023.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in the world. However, current treatment modalities mainly relieve pain and inhibit cartilage degradation, but do not promote cartilage regeneration. In this study, we show that G protein-coupled receptor class C group 5 member B (GPRC5B), an orphan G-protein-couple receptor, not only inhibits cartilage degradation, but also increases cartilage regeneration and thereby is protective against OA. We observed that Gprc5b deficient chondrocytes had an upregulation of cartilage catabolic gene expression, along with downregulation of anabolic genes in vitro. Furthermore, mice deficient in Gprc5b displayed a more severe OA phenotype in the destabilization of the medial meniscus (DMM) induced OA mouse model, with upregulation of cartilage catabolic factors and downregulation of anabolic factors, consistent with our in vitro findings. Overexpression of Gprc5b by lentiviral vectors alleviated the cartilage degeneration in DMM-induced OA mouse model by inhibiting cartilage degradation and promoting regeneration. We also assessed the molecular mechanisms downstream of Gprc5b that may mediate these observed effects and identify the role of protein kinase B (AKT)-mammalian target of rapamycin (mTOR)-autophagy signaling pathway. Thus, we demonstrate an integral role of GPRC5B in OA pathogenesis, and activation of GPRC5B has the potential in preventing the progression of OA.
Collapse
Affiliation(s)
- Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Ziwei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Niu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Li
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Yu You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingduo Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Karan M. Shah
- Department of Oncology and Metabolism, the Medical School, the University of Sheffield, Sheffield S10 2TN, UK
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| |
Collapse
|
20
|
Michelacci YM, Baccarin RYA, Rodrigues NNP. Chondrocyte Homeostasis and Differentiation: Transcriptional Control and Signaling in Healthy and Osteoarthritic Conditions. Life (Basel) 2023; 13:1460. [PMID: 37511835 PMCID: PMC10381434 DOI: 10.3390/life13071460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrocytes are the main cell type in articular cartilage. They are embedded in an avascular, abundant, and specialized extracellular matrix (ECM). Chondrocytes are responsible for the synthesis and turnover of the ECM, in which the major macromolecular components are collagen, proteoglycans, and non-collagen proteins. The crosstalk between chondrocytes and the ECM plays several relevant roles in the regulation of cell phenotype. Chondrocytes live in an avascular environment in healthy cartilage with a low oxygen supply. Although chondrocytes are adapted to anaerobic conditions, many of their metabolic functions are oxygen-dependent, and most cartilage oxygen is supplied by the synovial fluid. This review focuses on the transcription control and signaling responsible for chondrocyte differentiation, homeostasis, senescence, and cell death and the changes that occur in osteoarthritis. The effects of chondroitin sulfate and other molecules as anti-inflammatory agents are also approached and analyzed.
Collapse
Affiliation(s)
- Yara M Michelacci
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Raquel Y A Baccarin
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| | - Nubia N P Rodrigues
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
21
|
Xiao SQ, Cheng M, Wang L, Cao J, Fang L, Zhou XP, He XJ, Hu YF. The role of apoptosis in the pathogenesis of osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05847-1. [PMID: 37294429 DOI: 10.1007/s00264-023-05847-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis. METHODS A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis. RESULTS Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained. CONCLUSION This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.
Collapse
Affiliation(s)
- Si-Qi Xiao
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Miao Cheng
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Lei Wang
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Jing Cao
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Liang Fang
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jin He
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.
| | - Yu-Feng Hu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Gou Z, Wu Q, Jiang C, Dong W. Circular RNA Circ_0038467 promotes the maturation of miRNA-203 to increase lipopolysaccharide-induced apoptosis of chondrocytes. Open Med (Wars) 2023; 18:20220557. [PMID: 37305524 PMCID: PMC10251158 DOI: 10.1515/med-2022-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 06/13/2023] Open
Abstract
Circ_0038467 and miR-203 exert important functions in lipopolysaccharide (LPS)-induced inflammation, which contributes to osteoarthritis (OA). Our preliminary deep sequencing analysis revealed altered expression of Circ_0038467 and miR-203 in OA and a close correlation between them. This study was therefore to explore crosstalk between them in OA. The expression of Circ_0038467, mature miR-203, and miR-203 precursor in OA patients and controls was determined using RT-qPCR. An overexpression assay was performed to explore the role of Circ_0038467 in regulating the expression of mature miR-203 and miR-203 precursor. Cell apoptosis was analyzed by cell apoptosis assay. Circ_0038467 was upregulated in OA and positively correlated with mature miR-203 but not that of miR-203 precursor. In chondrocytes, increased expression levels of both Circ_0038467 and miR-203 were observed after LPS treatment. In chondrocytes, overexpression of Circ_0038467 increased the expression levels of mature miR-203 but not that of miR-203 precursor. Overexpression of Circ_0038467 and miR-203 increased cell apoptosis. Then, the miR-203 inhibitor reversed the effects of overexpression of Circ_0038467 on cell apoptosis. Interestingly, Circ_0038467 was detected in both the cytoplasm and nucleus. Circ_0038467 directly interacted with the precursor miR-203. Therefore, Circ_0038467 is highly expressed in OA and it may promote the production of mature miR-203 to increase apoptosis of chondrocytes induced by LPS.
Collapse
Affiliation(s)
- Zhongkun Gou
- Department of Bone and Joint Surgery, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, Guangdong Province, 518108, PR China
| | - Quanling Wu
- Department of Orthopedics, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, Guangdong Province, 518108, PR China
| | - Changqing Jiang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen City, Guangdong Province, 518036, PR China
| | - Wei Dong
- Department of Bone and Joint Surgery, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, Guangdong Province, 518108, PR China
| |
Collapse
|
23
|
Zhang D, Zhang D, Yang X, Li Q, Zhang R, Xiong Y. The Role of Selenium-Mediated Notch/Hes1 Signaling Pathway in Kashin-Beck Disease Patients and Cartilage Injury Models. Biol Trace Elem Res 2023; 201:2765-2774. [PMID: 36083571 DOI: 10.1007/s12011-022-03387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
Kashin-Beck disease (KBD) is a nutrition-related osteoarthropathy, and selenium (Se) deficiency is an environmental risk factor for KBD. Notch/Hes1 signaling pathway plays a vital role in regulating cartilage, but its exact mechanisms in KBD remain unknown. The Se contents were determined using the hydride atomic fluorescence spectrometry assay technique, and the mRNA levels were detected via quantitative real-time PCR. The chondrocyte injury models were established by Se deficiency and tert-butyl hydroperoxide (tBHP), respectively; apoptosis and necrosis rates were detected using Hoechst 33,342/PI and Annexin V-FITC/PI. The results showed that the Se levels in the flour of KBD areas were lower than that of the non-KBD areas, and the Se levels in the plasma of KBD patients were lower than that of the controls. The expressions of Notch1, Jagged1, and Hes1 were higher in the whole blood of KBD patients than those of the controls, and Notch1 was negatively correlated with the expression of BCL2, while was positively correlated with BAX. In injury, chondrocytes induced by low Se and tBHP, the expression of Notch1, Jagged1, and Hes1 increased, apoptosis and necrosis rates increased in Se deficiency and tBHP groups, while Se supplementation reversed it. Decreased plasma Se in KBD patients may be related to low dietary Se. Se deficiency might be involved in the pathological process of KBD by activating the Notch/Hes1 signaling pathway to induce excessive apoptosis of chondrocytes, the activation of Notch/Hes1 promotes oxidative injury, and Se supplementation could reverse it. The importance of Notch/Hes1 signaling pathway in KBD development will provide a new potential target for KBD.
