1
|
Formichetti S, Sadowska A, Ascolani M, Hansen J, Ganter K, Lancrin C, Humphreys N, Boulard M. Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo. PLoS Genet 2025; 21:e1011507. [PMID: 39787076 PMCID: PMC11717234 DOI: 10.1371/journal.pgen.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees. The severity of the embryonic lethality was proportional to the extent of impairment of OGT's catalysis, demonstrating that the O-GlcNAc modification itself is required for early development. We identified hypomorphic Ogt alleles that perturb O-GlcNAc homeostasis while being compatible with embryogenesis. The analysis of the transcriptomes of the mutant embryos at different developmental stages suggested a sexually-dimorphic developmental delay caused by the decrease in O-GlcNAc. Furthermore, a mild reduction of OGT's enzymatic activity was sufficient to loosen the silencing of endogenous retroviruses in vivo.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Agnieszka Sadowska
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Michela Ascolani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Julia Hansen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Kerstin Ganter
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Christophe Lancrin
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Neil Humphreys
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Mathieu Boulard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| |
Collapse
|
2
|
Saha K, Nielsen G, Nandani R, Zhang Y, Kong L, Ye P, An W. YY1 is a transcriptional activator of the mouse LINE-1 Tf subfamily. Nucleic Acids Res 2024; 52:12878-12894. [PMID: 39460630 PMCID: PMC11602158 DOI: 10.1093/nar/gkae949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element in human and mouse genomes. L1 transcription is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (5'UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence at the 5' end of the human L1 5'UTR and primarily dictates where transcription initiates. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in 5'UTR monomers and YY1 functions as a transcriptional activator for the mouse Tf subfamily. Activation of Tf transcription by YY1 during early embryogenesis is also supported by a reanalysis of published zygotic knockdown data. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between Tf monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation across the genome.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Grace I Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Yizi Zhang
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Huang Y, Gao Y, Ly K, Lin L, Lambooij JP, King EG, Janssen A, Wei KHC, Lee YCG. Varying recombination landscapes between individuals are driven by polymorphic transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613564. [PMID: 39345575 PMCID: PMC11429682 DOI: 10.1101/2024.09.17.613564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Meiotic recombination is a prominent force shaping genome evolution, and understanding the causes for varying recombination landscapes within and between species has remained a central, though challenging, question. Recombination rates are widely observed to negatively associate with the abundance of transposable elements (TEs), selfish genetic elements that move between genomic locations. While such associations are usually interpreted as recombination influencing the efficacy of selection at removing TEs, accumulating findings suggest that TEs could instead be the cause rather than the consequence. To test this prediction, we formally investigated the influence of polymorphic, putatively active TEs on recombination rates. We developed and benchmarked a novel approach that uses PacBio long-read sequencing to efficiently, accurately, and cost-effectively identify crossovers (COs), a key recombination product, among large numbers of pooled recombinant individuals. By applying this approach to Drosophila strains with distinct TE insertion profiles, we found that polymorphic TEs, especially RNA-based TEs and TEs with local enrichment of repressive marks, reduce the occurrence of COs. Such an effect leads to different CO frequencies between homologous sequences with and without TEs, contributing to varying CO maps between individuals. The suppressive effect of TEs on CO is further supported by two orthogonal approaches-analyzing the distributions of COs in panels of recombinant inbred lines in relation to TE polymorphism and applying marker-assisted estimations of CO frequencies to isogenic strains with and without transgenically inserted TEs. Our investigations reveal how the constantly changing mobilome can actively modify recombination landscapes, shaping genome evolution within and between species.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yi Gao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Kayla Ly
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jan Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | | | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands
| | - Kevin H.-C. Wei
- Department of Zoology, University of British Columbia, Canada
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Osakabe A, Takizawa Y, Horikoshi N, Hatazawa S, Negishi L, Sato S, Berger F, Kakutani T, Kurumizaka H. Molecular and structural basis of the chromatin remodeling activity by Arabidopsis DDM1. Nat Commun 2024; 15:5187. [PMID: 38992002 PMCID: PMC11239853 DOI: 10.1038/s41467-024-49465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Marin H, Simental E, Allen C, Martin E, Panning B, Al-Sady B, Buchwalter A. The nuclear periphery confers repression on H3K9me2-marked genes and transposons to shape cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602542. [PMID: 39026839 PMCID: PMC11257442 DOI: 10.1101/2024.07.08.602542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons. Further, mutant cells fail to differentiate into epiblast-like cells (EpiLCs), a transition that requires the expansion of H3K9me2 across the genome. Mutant EpiLCs can silence naïve pluripotency genes and activate epiblast-stage genes. However, H3K9me2 cannot repress markers of alternative fates, including primitive endoderm. We conclude that the nuclear periphery controls the spatial position, dynamic remodeling, and repressive capacity of H3K9me2-marked heterochromatin to shape cell fate decisions.
