1
|
Yu Z, Yang XY, Cai YQ, Hu E, Li T, Zhu WX, Wu Y, Yan QJ, Li ZL, Chen Q, Pei Z, Zheng F, Wang Y, Tang T. Panax Notoginseng Saponins promotes the meningeal lymphatic system-mediated hematoma absorption in intracerebral hemorrhage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156149. [PMID: 39427524 DOI: 10.1016/j.phymed.2024.156149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Hematoma clearance is crucial for treating intracerebral hemorrhage (ICH). Currently, there is a lack of pharmacological therapy aimed at promoting hematoma absorption. Meningeal lymphatic system, as a drain of brain, is a potential therapeutic approach in ICH. Panax Notoginseng Saponins (PNS), proven to promote lymphangiogenesis in periphery, effectively reduces hematoma in ICH patients. However, the potential pharmacological effect of PNS on meningeal lymphatic vessels (MLVs) remains unknown. PURPOSE In this study, we aimed to investigate the impact of PNS on the meningeal lymphatic system and ICH. METHODS The collagenase-ICH model was conducted to investigate the effect of PNS. Behavioral tests, including modified neurological severity score (mNSS) and foot-fault test, and hematoma volume were used to estimate the neurological function and curative effect. The structure and drainage function of MLVs was detected by immunohistochemical staining. Visudyne intracisternal magna injection combined with red laser photoconversion was performed to ablate MLVs. RNA-sequencing was used to obtain mRNA profiles for mechanistic investigation. RESULTS The meningeal lymphatic drainage function was enhanced after ICH on day 14 without obvious lymphangiogenesis. Additionally, PNS further facilitated the process of drain with simultaneously inducing lymphangiogenesis. Moreover, ablation of MLVs by photoconverting of visudyne significantly blocked the benefits of neurological deficits improvement and hematoma absorption conducted by PNS. Furthermore, RNA-sequencing revealed that PNS regulated axonogenesis and inflammation, relying on the intact MLVs. In which, solute carrier family 17 member 7 (Slc17a7) and tumor necrosis factor (Tnf) were identified as bottleneck and hub nodes of the protein-protein interaction network of target genes, respectively. CONCLUSION PNS might be effective for ICH treatment by enhancing lymphangiogenesis and the meningeal lymphatic drainage function, thereby attenuating inflammation and promoting neurological recovery. The role of PNS in regulation of MLVs was investigated for the first time. This study provides a novel insight for PNS in the medical therapy of ICH.
Collapse
Affiliation(s)
- Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xi-Ya Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yi-Qing Cai
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China
| | - Wen-Xin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qiu-Ju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhi-Lin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China.
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Neurology Department of TCM, Xiangya Hospital, Central South University, Jiangxi 330004, PR China.
| |
Collapse
|
2
|
Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024:e12887. [PMID: 39329178 DOI: 10.1111/micc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Song X, Xiao J, Ai X, Li Y, Sun L, Chen L. An injectable thermosensitive hydrogel delivering M2 macrophage-derived exosomes alleviates osteoarthritis by promoting synovial lymphangiogenesis. Acta Biomater 2024:S1742-7061(24)00550-6. [PMID: 39322043 DOI: 10.1016/j.actbio.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative disease affecting millions worldwide, with current treatment measures lacking efficacy in slowing disease progression. The synovial lymphatic system (SLS) has emerged as a crucial player in OA pathogenesis, with compromised drainage function contributing to disease advancement. Lymphatic endothelial cells (LECs) within the SLS are influenced by synovial macrophages, whose precise impact on LEC function remains unclear. Exosomes released by macrophages may serve as mediators of this interaction, with potential implications for OA progression. Here, we propose that polarized macrophages modulate LEC activity via exosome release in synovial tissue, with M2 macrophage-derived exosomes (M2Exo) promoting LEC proliferation, migration, and lymphangiogenesis, potentially offering a therapeutic avenue for OA. Moreover, we developed an injectable thermosensitive hydrogel with the characteristic of sustained release of M2Exo for alleviating OA. The hydrogel was prepared by dynamically linking hyaluronic acid (HA) and Pluronic F-127 and loading M2Exo, termed as M2Exo loaded HP hydrogel. The in vitro and in vivo experiments showed that M2Exo loaded HP hydrogel exhibits a controlled release profile of exosomes, thereby efficaciously fostering synovial lymphangiogenesis and enhancing synovial lymphatic drainage functionality under OA conditions, thus alleviating OA progression, and providing promising insights into OA therapeutic strategies. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is a widespread degenerative disease with limited effective treatments to halt its progression. This research highlights the critical role of the synovial lymphatic system (SLS) in OA, focusing on how macrophage-derived exosomes influence lymphatic endothelial cell (LEC) function. We propose that M2 macrophage-derived exosomes (M2Exo) enhance LEC activity, promoting lymphangiogenesis, and offering a therapeutic approach for OA. Furthermore, we developed an injectable thermosensitive hydrogel (M2Exo loaded HP hydrogel) for sustained M2Exo release. Our in vitro and in vivo experiments demonstrate that this hydrogel supports synovial lymphangiogenesis and improves lymphatic drainage, effectively alleviating OA progression. This study presents significant advancements in OA therapy, offering new insights into its management.