Collapse
Affiliation(s)
- Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaoli Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rongqiang Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - YongMin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
24
|
Zhang Z, Wang S, Liu X, Yang Y, Zhang Y, Li B, Guo F, Liang J, Hong X, Guo R, Zhang B. Secoisolariciresinol diglucoside Ameliorates Osteoarthritis via Nuclear factor-erythroid 2-related factor-2/ nuclear factor kappa B Pathway: In vitro and in vivo experiments. Biomed Pharmacother 2023; 164:114964. [PMID: 37269815 DOI: 10.1016/j.biopha.2023.114964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1β (IL-1β)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1β in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Yuxin Yang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Yiqin Zhang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Bo Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Fengfen Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
25
|
Panichi V, Bissoli I, D'Adamo S, Flamigni F, Cetrullo S, Borzì RM. NOTCH1: A Novel Player in the Molecular Crosstalk Underlying Articular Chondrocyte Protection by Oleuropein and Hydroxytyrosol. Int J Mol Sci 2023; 24:ijms24065830. [PMID: 36982904 PMCID: PMC10058228 DOI: 10.3390/ijms24065830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, but no effective and safe disease-modifying treatment is available. Risk factors such as age, sex, genetics, injuries and obesity can concur to the onset of the disease, variably triggering the loss of maturational arrest of chondrocytes further sustained by oxidative stress, inflammation and catabolism. Different types of nutraceuticals have been studied for their anti-oxidative and anti-inflammatory properties. Olive-derived polyphenols draw particular interest due to their ability to dampen the activation of pivotal signaling pathways in OA. Our study aims to investigate the effects of oleuropein (OE) and hydroxytyrosol (HT) in in vitro OA models and elucidate their possible effects on NOTCH1, a novel therapeutic target for OA. Chondrocytes were cultured and exposed to lipopolysaccharide (LPS). Detailed analysis was carried out about the OE/HT mitigating effects on the release of ROS (DCHF-DA), the increased gene expression of catabolic and inflammatory markers (real time RT-PCR), the release of MMP-13 (ELISA and Western blot) and the activation of underlying signaling pathways (Western blot). Our findings show that HT/OE efficiently attenuates LPS-induced effects by firstly reducing the activation of JNK and of the NOTCH1 pathway downstream. In conclusion, our study provides molecular bases supporting the dietary supplementation of olive-derived polyphenols to revert/delay the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Bissoli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
26
|
Lin J, Jia S, Zhang W, Nian M, Liu P, Yang L, Zuo J, Li W, Zeng H, Zhang X. Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. J Clin Med 2023; 12:jcm12051986. [PMID: 36902773 PMCID: PMC10004353 DOI: 10.3390/jcm12051986] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shantou University Medical College, Shantou 515041, China
| | - Weifei Zhang
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengyuan Nian
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Liu
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Li Yang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianwei Zuo
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (W.L.); (H.Z.); (X.Z.)
| | - Hui Zeng
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (W.L.); (H.Z.); (X.Z.)
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (W.L.); (H.Z.); (X.Z.)
| |
Collapse
|
27
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, López-Fagúndez M, Pazos-Pérez A, Crespo-Golmar A, Belén Bravo S, López-López V, Jorge-Mora A, Cerón-Carrasco JP, Lois Iglesias A, Gómez R. β Boswellic Acid Blocks Articular Innate Immune Responses: An In Silico and In Vitro Approach to Traditional Medicine. Antioxidants (Basel) 2023; 12:371. [PMID: 36829930 PMCID: PMC9952103 DOI: 10.3390/antiox12020371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is hallmarked as a silent progressive rheumatic disease of the whole joint. The accumulation of inflammatory and catabolic factors such as IL6, TNFα, and COX2 drives the OA pathophysiology into cartilage degradation, synovia inflammation, and bone destruction. There is no clinical available OA treatment. Although traditional ayurvedic medicine has been using Boswellia serrata extracts (BSE) as an antirheumatic treatment for a millennium, none of the BSE components have been clinically approved. Recently, β boswellic acid (BBA) has been shown to reduce in vivo OA-cartilage loss through an unknown mechanism. We used computational pharmacology, proteomics, transcriptomics, and metabolomics to present solid evidence of BBA therapeutic properties in mouse and primary human OA joint cells. Specifically, BBA binds to the innate immune receptor Toll-like Receptor 4 (TLR4) complex and inhibits both TLR4 and Interleukin 1 Receptor (IL1R) signaling in OA chondrocytes, osteoblasts, and synoviocytes. Moreover, BBA inhibition of TLR4/IL1R downregulated reactive oxygen species (ROS) synthesis and MAPK p38/NFκB, NLRP3, IFNαβ, TNF, and ECM-related pathways. Altogether, we present a solid bulk of evidence that BBA blocks OA innate immune responses and could be transferred into the clinic as an alimentary supplement or as a therapeutic tool after clinical trial evaluations.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Verónica López-López
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - José P. Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Base Aérea de San Javier, Santiago de La Ribera, 30720 Murcia, Spain
| | - Ana Lois Iglesias
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| |
Collapse
|
28
|
Gong Y, Li S, Wu J, Zhang T, Fang S, Feng D, Luo X, Yuan J, Wu Y, Yan X, Zhang Y, Zhu J, Wu J, Lian J, Xiang W, Ni Z. Autophagy in the pathogenesis and therapeutic potential of post-traumatic osteoarthritis. BURNS & TRAUMA 2023; 11:tkac060. [PMID: 36733467 PMCID: PMC9887948 DOI: 10.1093/burnst/tkac060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Indexed: 02/04/2023]
Abstract
Autophagy, as a fundamental mechanism for cellular homeostasis, is generally involved in the occurrence and progression of various diseases. Osteoarthritis (OA) is the most common musculoskeletal disease that often leads to pain, disability and economic loss in patients. Post-traumatic OA (PTOA) is a subtype of OA, accounting for >12% of the overall burden of OA. PTOA is often caused by joint injuries including anterior cruciate ligament rupture, meniscus tear and intra-articular fracture. Although a variety of methods have been developed to treat acute joint injury, the current measures have limited success in effectively reducing the incidence and delaying the progression of PTOA. Therefore, the pathogenesis and intervention strategy of PTOA need further study. In the past decade, the roles and mechanisms of autophagy in PTOA have aroused great interest in the field. It was revealed that autophagy could maintain the homeostasis of chondrocytes, reduce joint inflammatory level, prevent chondrocyte death and matrix degradation, which accordingly improved joint symptoms and delayed the progression of PTOA. Moreover, many strategies that target PTOA have been revealed to promote autophagy. In this review, we summarize the roles and mechanisms of autophagy in PTOA and the current strategies for PTOA treatment that depend on autophagy regulation, which may be beneficial for PTOA patients in the future.