Collapse
Affiliation(s)
- Harold Marin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Simental
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Charlie Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Martin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Zhang X, Celic I, Mitchell H, Stuckert S, Vedula L, Han J. Comprehensive profiling of L1 retrotransposons in mouse. Nucleic Acids Res 2024; 52:5166-5178. [PMID: 38647072 PMCID: PMC11109951 DOI: 10.1093/nar/gkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here, we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200 000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single-cell level in vivo.
Collapse
Affiliation(s)
- Xuanming Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ivana Celic
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hannah Mitchell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sam Stuckert
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lalitha Vedula
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jeffrey S Han
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Oomen ME, Torres-Padilla ME. Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo. EMBO Rep 2024; 25:1721-1733. [PMID: 38528171 PMCID: PMC11015026 DOI: 10.1038/s44319-024-00118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.
Collapse
Affiliation(s)
- Marlies E Oomen
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
8
|
Dumont BL, Gatti DM, Ballinger MA, Lin D, Phifer-Rixey M, Sheehan MJ, Suzuki TA, Wooldridge LK, Frempong HO, Lawal RA, Churchill GA, Lutz C, Rosenthal N, White JK, Nachman MW. Into the Wild: A novel wild-derived inbred strain resource expands the genomic and phenotypic diversity of laboratory mouse models. PLoS Genet 2024; 20:e1011228. [PMID: 38598567 PMCID: PMC11034653 DOI: 10.1371/journal.pgen.1011228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.
Collapse
Affiliation(s)
- Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Mallory A. Ballinger
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Dana Lin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan Phifer-Rixey
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Taichi A. Suzuki
- College of Health Solutions and Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, United States of America
| | - Lydia K. Wooldridge
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Hilda Opoku Frempong
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Raman Akinyanju Lawal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jacqueline K. White
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology, Museum of Vertebrate Zoology, and Center for Computational Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
9
|
Martínez Duncker Rebolledo E, Chan D, Christensen KE, Reagan AM, Howell GR, Rozen R, Trasler J. Sperm DNA methylation defects in a new mouse model of the 5,10-methylenetetrahydrofolate reductase 677C>T variant and correction with moderate dose folic acid supplementation. Mol Hum Reprod 2024; 30:gaae008. [PMID: 38366926 PMCID: PMC10980591 DOI: 10.1093/molehr/gaae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
5,10-Methylenetetrahydrofolate reductase (MTHFR) is an enzyme that plays a key role in providing methyl groups for DNA methylation, including during spermatogenesis. A common genetic variant in humans (MTHFR 677C>T) results in reduced enzyme activity and has been linked to various disorders, including male infertility. A new animal model has been created by reproducing the human equivalent of the polymorphism in mice using CRISPR/Cas9. Biochemical parameters in the Mthfr 677TT mice recapitulate alterations found in MTHFR 677TT men. Our aims were to characterize the sperm DNA methylome of the Mthfr 677CC and TT mice on a control diet (2 mg folic acid/kg diet) and assess the effects of folic acid supplementation (10 mg/kg diet) on the sperm DNA methylome. Body and reproductive organ weights, testicular sperm counts, and histology were examined. DNA methylation in sperm was assessed using bisulfite pyrosequencing and whole-genome bisulfite sequencing (WGBS). Reproductive parameters and locus-specific imprinted gene methylation were unaffected by genotype or diet. Using WGBS, sperm from 677TT mice had 360 differentially methylated tiles as compared to 677CC mice, predominantly hypomethylation (60% of tiles). Folic acid supplementation mostly caused hypermethylation in sperm of males of both genotypes and was found to partially correct the DNA methylation alterations in sperm associated with the TT genotype. The new mouse model will be useful in understanding the role of MTHFR deficiency in male fertility and in designing folate supplementation regimens for the clinic.
Collapse
Affiliation(s)
- Edgar Martínez Duncker Rebolledo
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Karen E Christensen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Rima Rozen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Jacquetta Trasler
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, Montreal, QC, Canada
| |
Collapse
|
10
|
Lu X, Liu L. Genome stability from the perspective of telomere length. Trends Genet 2024; 40:175-186. [PMID: 37957036 DOI: 10.1016/j.tig.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Telomeres and their associated proteins protect the ends of chromosomes to maintain genome stability. Telomeres undergo progressive shortening with each cell division in mammalian somatic cells without telomerase, resulting in genome instability. When telomeres reach a critically short length or are recognized as a damage signal, cells enter a state of senescence, followed by cell cycle arrest, programmed cell death, or immortalization. This review provides an overview of recent advances in the intricate relationship between telomeres and genome instability. Alongside well-established mechanisms such as chromosomal fusion and telomere fusion, we will delve into the perspective on genome stability by examining the role of retrotransposons. Retrotransposons represent an emerging pathway to regulate genome stability through their interactions with telomeres.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin 300350, China; Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, Tianjin 300071, China; Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China.