Collapse
Affiliation(s)
- Xiongbo Song
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou 550000, China
| | - Jinwen Xiao
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou 550000, China; Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xiaojun Ai
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Yankun Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou 550000, China.
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou 550000, China; Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Fu Y, Lan Z, Li N, Xing L, Yuan L, Lai J, Feng H, Cong L, Wang Y, He S, Liang Q. The paravertebral lymphatic system is involved in the resorption of the herniated nucleus pulposus and the regression of inflammation associated with disc herniation. Osteoarthritis Cartilage 2024:S1063-4584(24)01361-X. [PMID: 39209246 DOI: 10.1016/j.joca.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate the role of the paravertebral lymphatic system in the nucleus pulposus herniation (NPH) resorption and the inflammation regression. DESIGN Clinical specimens (n = 10) from patients with lumbar disc herniation (LDH) were collected, C57BL/6 (n = 84) and conditional Vegfr3 knockout mice (n = 14) were used. Immunofluorescence staining detected lymphatic vessels (LVs) and NP cells. Near-infrared imaging assessed lymphatic drainage function, and Alcian Blue/Orange determined inflammation. RESULTS Lymphangiogenesis was observed in the herniated NP of patients with LDH, and the proportion of capillary LVs was higher than that of collecting LVs (mean 68.2% [95% confidence interval: 59.4, 77.1]). In NPH mice, NP cells were detected in paravertebral tissue (38.6 [32.0, 45.2]) and draining lymph nodes (dLN) at 4 h (76.9 [54.9, 98.8]). A significant increase of NP cells in dLNs was observed at 24 h (157.1 [113.7, 200.6]). Most of the herniated NP cells were cleared in paravertebral tissue after 1 week (7.5 [4.4, 10.6]), but disc inflammation peaked at 1 week (19.9% [14.7, 25.1]), along with persistent lymphangiogenesis (9.5 [7.2, 11.8]). However, conditional Vegfr3 knockout mice exhibited impaired lymphangiogenesis (5.7 [4.4, 7.0]) and herniated NP cell clearance (6.1 [1.8, 10.5]) during NPH, leading to exacerbated disc inflammation (23.7% [19.3, 28.2]). CONCLUSION The paravertebral lymphatic system is involved in the NPH resorption and inflammation regression. Promoting lymphangiogenesis may be a novel strategy for facilitating NPH resorption and inflammation regression in patients with LDH.
Collapse
Affiliation(s)
- Yuanfei Fu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiming Lan
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Juyi Lai
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Hualong Feng
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lin Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.
| | - Shenghua He
- Department of Orthopedics, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.