Collapse
Affiliation(s)
| | | | | | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China,Department of General practice, Chinese PLA General Hospital of the Central Theater Command, Wuluo Street, Wuchang District, Wuhan 430000, China
| | - Shunzheng Fang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Changjiang Street, Yuzhong District, Chongqing 400042, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Xiaojing Yan
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing 400038, China
| | - Yan Zhang
- Department of Pediatrics, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Guoben Street, Wanzhou district, Chongqing 404000, China
| | - Jun Zhu
- Department of Cardiology, Shanghai Hospital, Shanghai Street, Wanzhou District, Chongqing 404000, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Shenzhen Hospital, Peking University, Lianhua Street, Futian District, Shenzhen 518034, China
| | - Jiqin Lian
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Wei Xiang
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| | - Zhenhong Ni
- Correspondence. Zhenghong Ni, ; Wei Xiang, ; Jiqin Lian,
| |
Collapse
|
29
|
Ye Y, Zhou J. The protective activity of natural flavonoids against osteoarthritis by targeting NF-κB signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1117489. [PMID: 36998478 PMCID: PMC10043491 DOI: 10.3389/fendo.2023.1117489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteoarthritis (OA) is a typical joint disease associated with chronic inflammation. The nuclear factor-kappaB (NF-κB) pathway plays an important role in inflammatory activity and inhibiting NF-κB-mediated inflammation can be a potential strategy for treating OA. Flavonoids are a class of naturally occurring polyphenols with anti-inflammatory properties. Structurally, natural flavonoids can be divided into several sub-groups, including flavonols, flavones, flavanols/catechins, flavanones, anthocyanins, and isoflavones. Increasing evidence demonstrates that natural flavonoids exhibit protective activity against the pathological changes of OA by inhibiting the NF-κB signaling pathway. Potentially, natural flavonoids may suppress NF-κB signaling-mediated inflammatory responses, ECM degradation, and chondrocyte apoptosis. The different biological actions of natural flavonoids against the NF-κB signaling pathway in OA chondrocytes might be associated with the differentially substituted groups on the structures. In this review, the efficacy and action mechanism of natural flavonoids against the development of OA are discussed by targeting the NF-κB signaling pathway. Potentially, flavonoids could become useful inhibitors of the NF-κB signaling pathway for the therapeutic management of OA.
Collapse
Affiliation(s)
- Yongjun Ye
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Jianguo Zhou,
| |
Collapse
|
30
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
31
|
Molecular Fingerprint of Human Pathological Synoviocytes in Response to Extractive Sulfated and Biofermentative Unsulfated Chondroitins. Int J Mol Sci 2022; 23:ijms232415865. [PMID: 36555507 PMCID: PMC9784855 DOI: 10.3390/ijms232415865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Pharma-grade extractive chondroitin sulfate (CS) is widely used for osteoarthritis (OA) treatment. Recently, unsulfated biofermentative chondroitin (BC) proved positive effects in OA in vitro model. This study, based on primary pathological human synoviocytes, aimed to analyze, by a multiplex assay, a panel of OA-related biomarkers in response to short-term treatments with bovine (CSb), pig (CSp) and fish (CSf) chondroitins, in comparison to BC. As expected, all samples had anti-inflammatory properties, however CSb, CSf and especially BC affected more cytokines and chemokines. Based on these results and molecular weight similarity, CSf and BC were selected to further explore the synoviocytes' response. In fact, Western blot analyses showed CSf and BC were comparable, downregulating OA-related biomarkers such as the proteins mTOR, NF-kB, PTX-3 and COMP-2. Proteomic analyses, performed by applying a nano-LC-MS/MS TMT isobaric labelling-based approach, displayed the modulation of both common and distinct molecules to chondroitin treatments. Thus, CSf and BC modulated the biological mediators involved in the inflammation cascade, matrix degradation/remodeling, glycosaminoglycans' synthesis and cellular homeostasis. This study helps in shedding light on different molecular mechanisms related to OA disease that may be potentially affected not only by animal-source chondroitin sulfate but also by unsulfated biofermentative chondroitin.
Collapse
|
32
|
Yang F, Zhao M, Sang Q, Yan C, Wang Z. Long non-coding RNA PMS2L2 is down-regulated in osteoarthritis and inhibits chondrocyte proliferation by up-regulating miR-34a. J Immunotoxicol 2022; 19:74-80. [PMID: 35930398 DOI: 10.1080/1547691x.2022.2049664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) PMS2L2 has been reported to participate in endotoxin-induced inflammatory responses. As these types of responses can promote osteoarthritis (OA), it was of interest to ascertain if PMS2L2 may be involved in OA. To explore any potential participation of PMS2L2 in OA, synovial fluid was extracted from both OA patients and healthy controls (n = 62 each) and PMS2L2 expression of each sample determined by RT-qPCR. In addition, as miR-34a has a potential binding site on PMS2L2, hypothetical interactions between PMS2L2 and miR-34a in chondrocytes were analyzed by performing over-expression experiments. Furthermore, the role of PMS2L2 and miR-34a in the regulation of chondrocyte proliferation was analyzed using CCK-8 and BrdU assays. The results showed that PMS2L2 expression in OA patient synovial fluid was lower compared to that in control group fluid, and the extent of this reduction was related to disease stage. In in vitro studies, it was seen that endotoxin treatment of chondrocytes led to decreased PMS2L2 expression. It was found that PMS2L2 over-expression caused increased miR-34a expression in OA patient chondrocytes but not in cells from healthy controls. In contrast, miR-34a over-expression in either cell population did not affect PMS2L2 expression. Lastly, over-expression of both PMS2L2 and miR-34a led to inhibited chondrocyte proliferation. Of note, a combined over-expression of PMS2L2 and miR-34a resulted in stronger effects on proliferation compared to that from either single over-expression. Based on the findings that PMS2L2 is down-regulated during ongoing states of OA, and that changes in PMS2L2 expression can lead to increases in chondrocyte expression of miR-34a - resulting in inhibition of chondrocyte proliferation in OA. From these findings, one may conclude that finding means to regulate PMS2L2 could be a promising new target in the development of regimens for the treatment of OA.
