1
|
Newsom SA, Robinson MM. Recent advances in understanding the mechanisms in skeletal muscle of interaction between exercise and frontline antihyperglycemic drugs. Physiol Rep 2024; 12:e16093. [PMID: 38845596 PMCID: PMC11157199 DOI: 10.14814/phy2.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Regular exercise and antihyperglycemic drugs are front-line treatments for type-2 diabetes and related metabolic disorders. Leading drugs are metformin, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide 1 receptor agonists. Each class has strong individual efficacy to treat hyperglycemia, yet the combination with exercise can yield varied results, some of which include blunting of expected metabolic benefits. Skeletal muscle insulin resistance contributes to the development of type-2 diabetes while improvements in skeletal muscle insulin signaling are among key adaptations to exercise training. The current review identifies recent advances into the mechanisms, with an emphasis on skeletal muscle, of the interaction between exercise and these common antihyperglycemic drugs. The review is written toward researchers and thus highlights specific gaps in knowledge and considerations for future study directions.
Collapse
Affiliation(s)
- Sean A. Newsom
- School of Exercise, Sport, and Health Sciences, College of HealthOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Exercise, Sport, and Health Sciences, College of HealthOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
2
|
Mei T, Hu Y, Zhang Y, Li Y. Hypoxia treatment and resistance training alters microRNA profiling in rats skeletal muscle. Sci Rep 2024; 14:8388. [PMID: 38600177 PMCID: PMC11006875 DOI: 10.1038/s41598-024-58996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
MicroRNAs (miRNAs) may play a crucial regulatory role in the process of muscle atrophy induced by high-altitude hypoxia and its amelioration through resistance training. However, research in this aspect is still lacking. Therefore, this study aimed to employ miRNA microarray analysis to investigate the expression profile of miRNAs in skeletal muscle from an animal model of hypoxia-induced muscle atrophy and resistance training aimed at mitigating muscle atrophy. The study utilized a simulated hypoxic environment (oxygen concentration at 11.2%) to induce muscle atrophy and established a rat model of resistance training using ladder climbing, with a total intervention period of 4 weeks. The miRNA expression profile revealed 9 differentially expressed miRNAs influenced by hypoxia (e.g., miR-341, miR-32-5p, miR-465-5p) and 14 differentially expressed miRNAs influenced by resistance training under hypoxic conditions (e.g., miR-338-5p, miR-203a-3p, miR-92b-3p) (∣log2(FC)∣ ≥ 1.5, p < 0.05). The differentially expressed miRNAs were found to target genes involved in muscle protein synthesis and degradation (such as Utrn, mdm2, eIF4E), biological processes (such as negative regulation of transcription from RNA polymerase II promoter, regulation of transcription, DNA-dependent), and signaling pathways (such as Wnt signaling pathway, MAPK signaling pathway, ubiquitin-mediated proteolysis, mTOR signaling pathway). This study provides a foundation for understanding and further exploring the molecular mechanisms underlying hypoxia-induced rats muscle atrophy and the mitigation of atrophy through resistance training.
Collapse
Affiliation(s)
- Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Ying Zhang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| |
Collapse
|
3
|
Yan X, Fu P, Zhang Y, Ling D, Reynolds L, Hua W, Wang Z, Ma F, Li B, Yu J, Liu Y, Gong L, Zhang E. MCC950 Ameliorates Diabetic Muscle Atrophy in Mice by Inhibition of Pyroptosis and Its Synergistic Effect with Aerobic Exercise. Molecules 2024; 29:712. [PMID: 38338456 PMCID: PMC10856337 DOI: 10.3390/molecules29030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic muscle atrophy is an inflammation-related complication of type-2 diabetes mellitus (T2DM). Even though regular exercise prevents further deterioration of atrophic status, there is no effective mediator available for treatment and the underlying cellular mechanisms are less explored. In this study, we investigated the therapeutic potential of MCC950, a specific, small-molecule inhibitor of NLRP3, to treat pyroptosis and diabetic muscle atrophy in mice. Furthermore, we used MCC950 to intervene in the protective effects of aerobic exercise against muscle atrophy in diabetic mice. Blood and gastrocnemius muscle (GAS) samples were collected after 12 weeks of intervention and the atrophic state was assessed. We initially corroborated a diabetic muscle atrophy phenotype in db/db mice (D) by comparison with control m/m mice (W) by examining parameters such as fasting blood glucose (D vs. W: 24.47 ± 0.45 mmol L-1 vs. 4.26 ± 0.6 mmol L-1, p < 0.05), grip strength (D vs. W: 166.87 ± 15.19 g vs. 191.76 ± 14.13 g, p < 0.05), exercise time (D vs. W: 1082.38 ± 104.67 s vs. 1716 ± 168.55 s, p < 0.05) and exercise speed to exhaustion (D vs. W: 24.25 ± 2.12 m min-1 vs. 34.75 ± 2.66 m min-1, p < 0.05), GAS wet weight (D vs. W: 0.07 ± 0.01 g vs. 0.13 ± 0.01 g, p < 0.05), the ratio of GAS wet weight to body weight (D vs. W: 0.18 ± 0.01% vs. 0.54 ± 0.02%, p < 0.05), and muscle fiber cross-sectional area (FCSA) (D vs. W: 1875 ± 368.19 µm2 vs. 2747.83 ± 406.44 µm2, p < 0.05). We found that both MCC950 (10 mg kg-1) treatment and exercise improved the atrophic parameters that had deteriorated in the db/db mice, inhibited serum inflammatory markers and significantly attenuated pyroptosis in atrophic GAS. In addition, a combined MCC950 treatment with exercise (DEI) exhibited a further improvement in glucose uptake capacity and muscle performance. This combined treatment also improved the FCSA of GAS muscle indicated by Laminin immunofluorescence compared to the group with the inhibitor treatment alone (DI) (DEI vs. DI: 2597 ± 310.97 