| |
Collapse
|
5
|
Xu P, Huang Z, Xu Y, Liu H, Liu Y, Wang L. Editorial: Antioxidants and inflammatory immune-related diseases. Front Immunol 2024; 15:1476887. [PMID: 39224592 PMCID: PMC11366604 DOI: 10.3389/fimmu.2024.1476887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Frontier Innovation Center, Fudan University, Shanghai, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| | - Yuyu Liu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Arroyo-Ataz G, Yagüe AC, Breda JC, Mazzilli SA, Jones D. Transcriptional, developmental, and functional parallels of lymphatic and venous smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604042. [PMID: 39091770 PMCID: PMC11291064 DOI: 10.1101/2024.07.18.604042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for lymphatic vessel contraction and their aberrant recruitment or absence is associated with both primary and secondary lymphedema. Despite their critical role in lymphatic vessel function, the transcriptomic and developmental basis that confer the unique contractile properties to LMCs are largely undefined. In this study, we employed single-cell RNA sequencing (scRNAseq), lineage tracing and in vivo imaging to investigate the basis for the hybrid cardiomyocyte and blood vascular smooth muscle cell (SMC) characteristics that have been described for LMCs. Using scRNAseq, the transcriptomes of LMC and venous SMCs from the murine hindlimb exhibited more similarities than differences, although both were markedly distinct from that of arteriole SMCs in the same tissue. Functionally, both lymphatic vessels and blood vessels in the murine hindlimb displayed pulsatile contractility. However, despite expressing genes that overlap with the venous SMC transcriptome, through lineage tracing we show that LMCs do not originate from Myh11+ SMC progenitors. Previous studies have shown that LMCs express cardiac-related genes, whereas in our study we found that arteriole SMCs, but not LMCs, expressed cardiac-related genes. Through lineage tracing, we demonstrate that a subpopulation of LMCs and SMCs originate from WT1+ mesodermal progenitors, which are known to give rise to SMCs. LMCs, however, do not derive from Nkx2.5+ cardiomyocyte progenitors. Overall, our findings suggest that venous SMCs and LMCs and may derive from a related mesodermal progenitor and adopt a similar gene expression program that enable their contractile properties.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Alejandra Carrasco Yagüe
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Julia C. Breda
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, 75 E. Newton Street, Boston, Massachusetts 02118, USA
| | - Sarah A. Mazzilli
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, 75 E. Newton Street, Boston, Massachusetts 02118, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
7
|
Zheng Y, Wang P, Zhao L, Xing L, Xu H, Li N, Zhao Y, Shi Q, Liang Q, Wang Y. A novel therapy for fracture healing by increasing lymphatic drainage. J Orthop Translat 2024; 45:66-74. [PMID: 38511124 PMCID: PMC10950565 DOI: 10.1016/j.jot.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Background The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.
Collapse
Affiliation(s)
- Yangkang Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - YongJun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| |
Collapse
|
8
|
Zhou S, Zhao G, Chen R, Li Y, Huang J, Kuang L, Zhang D, Li Z, Xu H, Xiang W, Xie Y, Chen L, Ni Z. Lymphatic vessels: roles and potential therapeutic intervention in rheumatoid arthritis and osteoarthritis. Theranostics 2024; 14:265-282. [PMID: 38164153 PMCID: PMC10750203 DOI: 10.7150/thno.90940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.
Collapse
Affiliation(s)
- Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Guangyu Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Yang Li
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110015, People's Republic of China
| | - Zhijun Li
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Haofeng Xu
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Wei Xiang
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Zhenhong Ni
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
9
|
Kenney HM, Rangel-Moreno J, Peng Y, Chen KL, Bruno J, Embong A, Pritchett E, Fox JI, Becerril-Villanueva E, Gamboa-Domínguez A, Quataert S, Muthukrishnan G, Wood RW, Korman BD, Anolik JH, Xing L, Ritchlin CT, Schwarz EM, Wu CL. Multi-omics analysis identifies IgG2b class-switching with ALCAM-CD6 co-stimulation in joint-draining lymph nodes during advanced inflammatory-erosive arthritis. Front Immunol 2023; 14:1237498. [PMID: 37691918 PMCID: PMC10485835 DOI: 10.3389/fimmu.2023.1237498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Defective lymphatic drainage and translocation of B-cells in inflamed (Bin) joint-draining lymph node sinuses are pathogenic phenomena in patients with severe rheumatoid arthritis (RA). However, the molecular mechanisms underlying this lymphatic dysfunction remain poorly understood. Herein, we utilized multi-omic spatial and single-cell transcriptomics to evaluate altered cellular composition (including lymphatic endothelial cells, macrophages, B-cells, and T-cells) in the joint-draining lymph node sinuses and their associated phenotypic changes and cell-cell interactions during RA development using the tumor necrosis factor transgenic (TNF-Tg) mouse model. Methods Popliteal lymph nodes (PLNs) from wild-type (n=10) and TNF-Tg male mice with "Early" (5 to 6-months of age; n=6) and "Advanced" (>8-months of age; n=12) arthritis were harvested and processed for spatial transcriptomics. Single-cell RNA sequencing (scRNAseq) was performed in PLNs from the TNF-Tg cohorts (n=6 PLNs pooled/cohort). PLN histopathology and ELISPOT along with ankle histology and micro-CT were evaluated. Histopathology of human lymph nodes and synovia was performed for clinical correlation. Results Advanced PLN sinuses exhibited an increased Ighg2b/Ighm expression ratio (Early 0.5 ± 0.1 vs Advanced 1.4 ± 0.5 counts/counts; p<0.001) that significantly correlated with reduced talus bone volumes in the afferent ankle (R2 = 0.54, p<0.001). Integration of single-cell and spatial transcriptomics revealed the increased IgG2b+ plasma cells localized in MARCO+ peri-follicular medullary sinuses. A concomitant decreased Fth1 expression (Early 2.5 ± 0.74 vs Advanced 1.0 ± 0.50 counts, p<0.001) within Advanced PLN sinuses was associated with accumulation of iron-laden Prussian blue positive macrophages in lymph nodes and synovium of Advanced TNF-Tg mice, and further validated in RA clinical samples. T-cells were increased 8-fold in Advanced PLNs, and bioinformatic pathway assessment identified the interaction between ALCAM+ macrophages and CD6+ T-cells as a plausible co-stimulatory mechanism to promote IgG2b class-switching. Discussion Collectively, these data support a model of flare in chronic TNF-induced arthritis in which loss of lymphatic flow through affected joint-draining lymph nodes facilitates the interaction between effluxing macrophages and T-cells via ALCAM-CD6 co-stimulation, initiating IgG2b class-switching and plasma cell differentiation of the expanded Bin population. Future work is warranted to investigate immunoglobulin clonality and potential autoimmune consequences, as well as the efficacy of anti-CD6 therapy to prevent these pathogenic events.