Collapse
Affiliation(s)
- Fei Yang
- Department of Orthopedics, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Min Zhao
- Department of General Surgery, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Qinghua Sang
- Department of General Surgery, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Changhong Yan
- Department of General Surgery, Yanqing District Hospital, Beijing (Yanqing Hospital Peking University Third Hospital), Beijing, PR China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
33
|
Guo Y, Li R, Dang X. S100A10 regulates tumor necrosis factor alpha-induced apoptosis in chondrocytes via the reactive oxygen species/nuclear factor-kappa B pathway. Biotechnol Appl Biochem 2022; 69:2284-2295. [PMID: 34787893 DOI: 10.1002/bab.2285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
Aberrant chondrocyte apoptosis and inflammation are the most critical causes of osteoarthritis (OA) development. This study was designed to demonstrate the relationship between S100A10 and OA. In this study, S100A10 was overexpressed or silenced in rat chondrocytes. Cell viability, apoptosis, reactive oxidative species (ROS), and calcium ion detection were assessed using Cell Counting Kit-8 assay and flow cytometry. The levels of key oxidation-related enzymes and tumor necrosis factor-alpha (TNF-α) were quantified using enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and Western blotting. S100A10 was highly expressed in patients with OA and positively correlated with TNF-α level. Knockdown of S100A10 effectively counteracted TNF-α-induced ROS level, apoptosis, and calcium level and associated with decreased inflammation-related metalloproteinase 1 (MMP1), MMP13, and nuclear necrosis factor-kappa B (NF-κB)-p65 and increased survivin and cytoplasmic NF-κB-p65. Overexpression of S100A10 had an effect similar to TNF-α, which was significantly counteracted by pyrrolidine dithiocarbamate, an NF-κB inhibitor, or verapamil, a calcium-channel blocker. S100A10 contributed to chondrocyte apoptosis through the ROS/NF-κB pathway. This study has established the relationship between S100A10 and the NF-κB pathway, thus providing novel perspectives for exploring S100A10 functions.
Collapse
Affiliation(s)
- Yanjie Guo
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, China
| | - Ruofei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi Province, China
| |
Collapse
|
34
|
Retinoic Acid Receptor Gamma (RARγ) Promotes Cartilage Destruction through Positive Feedback Activation of NF-κB Pathway in Human Osteoarthritis. Mediators Inflamm 2022; 2022:1875736. [DOI: 10.1155/2022/1875736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) is a severe inflammation-related disease which leads to cartilage destruction. The retinoic acid receptor gamma (RARγ) has been indicated to be involved in many inflammation processes. However, the role and mechanism of RARγ in cartilage destruction caused by inflammation in OA are still unknown. Here, we demonstrated that the RARγ was highly expressed in chondrocytes of OA patients compared with healthy people and was positively correlated with the damage degree of cartilage in OA. Cytokine TNF-α promoted the transcription and expression of RARγ through activating the NF-κB pathway in OA cartilage. In addition, the overexpression of RARγ resulted in the upregulation of matrix degradation and inflammation associated genes and downregulation of differentiation and collagen production genes in human normal chondrocyte C28/I2 cells. Mechanistically, overexpression of RARγ could increase the level of p-IκBα and p-P65 to regulate the expression of downstream genes. RARγ and IκBα also could interact with each other and had the same localization in C28/I2 cells. Moreover, the SD rats OA model induced by monosodium iodoacetate indicated that CD437 (RARγ agonist) and TNF-α accelerated the OA progression, including more severe cartilage layer destruction, larger knee joint diameter, and higher serum ALP levels, while LY2955303 (RARγ inhibitor) showed the opposite result. RARγ was also highly expressed in OA group and even higher in TNF-α group. In conclusion, RARγ/NF-κB positive feedback loop was activated by TNF-α in chondrocyte to promote cartilage destruction. Our data not only propose a novel and precise molecular mechanism for OA disease but also provide a prospective strategy for the treatment.
Collapse
|
35
|
Chen R, Li X, Sun Z, Yin J, Hu X, Deng J, Liu X. Intra-bone marrow injection of magnesium isoglyrrhizinate inhibits inflammation and delays osteoarthritis progression through the NF-κB pathway. J Orthop Surg Res 2022; 17:400. [PMID: 36045373 PMCID: PMC9429748 DOI: 10.1186/s13018-022-03294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Osteoarthritis (OA) presents cartilage damage in addition to chronic inflammation. However, self-recovery of damaged cartilage in an inflammatory environment is not possible. Mesenchymal stem cells (MSCs) in the bone marrow are a source of regenerative repair of damaged cartilage. To date, whether intra-luminal administration of the bone marrow can delay the progression of OA is still unknown. This study, therefore, aimed to explore the role of intra-bone marrow injection of Magnesium isoglycyrrhizinate (MgIG) in delaying the OA progression and to investigate the underlying mechanism. Methods Rabbit OA models were established using the anterior cruciate ligament transection method while a catheter was implanted into the bone marrow cavity. 1 week after surgery, MgIG treatment was started once a week for 4 weeks. The cartilage degradation was analyzed using hematoxylin–eosin staining, Masson’s trichrome staining and Alcian blue staining. Additionally, the pro-inflammatory factors and cartilage regeneration genes involved in the cartilage degeneration and the underlying mechanisms in OA were detected using enzyme-linked immunosorbent assay, quantitative real-time PCR (qRT-PCR) and Western blotting. Results The results of histological staining revealed that intra-bone marrow injection of MgIG reduced degeneration and erosion of articular cartilage, substantially reducing the Osteoarthritis Research Society International scores. Furthermore, the productions of inflammatory cytokines in the bone marrow cavity and articular cavity such as interleukin-1β(IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were inhibited upon the treatment of MgIG. At the same time, the expression of alkaline phosphate, tartrate-resistant acid phosphatase-5b (TRAP-5b) and C-telopeptides of type II collagen (CTX-II) in the blood also decreased and was positively correlated. On the contrary, cartilage-related genes in the bone marrow cavity such as type II collagen (Col II), Aggrecan (AGN), and SRY-box 9 (SOX9) were up-regulated, while matrix metalloproteinase-3 (MMP-3) was down-regulated. Mechanistically, MgIG was found to exert an anti-inflammatory effect and impart protection to the cartilage by inhibiting the NF-κB pathway. Conclusion Intra-bone marrow injection of MgIG might inhibit the activation of the NF-κB pathway in the progression of OA to exert an anti-inflammatory effect in the bone marrow cavity and articular cavity, thereby promoting cartilage regeneration of MSCs in the bone marrow, making it a potential new therapeutic intervention for the treatment of OA.