vs. 1974.67 ± 326.15 µm2, p < 0.05) or exercise only (DE) (DEI vs. DE: 2597 ± 310.97 vs. 2006.33 ± 263.468 µm2, p < 0.05). Intriguingly, the combination of MCC950 treatment and exercise significantly reduced NLRP3-mediated inflammatory factors such as cleaved-Caspase-1, GSDMD-N and prevented apoptosis and pyroptosis in atrophic GAS. These findings for the first time demonstrate that targeting NLRP3-mediated pyroptosis with MCC950 improves diabetic muscle homeostasis and muscle function. We also report that inhibiting pyroptosis by MCC950 can enhance the beneficial effects of aerobic exercise on diabetic muscle atrophy. Since T2DM and muscle atrophy are age-related diseases, the young mice used in the current study do not seem to fully reflect the characteristics of diabetic muscle atrophy. Considering the fragile nature of db/db mice and for the complete implementation of the exercise intervention, we used relatively young db/db mice and the atrophic state in the mice was thoroughly confirmed. Taken together, the current study comprehensively investigated the therapeutic effect of NLRP3-mediated pyroptosis inhibited by MCC950 on diabetic muscle mass, strength and exercise performance, as well as the synergistic effects of MCC950 and exercise intervention, therefore providing a novel strategy for the treatment of the disease.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Pengyu Fu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yimin Zhang
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Dongmei Ling
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Lewis Reynolds
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 21428 Malmö, Sweden (E.Z.)
- NanoLund Center for NanoScience, Lund University, 22100 Lund, Sweden
| | - Weicheng Hua
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Zhiyuan Wang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Fangyuan Ma
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- School of Life Sciences, Nankai University, Tianjin 300071, China
| | - Boxuan Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingjing Yu
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
| | - Yujia Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 21428 Malmö, Sweden (E.Z.)
- NanoLund Center for NanoScience, Lund University, 22100 Lund, Sweden
| |
Collapse
|
4
|
Zhang L, Lin H, Yang X, Shi J, Sheng X, Wang L, Li T, Quan H, Zhai X, Li W. Effects of dapagliflozin monotherapy and combined aerobic exercise on skeletal muscle mitochondrial quality control and insulin resistance in type 2 diabetes mellitus rats. Biomed Pharmacother 2023; 169:115852. [PMID: 37944441 DOI: 10.1016/j.biopha.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent, chronic metabolic disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and aerobic exercise (AE) have shown promise in mitigating insulin resistance (IR) and T2DM. This study investigated the effects of dapagliflozin (Dapa) monotherapy and combined AE on mitochondrial quality control (MQC) in skeletal muscle and IR in T2DM rats. T2DM rats, induced by a high-fat diet/streptozotocin model, were randomly assigned to the following groups: T2DM+vehicle group (DMV), T2DM rats treated with Dapa (DMDa, 10 mg/kg/d), T2DM rats subjected to combined Dapa treatment and AE (DMDa+AE), and the standard control group (CON). Blood and skeletal muscle samples were collected after 6 weeks of intragastric administration and treadmill exercise. The results showed that DMDa monotherapy could reduce the accumulation of white adipose tissue and skeletal muscle lipid droplets and improve HOMA-IR. While the combined AE led to further reductions in subcutaneous white adipose tissue and fasting glucose levels, it did not confer additional benefits in terms of HOMA-IR. Furthermore, Dapa monotherapy enhanced skeletal muscle mitochondrial biogenesis (PGC-1α, NRF1, TFAM, and COX IV), mitochondrial dynamics (OPA1, DRP1, and MFN2), and mitophagy (PGAM5 and PINK1) related protein levels. Nevertheless, the combination of Dapa with AE treatment did not yield an additive effect. In conclusion, this study highlights the potential of SGLT2 inhibitors, specifically Dapa, in ameliorating IR and maintaining MQC in skeletal muscle in rats with T2DM. However, combined AE did not produce an additive effect, indicating the need for further research.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hengjun Lin
- Department of Colorectal anal Surgery, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xudong Yang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jipeng Shi
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China
| | - Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China
| | - Lifeng Wang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Ting Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Helong Quan
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China.
| | - Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China.
| | - Wei Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
5
|
Yang X, Wang L, Zhang L, Zhai X, Sheng X, Lin H, Quan H. Correction: Exercise mitigates Dapagliflozin-induced skeletal muscle atrophy in STZ-induced diabetic rats. Diabetol Metab Syndr 2023; 15:171. [PMID: 37592289 PMCID: PMC10433557 DOI: 10.1186/s13098-023-01139-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Affiliation(s)
- Xudong Yang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Lifeng Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Liangzhi Zhang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Hengjun Lin
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua, Zhejiang, China.
- School of Sports Science and Physical Education, Research Center of Sports and Health Science, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, China.
| | - Helong Quan
- Department of Colorectal Anal Surgery, Jinhua People's Hospital, 267 Danxi East Road, Jinhua, 321007, Zhejiang, China.
| |
Collapse
|