Collapse
Affiliation(s)
- H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Kiana L. Chen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer Bruno
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Abdul Embong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Elizabeth Pritchett
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey I. Fox
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Enrique Becerril-Villanueva
- Psychoimmunology Laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Armando Gamboa-Domínguez
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sally Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Ronald W. Wood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin D. Korman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer H. Anolik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Kenney HM, Peng Y, de Mesy Bentley KL, Xing L, Ritchlin CT, Schwarz EM. The Enigmas of Lymphatic Muscle Cells: Where Do They Come From, How Are They Maintained, and Can They Regenerate? Curr Rheumatol Rev 2023; 19:246-259. [PMID: 36705238 PMCID: PMC10257750 DOI: 10.2174/1573397119666230127144711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/29/2022] [Accepted: 12/02/2022] [Indexed: 01/28/2023]
Abstract
Lymphatic muscle cell (LMC) contractility and coverage of collecting lymphatic vessels (CLVs) are integral to effective lymphatic drainage and tissue homeostasis. In fact, defects in lymphatic contractility have been identified in various conditions, including rheumatoid arthritis, inflammatory bowel disease, and obesity. However, the fundamental role of LMCs in these pathologic processes is limited, primarily due to the difficulty in directly investigating the enigmatic nature of this poorly characterized cell type. LMCs are a unique cell type that exhibit dual tonic and phasic contractility with hybrid structural features of both vascular smooth muscle cells (VSMCs) and cardiac myocytes. While advances have been made in recent years to better understand the biochemistry and function of LMCs, central questions regarding their origins, investiture into CLVs, and homeostasis remain unanswered. To summarize these discoveries, unexplained experimental results, and critical future directions, here we provide a focused review of current knowledge and open questions related to LMC progenitor cells, recruitment, maintenance, and regeneration. We also highlight the high-priority research goal of identifying LMC-specific genes towards genetic conditional- inducible in vivo gain and loss of function studies. While our interest in LMCs has been focused on understanding lymphatic dysfunction in an arthritic flare, these concepts are integral to the broader field of lymphatic biology, and have important potential for clinical translation through targeted therapeutics to control lymphatic contractility and drainage.
Collapse
Grants
- R01AG059775,R01AG059775,R01AG059775 NIA NIH HHS
- R01AR056702,R01AR069000,T32AR076950,P30AR069655,R01AR056702,R01AR069000,P30AR069655,T32AR076950,R01AR056702,R01AR069000,T32AR076950,P30AR069655 NIAMS NIH HHS
- P30 AR069655 NIAMS NIH HHS
- R01 AR069000 NIAMS NIH HHS
- T32 GM007356 NIGMS NIH HHS
- R01 AG059775 NIA NIH HHS
- T32GM007356,T32GM007356,T32GM007356,T32GM007356 NIGMS NIH HHS
- T32 AR076950 NIAMS NIH HHS
- R01 AR056702 NIAMS NIH HHS
- F30 AG076326 NIA NIH HHS
Collapse
Affiliation(s)
- H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Sevick-Muraca EM, Fife CE, Rasmussen JC. Imaging peripheral lymphatic dysfunction in chronic conditions. Front Physiol 2023; 14:1132097. [PMID: 37007996 PMCID: PMC10050385 DOI: 10.3389/fphys.2023.1132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
The lymphatics play important roles in chronic diseases/conditions that comprise the bulk of healthcare worldwide. Yet the ability to routinely image and diagnose lymphatic dysfunction, using commonly available clinical imaging modalities, has been lacking and as a result, the development of effective treatment strategies suffers. Nearly two decades ago, investigational near-infrared fluorescence lymphatic imaging and ICG lymphography were developed as routine diagnostic for clinically evaluating, quantifying, and treating lymphatic dysfunction in cancer-related and primary lymphedema, chronic venous disease, and more recently, autoimmune and neurodegenerative disorders. In this review, we provide an overview of what these non-invasive technologies have taught us about lymphatic (dys) function and anatomy in human studies and in corollary animal studies of human disease. We summarize by commenting on new impactful clinical frontiers in lymphatic science that remain to be facilitated by imaging.