Collapse
Affiliation(s)
- Rong Chen
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiangwei Li
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhibo Sun
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Junyi Yin
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xiaowei Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Jingwen Deng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xinghui Liu
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
36
|
Assessment of the Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells against a Monoiodoacetate-Induced Osteoarthritis Model in Wistar Rats. Stem Cells Int 2022; 2022:1900403. [PMID: 36017131 PMCID: PMC9398859 DOI: 10.1155/2022/1900403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) of the knee is a debilitating condition that can severely limit an individual's mobility and quality of life. This study was designed to evaluate the efficacy of bone marrow-derived mesenchymal stem cell (BM-MSC) treatment in cartilage repair using a rat model of monoiodoacetate- (MIA-) induced knee OA. OA was induced in the knee joint of rats by an intracapsular injection of MIA (2 mg/50 μL) on day zero. The rats were divided into three groups (n = 6): a normal control group, an osteoarthritic control group, and an osteoarthritic group receiving a single intra-articular injection of BM-MSCs (5 × 106 cells/rat). The knee diameter was recorded once per week. By the end of the performed experiment, X-ray imaging and enzyme-linked immunosorbent assay analysis of serum inflammatory cytokines interleukin-1beta (IL-β), IL-6, and tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta (TGF-β) were carried out. In addition, RT-PCR was used to measure nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and type II collagen mRNA levels and Western blot analysis was used to determine caspase-3 protein levels in all treated groups. Finally, hematoxylin/and eosin stains were used for histopathological investigation. Administration of BM-MSCs significantly downregulated knee joint swelling and MIA-induced (IL-1β, IL-6, and TNF-α) and upregulated IL-10 and TGF-β as well. Moreover, BM-MSC-treated osteoarthritic rats exhibited decreased expression of NF-κB, iNOS, and apoptotic mediator (caspase-3) and increased expression of type II collagen when compared to rats treated with MIA alone. The hematoxylin/eosin-stained sections revealed that BM-MSC administration ameliorated the knee joint alterations in MIA-injected rats. BM-MSCs could be an effective treatment for inflamed knee joints in the MIA-treated rat model of osteoarthritis, and the effect may be mediated via its anti-inflammatory and antioxidant potential.
Collapse
|
37
|
Liu K, Fan XE, Zhang L, Yang Y, Zhou XL. Circ-NCX1 inhibits LPS-induced chondrocyte apoptosis by regulating the miR-133a/SIRT1 axis. Kaohsiung J Med Sci 2022; 38:992-1000. [PMID: 35894157 DOI: 10.1002/kjm2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, which is characterized by the degeneration of articular cartilage, thickening of subchondral bone, and inflammation of the synovial membrane. In this study, we aimed to investigate the effects and underlying mechanisms of circ-NCX1 in lipopolysaccharide (LPS)-induced injury in SW1353 chondrocytes, an in vitro model of OA. The levels of circ-NCX1, miR-133a, and related apoptotic proteins were determined by RT-qPCR. MTT assay was used to evaluate the cell viability. The apoptosis was determined by flow cytometry, whereas the expression of apoptosis proteins was detected by Western blot. Immunofluorescence was used to detect cleaved caspase-3 expression in cells. Luciferase reporter assay was used to verify the interaction between circ-NCX1 and miR-133a, and between miR-133a and Silent information regulator 2 homolog 1 (Sirt1). The results showed that the overexpression of circ-NCX1 significantly upregulated the chondrocyte viability and proliferation, and alleviated apoptosis in LPS-induced SW1353 cells. Immunofluorescence results showed that the overexpression of circ-NCX1 significantly reduced expression of LPS-stimulated cleaved Caspase-3. The RT-qPCR results showed that the overexpression of circ-NCX1 inhibited mRNA levels of cleaved Caspase-3 and Bax, and promoted mRNA levels of Bcl-2. Luciferase reporter assay showed that circ-NCX1 targeted miR-133a, and miR-133a directly targeted the Sirt1. In addition, overexpression of circ-NCX1 inhibited chondrocyte apoptosis and promoted Akt phosphorylation via the miR-133a/Sirt1 axis in LPS-induced chondrocytes. In conclusion, circ-NCX1 may serve as an important regulator of LPS-induced chondrocyte apoptosis through the miR-133a/Sirt1 axis, and may be involved in the development of OA.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Xiao-E Fan
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Li Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Ying Yang
- Yan'an University, Yan'an City, Shaanxi Province, China
| | - Xiao-Ling Zhou
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| |
Collapse
|
38
|
Luo P, Huang Q, Chen S, Wang Y, Dou H. Asiaticoside ameliorates osteoarthritis progression through activation of Nrf2/HO-1 and inhibition of the NF-κB pathway. Int Immunopharmacol 2022; 108:108864. [PMID: 35623293 DOI: 10.1016/j.intimp.2022.108864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Osteoarthritis has become the fourth cause of disability in the world and its occurrence and development are caused by apoptosis and extracellular matrix (ECM) degradation of chondrocytes. Asiaticoside (ASI) is a triterpene saponin compound obtained from Centella Asiatica and has anti-inflammatory and anti-apoptotic effects in various diseases. However, its effects on OA are not clear. In this study, we reported that ASI has a protective effect on the occurrence and progression of OA in vivo and in vitro, and demonstrated its potential molecular mechanism. In vitro, ASI treatment inhibited the release of pro-apoptotic factors induced by TBHP and promoted the release of the anti-apoptotic proteins. In addition, ASI promotes the expression of Aggrecan and Collagen II, while inhibiting the expression of thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinase-13 (MMP-13), which causes extracellular matrix (ECM) degradation. Mechanistically, ASI exerts its anti-apoptotic effect by activating the Nrf2/HO-1 pathway and preventing p65 from binding to DNA. Similarly, in vivo, ASI has been shown to have a protective effect in a mouse OA model. The conclusion is that our research shows that ASI can be used as a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qishan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Suo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinghui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
39
|
Cai L, Huang N, Zhang X, Wu S, Wang L, Ke Q. Long non-coding RNA plasmacytoma variant translocation 1 and growth arrest specific 5 regulate each other in osteoarthritis to regulate the apoptosis of chondrocytes. Bioengineered 2022; 13:13680-13688. [PMID: 35706414 PMCID: PMC9275885 DOI: 10.1080/21655979.2022.2063653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and growth arrest specific 5 (GAS5) have opposite functions in the apoptosis of chondrocytes, which are involved in the pathogenesis of osteoarthritis (OA). The opposite roles of PVT1 and GAS5 in OA may indicate the existence of crosstalk between them in OA. This study aimed to explore the possible interaction between PVT1 and GAS5 in OA. Accumulation of PVT1 and GAS5 in OA and control synovial fluid samples was measured by RT-qPCR. The interaction between PVT1 and GAS5 in chondrocytes was explored by overexpression experiments. Dual-luciferase reporter assay was performed to analyze the binding of PVT1 and GAS5 to each other’s promoter regions. Regulatory roles of PVT1 and GAS5 in the apoptosis of chondrocytes were studied with cell apoptosis assay. PVT1 was upregulated in OA, and GAS5 was downregulated in OA. An inverse correlation between PVT1 and GAS5 was observed across OA samples. Under lipopolysaccharides (LPS) treatment, PVT1 was upregulated and GAS5 was downregulated. Interestingly, PVT1 and GAS5 overexpression downregulated each other in chondrocytes. Cell apoptosis analysis showed that PVT1 overexpression promoted cell apoptosis, while GAS5 overexpression suppressed cell apoptosis induced by LPS. Co-transfection of PVT1 and GAS5 failed to significantly affect cell apoptosis. PVT1 and GAS5 directly bound to each other’s promoter regions. Our study characterized the interaction between PVT1 and GAS5 in OA. Their interaction regulated the apoptosis of chondrocytes, which play a critical role in OA. PVT1 and GAS5 may form a negative feedback loop in OA.
Collapse
Affiliation(s)
- Liquan Cai
- Department of Trauma Orthopaedics, Joint Surgery, Donghai Hospital, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Nianlai Huang
- Department of Trauma Orthopaedics, Joint Surgery, Donghai Hospital, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Xiaolu Zhang
- Department of Trauma Orthopaedics, Joint Surgery, Donghai Hospital, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Shiqiang Wu
- Department of Trauma Orthopaedics, Joint Surgery, Donghai Hospital, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Liangming Wang
- Department of Trauma Orthopaedics, Joint Surgery, Donghai Hospital, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| | - Qingfeng Ke
- Department of Trauma Orthopaedics, Joint Surgery, Donghai Hospital, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, China
| |
Collapse
|
40
|
Zhang C, Lin Y, Yan CH, Zhang W. Adipokine Signaling Pathways in Osteoarthritis. Front Bioeng Biotechnol 2022; 10:865370. [PMID: 35519618 PMCID: PMC9062110 DOI: 10.3389/fbioe.2022.865370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease that affects millions of individuals. The pathogenesis of OA has not been fully elucidated. Obesity is a well-recognized risk factor for OA. Multiple studies have demonstrated adipokines play a key role in obesity-induced OA. Increasing evidence show that various adipokines may significantly affect the development or clinical course of OA by regulating the pro/anti-inflammatory and anabolic/catabolic balance, matrix remodeling, chondrocyte apoptosis and autophagy, and subchondral bone sclerosis. Several signaling pathways are involved but still have not been systematically investigated. In this article, we review the cellular and molecular mechanisms of adipokines in OA, and highlight the possible signaling pathways. The review suggested adipokines play important roles in obesity-induced OA, and exert downstream function via the activation of various signaling pathways. In addition, some pharmaceuticals targeting these pathways have been applied into ongoing clinical trials and showed encouraging results. However, these signaling pathways are complex and converge into a common network with each other. In the future work, more research is warranted to further investigate how this network works. Moreover, more high quality randomised controlled trials are needed in order to investigate the therapeutic effects of pharmaceuticals against these pathways for the treatment of OA. This review may help researchers to better understand the pathogenesis of OA, so as to provide new insight for future clinical practices and translational research.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
41
|
USP7 Attenuates Endoplasmic Reticulum Stress and NF-κB Signaling to Modulate Chondrocyte Proliferation, Apoptosis, and Inflammatory Response under Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1835900. [PMID: 35432716 PMCID: PMC9007692 DOI: 10.1155/2022/1835900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this research was to observe the functions and mechanisms of ubiquitin-specific peptidase 7 (USP7) on chondrocytes under tumor necrosis factor alpha- (TNF-α-) induced inflammation. Knee osteoarthritis (OA) models of mice were constructed by anterior cruciate ligament transection. The knee joint of mice was observed by histological staining, and the expression of USP7 was measured by immunohistochemistry staining. After knocking down or inhibiting USP7, chondrocyte proliferation was measured by histological staining and the CCK-8 assay; apoptosis was measured by western blot, flow cytometry, Caspase-3 activity, and TUNEL staining; and inflammatory response was measured by qRT-PCR and ELISA. The 4-phenylbutyric acid (4-PBA), siRNA of CHOP (si-CHOP), and QNZ were used to verify the signaling pathways. It was found that USP7 was reduced in the knee joint cartilage of OA mice. The knockdown of USP7 or its inhibitor decreased chondrocyte proliferation and accelerated apoptosis and inflammatory response under inflammation. The USP7 inhibitor exacerbated cartilage destruction in mice with OA. The knockdown of USP7 or its inhibitor activated the BiP-eIF2α-ATF4-CHOP signaling of endoplasmic reticulum stress (ERS) and NF-κB/p65 signaling. 4-PBA, si-CHOP, and QNZ partly reversed chondrocyte proliferation, apoptosis, and inflammatory response caused by USP7 knockdown. In conclusion, through inhibiting the BiP-eIF2α-ATF4-CHOP signaling of ERS and NF-κB/p65 signaling, USP7 promotes chondrocyte proliferation and suppresses the apoptosis and inflammatory response under TNF-α-induced inflammation.
Collapse
|
42
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|
43
|
Zhu P, Chen C, Wu D, Chen G, Tan R, Ran J. AGEs-induced MMP-9 activation mediated by Notch1 signaling is involved in impaired wound healing in diabetic rats. Diabetes Res Clin Pract 2022; 186:109831. [PMID: 35306046 DOI: 10.1016/j.diabres.2022.109831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
Abstract
AIMS To elucidate the relationship between advanced glycation end products (AGEs), Notch1 signaling, nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in diabetic wound healing in vitro and in vivo. METHODS We incubated primary keratinocytes with AGEs alone or AGEs along with γ-secretase inhibitor DAPT, and established diabetic rat wound model by intraperitoneal streptozotocin treatment. The Notch1 signaling components and MMP-9 expression were detected by qPCR, western blotting and gelatin zymography. RESULTS The exposure of primary keratinocytes to AGEs led to a significant increase in Notch intracellular domain (NICD), Delta-like 4 (Dll4), and Hes1; however, Notch1 expression was inhibited by the RAGE siRNA. Furthermore, MMP-9 activation was up-regulated, secondary to AGEs treatment. In contrast, increased MMP-9 expression by AGEs-stimulation was eliminated after treatment with DAPT. NF-κB activation participated in the Notch1-modulated MMP-9 expression. Notably, in the diabetic animal model, inhibition of the Notch signaling pathway with DAPT attenuated NICD and MMP-9 overexpression, improved collagen accumulation, and ultimately accelerated diabetic wound healing. CONCLUSIONS These findings identified that activation of the Notch1/NF-κB/MMP-9 pathway, in part, mediates the repressive effects of AGEs on diabetic wound healing and that targeting this pathway may be a potential strategy to improve impaired diabetic wound healing.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Chuping Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Daoai Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Bengbu Medical College, Bengbu 233099, China
| | - Guangshu Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Rongshao Tan
- Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Jianmin Ran
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China.