Collapse
Affiliation(s)
- Eva M. Sevick-Muraca
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Caroline E. Fife
- Department of Geriatrics, Baylor College of Medicine, Houston, TX, United States
| | - John C. Rasmussen
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Tian J, Chen T, Huang B, Liu Y, Wang C, Cui Z, Xu H, Li Q, Zhang W, Liang Q. Inflammation specific environment activated methotrexate-loaded nanomedicine to treat rheumatoid arthritis by immune environment reconstruction. Acta Biomater 2023; 157:367-380. [PMID: 36513249 DOI: 10.1016/j.actbio.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA), as an autoimmune inflammatory disease, is featured by enhanced vascular permeability, irreversible cartilage destroys and bone erosion. Although the pathogenesis of RA is still unclear, the immune environment, particularly the lymphatic system, which is instrumental to immune cell surveillance and interstitial fluid balance, plays vital roles in the process of RA. Herein, an inflammation specific environment activated methotrexate-encapsulated nanomedicine (MTX@NPs) was constructed for RA treatment, which accumulated in inflamed joints, and released MTX in the specific RA microenvironment. Notably, MTX@NPs could regulate the immune environment including reducing the expressions of inflammatory cytokines of macrophages and the inflammatory level of lymphatic epithelial cells (LECs), and ameliorating the lymphatic vessel contraction and drainage. In vitro and In vivo studies illustrated that MTX@NPs exhibited a high RA therapeutic efficacy and insignificant systemic toxicity owing to the suppression of the inflammation response and the improved lymphatic functions of RA joints. It suggests that the nanomedicine paves a potential way to the clinical practice of autoimmune diseases treatments via the regulation of immune environment and lymphatic functions. STATEMENT OF SIGNIFICANCE: Although 1.0% of the population in the world suffers from rheumatoid arthritis (RA), the pathogenesis of RA is still unclear and the therapeutic effect of the first-line clinical drugs is relatively low. Herein, we propose a specific RA-microenvironment triggered nanomedicine (MTX@NPs), which enhances RA treatment of a first-line antirheumatic drug (methotrexate, MTX) by immune environment reconstruction. The nanomedicine exhibits RA joints accumulation by EPR effect, and releases MTX under the specific RA environment, leading to the dramatical drop of M1-type macrophages and acceleration of lymphatic vessel contraction and drainage. Finally, the inflammatory cytokines in RA immune environment are reduced sharply, indicating the outstanding therapeutic efficacy of MTX@NPs to RA.
Collapse
Affiliation(s)
- Jia Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Chao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Qiang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
13
|
Cao M, Ong MTY, Yung PSH, Tuan RS, Jiang Y. Role of synovial lymphatic function in osteoarthritis. Osteoarthritis Cartilage 2022; 30:1186-1197. [PMID: 35487439 DOI: 10.1016/j.joca.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteoarthritis (OA) affects the entire joint, initially with a low degree of inflammation. Synovitis is correlated with the severity of OA clinical symptoms and cartilage degradation. The synovial lymphatic system (SLS) plays a prominent role in clearing macromolecules within the joint, including the pro-inflammatory cytokines in arthritic status. Scattered evidence shows that impaired SLS drainage function leads to the accumulation of inflammatory factors in the joint and aggravates the progression of OA, and the role of SLS function in OA is less studied. DESIGN This review summarizes the current understanding of synovial lymphatic function in OA progression and potential regulatory pathways and aims to provide a framework of knowledge for the development of OA treatments targeting lymphatic structure and functions. RESULTS SLS locates in the subintima layer of the synovium and consists of lymphatic capillaries and lymphatic collecting vessels. Vascular endothelial growth factor C (VEGF-C) is the most critical regulating factor of lymphatic endothelial cells (LECs) and SLS. Nitric oxide production-induced impairment of lymphatic muscle cells (LMCs) and contractile function may attribute to drainage dysfunction. Preclinical evidence suggests that promoting lymphatic drainage may help restore intra-articular homeostasis to attenuate the progression of OA. CONCLUSION SLS is actively involved in the homeostatic maintenance of the joint. Understanding the drainage function of the SLS at different stages of OA development is essential for further design of therapies targeting the function of these vessels.
Collapse
Affiliation(s)
- M Cao
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - M T Y Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - P S H Yung
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - R S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y Jiang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
14
|
Kenney HM, Peng Y, Bell RD, Wood RW, Xing L, Ritchlin CT, Schwarz EM. Persistent popliteal lymphatic muscle cell coverage defects despite amelioration of arthritis and recovery of popliteal lymphatic vessel function in TNF-Tg mice following anti-TNF therapy. Sci Rep 2022; 12:12751. [PMID: 35882971 PMCID: PMC9325893 DOI: 10.1038/s41598-022-16884-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
While rheumatoid arthritis patients and tumor necrosis factor transgenic (TNF-Tg) mice with inflammatory-erosive arthritis display lymphatic drainage deficits, the mechanisms responsible remain unknown. As ultrastructural studies of joint-draining popliteal lymphatic vessels (PLVs) in TNF-Tg mice revealed evidence of lymphatic muscle cell (LMC) damage, we aimed to evaluate PLV-LMC coverage in TNF-Tg mice. We tested the hypothesis that alpha smooth muscle actin (αSMA)+ PLV-LMC coverage decreases with severe inflammatory-erosive arthritis, and is recovered by anti-TNF therapy facilitated by increased PLV-LMC turnover during amelioration of joint disease. TNF-Tg mice with established disease received anti-TNF monoclonal antibody (mAb) or placebo IgG isotype control mAb therapy (n = 5) for 6-weeks, while wild-type (WT) littermates (n = 8) received vehicle (PBS). Bromodeoxyuridine (BrdU) was also administered daily during the treatment period to monitor PLV-LMC turnover. Effective anti-TNF therapy was confirmed by longitudinal assessment of popliteal lymph node (PLN) volume via ultrasound, PLV contraction frequency via near-infrared imaging of indocyanine green, and ankle bone volumes via micro-computed tomography (micro-CT). Terminal knee micro-CT, and ankle and knee histology were also performed. PLVs were immunostained for αSMA and BrdU to evaluate PLV-LMC coverage and turnover, respectively, via whole-mount fluorescent microscopy. Anti-TNF therapy reduced PLN volume, increased talus and patella bone volumes, and reduced tarsal and knee synovial areas compared to placebo treated TNF-Tg mice (p < 0.05), as expected. Anti-TNF therapy also increased PLV contraction frequency at 3-weeks (from 0.81 ± 1.0 to 3.2 ± 2.0 contractions per minute, p < 0.05). However, both anti-TNF and placebo treated TNF-Tg mice exhibited significantly reduced αSMA+ PLV-LMC coverage compared to WT (p < 0.05). There was no correlation of αSMA+ PLV-LMC coverage restoration with amelioration of inflammatory-erosive arthritis. Similarly, there was no difference in PLV-LMC turnover measured by BrdU labeling between WT, TNF-Tg placebo, and TNF-Tg anti-TNF groups with an average of < 1% BrdU+ PLV-LMCs incorporated per week. Taken together these results demonstrate that PLV-LMC turnover in adult mice is limited, and that recovery of PLV function during amelioration of inflammatory-erosive arthritis occurs without restoration of αSMA+ LMC coverage. Future studies are warranted to investigate the direct and indirect effects of chronic TNF exposure, and the role of proximal inflammatory cells on PLV contractility.