| |
Collapse
|
44
|
Qi L, Wang M, He J, Jia B, Ren J, Zheng S. E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis. Chem Biol Interact 2022; 360:109921. [DOI: 10.1016/j.cbi.2022.109921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022]
|
45
|
Song L, Li X, Sun Q, Zhao Y. Fxyd5 activates the NF‑κB pathway and is involved in chondrocytes inflammation and extracellular matrix degradation. Mol Med Rep 2022; 25:134. [PMID: 35191523 PMCID: PMC8908309 DOI: 10.3892/mmr.2022.12650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
It is known that increased inflammation and extracellular matrix (ECM) degradation in chondrocytes can promote the development of osteoarthritis (OA). The FXYD domain containing ion transport regulator 5 (Fxyd5) has been found to promote chronic inflammatory responses. The present study aimed to investigate the role of Fxyd5 in OA. Murine ATDC5 chondrocytes were transfected with short hairpin RNAs specifically targeting Fxyd5 to silence its expression. Subsequently, cells were induced with lipopolysaccharide (LPS). The protein expression levels of Fxyd5, MMPs and proteins related to ECM, apoptosis and NF-κB signaling were detected using western blot analysis. In addition, cell viability was assessed using a Cell Counting Kit-8 assay, while the secretion of the proinflammatory factors and those of the oxidative stress-related markers were measured using the corresponding kits. Finally, cells were treated with the NF-κB activator, betulinic acid (BA) and the above experiments were repeated. The results demonstrated that Fxyd5 was significantly upregulated in ATDC5 cells treated with LPS. Additionally, Fxyd5 knockdown increased cell viability, enhanced the protein expression of Bcl-2, Aggrecan and collagen II, while reduced the expression of Bax, cleaved caspase-3/caspase-3, MMP3 and MMP13 in LPS-induced ATDC5 cells. The production of IL-1β, IL-6 and IL-18 as well as reactive oxygen species and malondialdehyde, and the reduction of superoxide dismutase caused by LPS in ATDC5 cells, were also reversed by Fxyd5 silencing. Fxyd5 silencing inhibited the phosphorylation of p65 and IκBα induced by LPS. Finally, BA reversed the protective effect of Fxyd5 silencing on LPS induced chondrocytes injury. In conclusion, Fxyd5 could enhance chondrocyte inflammation and ECM degradation via activating the NF-κB signaling.
Collapse
Affiliation(s)
- Lulu Song
- Capital University of Physical Education and Sports, Haidian, Beijing 100191, P.R. China
| | - Xingxing Li
- Capital University of Physical Education and Sports, Haidian, Beijing 100191, P.R. China
| | - Qingwan Sun
- University of Derby, Derby DE1 3PF, United Kingdom
| | - Yifeng Zhao
- Faculty of Education, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
46
|
Hua T, Wang H, Fan X, An N, Li J, Song H, Kong E, Li Y, Yuan H. BRD4 Inhibition Attenuates Inflammatory Pain by Ameliorating NLRP3 Inflammasome-Induced Pyroptosis. Front Immunol 2022; 13:837977. [PMID: 35154163 PMCID: PMC8826720 DOI: 10.3389/fimmu.2022.837977] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic pain, such as persistent inflammatory pain, remains a public health problem that has no effective treatment at present. Bromodomain-containing protein 4 (BRD4) inhibition, induced by JQ1 injection or BRD4 knockdown, has been used to attenuate inflammatory pain; However, it remains elusive whether BRD4 aggravates inflammatory pain by regulating inflammasome. Western blot and immunofluorescence staining showed that BRD4 expression increased after administration of complete Freund’s adjuvant (CFA) and reached its peak on day 3. Immunofluorescence staining showed that BRD4 was mainly colocalized with NeuN-positive neurons in the spinal cord, which was accompanied by upregulation of inflammasome component proteins, such as NLRP3, gasdermin D, and caspase-1. JQ1 was intrathecally injected into mice 1 h before CFA administration, and the mechanical and thermal hyperalgesia levels were measured on days 1, 3, and 7 after CFA administration. CFA-induced inflammatory pain, paw inflammation, and swelling were attenuated by pre-treatment with JQ1. To our knowledge, this study was the first to prove that NLRP3 inflammasome-induced neuronal pyroptosis participates in inflammatory pain. BRD4 inhibition decreased the expression of pyroptosis-related proteins by inhibiting the activation of NF-κB signaling pathway, both in vivo and in vitro. Taken together, BRD4 inhibition exerted analgesic and anti-inflammatory effects against inflammatory pain by inhibiting NF-κB and inflammasome activation, which protected neural cells from pyroptosis.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoyi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Ni An
- Chinese People's Liberation Army, Liao Yang, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
47
|
Xu Y, Xue S, Zhang T, Jin X, Wang C, Lu H, Zhong Y, Chen H, Zhu L, Ma J, Sang W. Toddalolactone protects against osteoarthritis by ameliorating chondrocyte inflammation and suppressing osteoclastogenesis. Chin Med 2022; 17:18. [PMID: 35123541 PMCID: PMC8817519 DOI: 10.1186/s13020-022-00576-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoarthritis (OA) is widely recognized as the most common chronic joint disease accompanied by progressive cartilage and subchondral bone damage. Toddalolactone (TOD), a natural compound extracted from Toddalia asiatica (L.) Lam., has been widely used in the treatment of stroke, rheumatoid arthritis, and oedema. Nevertheless, what TOD acts as in the pathogenesis and progression of OA hasn’t been reported. In this investigation, we have aimed to determine how TOD affects OA in vitro and in vivo. Methods LPS (10 µg/ml) and IL-1β (10 ng/ml) were employed to induce chondrocyte inflammation or RANKL to induce osteoclast differentiation in bone marrow derived macrophages (BMMs). The effects of TOD on chondrocyte inflammation and osteoclast differentiation were evaluated. Anterior cruciate ligament transection (ACLT) was performed to develop an OA animal model and study the effects of TOD. Results We found that TOD inhibited the expression of inflammatory and catabolic mediators (IL-6, IL-8, TNF-α, MMP2, MMP9, and MMP13) in inflammatory chondrocytes in vitro. Furthermore, TOD was proven to inhibit RANKL-induced-osteoclastogenesis and inhibit the expression of osteoclast marker genes. Our data also confirmed that TOD suppressed the destruction of articular cartilage and osteoclastogenesis via inhibiting the activation of NF-κB and MAPK signalling pathways. In the ACLT mouse model, we found that TOD attenuated cartilage erosion and inhibited bone resorption. Conclusions These results showed that TOD can be adopted as a potential therapeutic agent for OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00576-w.