Collapse
Affiliation(s)
- H Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard D Bell
- Department of Research, Hospital for Special Surgery, New York, NY, USA
| | - Ronald W Wood
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher T Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
Jiao D, Liu Y, Hou T, Xu H, Wang X, Shi Q, Wang Y, Xing Q, Liang Q. Notoginsenoside R1 (NG-R1) Promoted Lymphatic Drainage Function to Ameliorating Rheumatoid Arthritis in TNF-Tg Mice by Suppressing NF-κB Signaling Pathway. Front Pharmacol 2022; 12:730579. [PMID: 35280253 PMCID: PMC8909130 DOI: 10.3389/fphar.2021.730579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that is primarily characterized by synovial inflammation. Our previous studies demonstrated that the lymphatic system is critical for the development and maintenance of RA disease, and sufficient lymph drainage helps to improve joint inflammation. In this study, we found that NG-R1, the main active component in the traditional Chinese medicinal herb Sanchi, activating lymphatic function can attenuate synovial inflammation. According to histopathological staining of ankle sections, NG-R1 significantly decreased the area of inflammation and reduced bone destruction of ankle joints in TNF-Tg mice. Near infrared-indocyanine green (NIR-ICG) lymphatic imaging system has shown that NG-R1 significantly improved the lymphatic drainage function. However, the molecular mechanism of its activity is not properly understood. Our in-depth study demonstrates that NG-R1 reduced the inflammatory cytokine production of lymphatic endothelial cells (LECs) stimulated by TNF-α, and the mechanism ameliorated the phosphorylation of IKKα/β and p65, and the translocation of p65 into the nucleus. In summary, this study proved that NG-R1 promoted lymphatic drainage function to ameliorating rheumatoid arthritis in TNF-Tg mice by suppressing NF-κB signaling pathway.
Collapse
Affiliation(s)
- Danli Jiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Tong Hou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Xiaoyun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiujuan Xing
- Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
16
|
Kenney HM, Wu CL, Loiselle AE, Xing L, Ritchlin CT, Schwarz EM. Single-cell transcriptomics of popliteal lymphatic vessels and peripheral veins reveals altered lymphatic muscle and immune cell populations in the TNF-Tg arthritis model. Arthritis Res Ther 2022; 24:64. [PMID: 35255954 PMCID: PMC8900348 DOI: 10.1186/s13075-022-02730-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Lymphatic dysfunction exists in tumor necrosis factor transgenic (TNF-Tg) mice and rheumatoid arthritis (RA) patients. While joint-draining TNF-Tg popliteal lymphatic vessels (PLVs) have deficits in contractility during end-stage arthritis, the nature of lymphatic muscle cells (LMCs) and their TNF-altered transcriptome remain unknown. Thus, we performed single-cell RNA-sequencing (scRNAseq) on TNF-Tg LMCs in PLVs efferent to inflamed joints versus wild-type (WT) controls. Methods Single-cell suspensions of PLVs were sorted for smooth muscle cells (SMCs), which was validated by Cspg4-Cre;tdTomato reporter gene expression. Single-cell RNA-seq was performed on a 10x Genomics platform and analyzed using the Seurat R package. Uniform Manifold Approximation and Projections (UMAPs) and Ingenuity Pathway Analysis software were used to assess cell clusters and functional genomics in WT vs. TNF-Tg populations. Results Fluorescent imaging of Cspg4-Cre;tdTomato vessels demonstrated dim PLVs and strong reporter gene expression in the adjacent superficial saphenous vein, which was corroborated by flow cytometry of LMCs and vascular smooth muscle cells (VSMCs) from these vessels. Due to their unique morphology, these populations could also be readily detected by scatter analysis of cells from non-fluorescent mice. Bioinformatics analysis of flow sorted WT and TNF-Tg cells identified 20 unique cell clusters that together were 22.4% LMCs, 15.0% VSMCs, and 62.6% non-muscle cells of 8879 total cells. LMCs and M2-macrophages were decreased, while inflammatory monocytes were increased in TNF-Tg lower limb vasculature. SMC populations were defined by Cald1, Tpm1, and Pdgfrb expression and were enriched in myofibroblast-like gene expression. TNF-Tg LMCs exhibited enhanced functional genomics associated with cell death, phagocyte recruitment, and joint inflammation. Among the most prominent TNF-induced genes in SMCs were Mmp3, Cxcl12, and Ccl19, and the most downregulated genes were Zbtb16, Galnt15, and Apod. Conclusions Single-cell RNA-seq can be used to investigate functional genomics of lower limb vasculature in mice. Our findings confirm the inflammatory transcriptome of TNF-Tg vessels and altered gene expression in SMC populations. This study further supports a potential role of mesenchymal stromal cells in inflammatory-erosive arthritis pathogenesis, and warrants future studies to define the effects of this TNF-altered transcriptome on PLV function and joint homeostasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02730-z.
Collapse
Affiliation(s)
- H Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher T Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.,Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA. .,Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
17
|
Ambler W, Santambrogio L, Lu TT. Advances in understanding and examining lymphatic function: relevance for understanding autoimmunity. Curr Opin Rheumatol 2022; 34:133-138. [PMID: 34954700 DOI: 10.1097/bor.0000000000000864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to give insights into how novel lymphatics functions may influence autoimmunity. RECENT FINDINGS The lymphatic system connects peripheral tissues to draining lymph nodes to regulate adaptive immunity and directly interfaces with leukocytes in lymph vessels and in the lymph node. Here, we discuss recent findings showing evidence of dysfunctional lymphatics in autoimmune disease, new understanding of how afferent lymphatic regulation can modulate immunity, lymph node lymphatic heterogeneity and how these lymphatics can directly modulate lymphocyte function, how this understanding can be harnessed for new therapeutics, and new tools for the investigation of lymphatic and immune biology. SUMMARY Lymphatics have an active role in the regulation of inflammation and the adaptive immune response. Here, we review recent findings in lymphatics biology in peripheral tissues and lymph nodes and emphasize the relevance for better understanding autoimmune diseases.
Collapse
Affiliation(s)
- William Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery
- Pediatric Rheumatology, Department of Medicine, Hospital for Special Surgery
| | - Laura Santambrogio
- Englander Institute of Precision Medicine
- Radiation Oncology, Weill Cornell Medicine
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery
- Pediatric Rheumatology, Department of Medicine, Hospital for Special Surgery
- Rheumatology, Department of Medicine, Hospital for Special Surgery
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
18
|
Scallan JP, Bouta EM, Rahimi H, Kenney HM, Ritchlin CT, Davis MJ, Schwarz EM. Ex vivo Demonstration of Functional Deficiencies in Popliteal Lymphatic Vessels From TNF-Transgenic Mice With Inflammatory Arthritis. Front Physiol 2021; 12:745096. [PMID: 34646163 PMCID: PMC8503619 DOI: 10.3389/fphys.2021.745096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Recent studies demonstrated lymphangiogenesis and expansion of draining lymph nodes during chronic inflammatory arthritis, and lymphatic dysfunction associated with collapse of draining lymph nodes in rheumatoid arthritis (RA) patients and TNF-transgenic (TNF-Tg) mice experiencing arthritic flare. As the intrinsic differences between lymphatic vessels afferent to healthy, expanding, and collapsed draining lymph nodes are unknown, we characterized the ex vivo behavior of popliteal lymphatic vessels (PLVs) from WT and TNF-Tg mice. We also interrogated the mechanisms of lymphatic dysfunction through inhibition of nitric oxide synthase (NOS). Methods: Popliteal lymph nodes (PLNs) in TNF-Tg mice were phenotyped as Expanding or Collapsed by in vivo ultrasound and age-matched to WT littermate controls. The PLVs were harvested and cannulated for ex vivo functional analysis over a relatively wide range of hydrostatic pressures (0.5-10 cmH2O) to quantify the end diastolic diameter (EDD), tone, amplitude (AMP), ejection fraction (EF), contraction frequency (FREQ), and fractional pump flow (FPF) with or without NOS inhibitors Data were analyzed using repeated measures two-way ANOVA with Bonferroni's post hoc test. Results: Real time videos of the cannulated PLVs demonstrated the predicted phenotypes of robust vs. weak contractions of the WT vs. TNF-Tg PLV, respectively. Quantitative analyses confirmed that TNF-Tg PLVs had significantly decreased AMP, EF, and FPF vs. WT (p < 0.05). EF and FPF were recovered by NOS inhibition, while the reduction in AMP was NOS independent. No differences in EDD, tone, or FREQ were observed between WT and TNF-Tg PLVs, nor between Expanding vs. Collapsed PLVs. Conclusion: These findings support the concept that chronic inflammatory arthritis leads to NOS dependent and independent draining lymphatic vessel dysfunction that exacerbates disease, and may trigger arthritic flare due to decreased egress of inflammatory cells and soluble factors from affected joints.
Collapse
Affiliation(s)
- Joshua P. Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Echoe M. Bouta
- Center for Musculoskeletal Research, Rochester, NY, United States
- Department of Biomedical Engineering, Rochester, MI, United States
| | - Homaira Rahimi
- Center for Musculoskeletal Research, Rochester, NY, United States
- Department of Pediatrics, Rochester, NY, United States
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - H. Mark Kenney
- Center for Musculoskeletal Research, Rochester, NY, United States
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, Rochester, NY, United States
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, Rochester, NY, United States
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, Rochester, NY, United States
- Department of Biomedical Engineering, Rochester, MI, United States
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|