Collapse
|
48
|
Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis. Pharmaceuticals (Basel) 2022; 15:ph15020121. [PMID: 35215234 PMCID: PMC8876310 DOI: 10.3390/ph15020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.
Collapse
|
49
|
Scutellarein protects against cardiac hypertrophy via suppressing TRAF2/NF-κB signaling pathway. Mol Biol Rep 2022; 49:2085-2095. [PMID: 34988890 DOI: 10.1007/s11033-021-07026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Scutellarein, a widely studied ingredient of scutellaria herbs, has higher bioavailability and solubility than that of scutellarin. Although the scutellarein had been reported to modulate numerous biological functions, its ability in suppressing cardiac hypertrophy remains unclear. Hence, the present study attempted to investigate whether scutellarein played critical roles in preventing phenylephrine (PE)-induced cardiac hypertrophy. METHODS AND RESULTS Immunocytochemistry (ICC) was employed for evaluating the morphology of the treated cardiomyocytes. Real-time PCR and western blot were respectively applied to assess the mRNA levels and protein expression of the relevant molecules. Bioinformatics analyses were carried out to investigate the potential mechanisms by which scutellarein modulated the PE-induced cardiac hypertrophy. The results showed that Scutellarein treatment significantly inhibited PE-induced increase in H9c2 and AC16 cardiomyocyte size. Besides, scutellarein treatment also dramatically suppressed the expression of the cardiac hypertrophic markers: ANP, BNP and β-MHC. Furthermore, the effects of scutellarein on attenuating the cardiac hypertrophy might be mediated by suppressing the activity of TRAF2/NF-κB signaling pathway. CONCLUSIONS Collectively, our data indicated that scutellarein could protect against PE-induced cardiac hypertrophy via regulating TRAF2/NF-κB signaling pathway using in vitro experiments.
Collapse
|
50
|
Vrouwe JPM, Meulenberg JJM, Klarenbeek NB, Navas-Cañete A, Reijnierse M, Ruiterkamp G, Bevaart L, Lamers RJ, Kloppenburg M, Nelissen RGHH, Huizinga TWJ, Burggraaf J, Kamerling IMC. Administration of an adeno-associated viral vector expressing interferon-β in patients with inflammatory hand arthritis, results of a phase I/II study. Osteoarthritis Cartilage 2022; 30:52-60. [PMID: 34626797 DOI: 10.1016/j.joca.2021.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Inflammatory hand arthritis (IHA) results in impaired function. Local gene therapy with ART-I02, a recombinant adeno-associated virus (AAV) serotype 5 vector expressing interferon (IFN)-β, under the transcriptional control of nuclear factor κ-B responsive promoter, was preclinically shown to have favorable effects. This study aimed to investigate the safety and tolerability of local gene therapy with ART-I02 in patients with IHA. METHODS In this first-in-human, dose-escalating, cohort study, 12 IHA patients were to receive a single intra-articular (IA) injection of ART-I02 ranging 0.3 × 1012-1.2 × 1013 genome copies in an affected hand joint. Adverse events (AEs), routine safety laboratory and the clinical course of disease were periodically evaluated. Baseline- and follow-up contrast enhanced magnetic resonance images (MRIs), shedding of viral vectors in bodily fluids, and AAV5 and IFN-β immune responses were evaluated. A data review committee provided safety recommendations. RESULTS Four patients were enrolled. Long-lasting local AEs were observed in 3 patients upon IA injection of ART-I02. The AEs were moderate in severity and could be treated conservative. Given the duration of the AEs and their possible or probable relation to ART-I02, no additional patients were enrolled. No systemic treatment emergent AEs were observed. The MRIs reflected the AEs by (peri)arthritis. No T-cell response against AAV5 or IFN-β, nor IFN-β antibodies could be detected. Neutralizing antibody titers against AAV5 raised post-dose. CONCLUSION Single IA doses of 0.6 × 1012 or 1.2 × 1012 ART-I02 vector genomes were administered without systemic side effects or serious AEs. However, local tolerability was insufficient for continuation. TRIAL REGISTRATION NCT02727764.
Collapse
Affiliation(s)
- J P M Vrouwe
- Centre for Human Drug Research, Zernikedreef 8, Leiden, 2333 CL, the Netherlands; Leiden University Medical Center (LUMC), Albinusdreef 2, Leiden, 2333 ZA, the Netherlands
| | - J J M Meulenberg
- Department of Oncology, Arthrogen B.V., Meibergdreef 45, Amsterdam, 1005BA, the Netherlands
| | - N B Klarenbeek
- Centre for Human Drug Research, Zernikedreef 8, Leiden, 2333 CL, the Netherlands; Leiden University Medical Center, Department of Internal Medicine, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands
| | - A Navas-Cañete
- Leiden University Medical Center, Department of Radiology, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands.
| | - M Reijnierse
- Leiden University Medical Center, Department of Radiology, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands
| | - G Ruiterkamp
- Department of Oncology, Arthrogen B.V., Meibergdreef 45, Amsterdam, 1005BA, the Netherlands
| | - L Bevaart
- Department of Oncology, Arthrogen B.V., Meibergdreef 45, Amsterdam, 1005BA, the Netherlands
| | - R J Lamers
- Department of Oncology, Arthrogen B.V., Meibergdreef 45, Amsterdam, 1005BA, the Netherlands
| | - M Kloppenburg
- Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands
| | - R G H H Nelissen
- Leiden University Medical Center, Department of Orthopaedics, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands
| | - T W J Huizinga
- Leiden Academic Centre for Drug Research, PO box 9500, Leiden, 2300 RA, the Netherlands
| | - J Burggraaf
- Centre for Human Drug Research, Zernikedreef 8, Leiden, 2333 CL, the Netherlands; Leiden University Medical Center, Department of Internal Medicine, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands; Leiden Academic Centre for Drug Research, PO box 9500, Leiden, 2300 RA, the Netherlands
| | - I M C Kamerling
- Centre for Human Drug Research, Zernikedreef 8, Leiden, 2333 CL, the Netherlands; Leiden University Medical Center, Department of Infectious Diseases, Albinusdreef 2, Leiden, 2333 ZA, the Netherlands.
| |
Collapse
|