| |
Collapse
|
11
|
Saha K, Nielsen GI, Nandani R, Kong L, Ye P, An W. YY1 is a transcriptional activator of mouse LINE-1 Tf subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573552. [PMID: 38260579 PMCID: PMC10802269 DOI: 10.1101/2024.01.03.573552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Grace I. Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
12
|
Karahan G, Martel J, Rahimi S, Farag M, Matias F, MacFarlane AJ, Chan D, Trasler J. Higher incidence of embryonic defects in mouse offspring conceived with assisted reproduction from fathers with sperm epimutations. Hum Mol Genet 2023; 33:48-63. [PMID: 37740387 PMCID: PMC10729866 DOI: 10.1093/hmg/ddad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Assisted reproductive technologies (ART) account for 1-6% of births in developed countries. While most children conceived are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, haploinsufficiency for Dnmt3L, an important co-factor for DNA methylation reactions, and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For embryos conceived by natural conception, abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Mena Farag
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Fernando Matias
- Nutrition Research Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
13
|
Zhang X, Celic I, Mitchell H, Stuckert S, Vedula L, Han JS. Comprehensive profiling of L1 retrotransposons in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566638. [PMID: 38014156 PMCID: PMC10680791 DOI: 10.1101/2023.11.13.566638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility, and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200,000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single cell level in vivo .
Collapse
|
14
|
Cheng KCL, Frost JM, Sánchez-Luque FJ, García-Canãdas M, Taylor D, Yang WR, Irayanar B, Sampath S, Patani H, Agger K, Helin K, Ficz G, Burns KH, Ewing A, García-Pérez JL, Branco MR. Vitamin C activates young LINE-1 elements in mouse embryonic stem cells via H3K9me3 demethylation. Epigenetics Chromatin 2023; 16:39. [PMID: 37845773 PMCID: PMC10578016 DOI: 10.1186/s13072-023-00514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells. RESULTS Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism. CONCLUSION VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.
Collapse
Affiliation(s)
- Kevin C L Cheng
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jennifer M Frost
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Francisco J Sánchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Marta García-Canãdas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Darren Taylor
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Wan R Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Branavy Irayanar
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Swetha Sampath
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Hemalvi Patani
- Barts Cancer Institute, Faculty of Medicine and Dentistry, QMUL, London, EC1M 6BQ, UK
| | - Karl Agger
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- The Institute of Cancer Research, London, UK
| | - Gabriella Ficz
- Barts Cancer Institute, Faculty of Medicine and Dentistry, QMUL, London, EC1M 6BQ, UK
| | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adam Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - José L García-Pérez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK.
| |
Collapse
|
15
|
Gerdes P, Chan D, Lundberg M, Sanchez-Luque FJ, Bodea GO, Ewing AD, Faulkner GJ, Richardson SR. Locus-resolution analysis of L1 regulation and retrotransposition potential in mouse embryonic development. Genome Res 2023; 33:1465-1481. [PMID: 37798118 PMCID: PMC10620060 DOI: 10.1101/gr.278003.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023]
Abstract
Mice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved. Here, we interrogate the retrotransposition efficiency and epigenetic fate of source (donor) L1s, identified as mobile in vivo. We show that promoter monomer loss consistently attenuates the relative retrotransposition potential of their offspring (daughter) L1 insertions. We also observe that most donor/daughter L1 pairs are efficiently methylated upon differentiation in vivo and in vitro. We use Oxford Nanopore Technologies (ONT) long-read sequencing to resolve L1 methylation genome-wide and at individual L1 loci, revealing a distinctive "smile" pattern in methylation levels across the L1 promoter region. Using Pacific Biosciences (PacBio) SMRT sequencing of L1 5' RACE products, we then examine DNA methylation dynamics at the mouse L1 promoter in parallel with transcription start site (TSS) distribution at locus-specific resolution. Together, our results offer a novel perspective on the interplay between epigenetic repression, L1 evolution, and genome stability.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Dorothy Chan
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Mischa Lundberg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
- Translational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales 2113, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- GENYO. Centre for Genomics and Oncological Research (Pfizer-University of Granada-Andalusian Regional Government), PTS Granada, 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
| |
Collapse
|
16
|
Crane-Smith Z, De Castro SCP, Nikolopoulou E, Wolujewicz P, Smedley D, Lei Y, Mather E, Santos C, Hopkinson M, Pitsillides AA, Finnell RH, Ross ME, Copp AJ, Greene NDE. A non-coding insertional mutation of Grhl2 causes gene over-expression and multiple structural anomalies including cleft palate, spina bifida and encephalocele. Hum Mol Genet 2023; 32:2681-2692. [PMID: 37364051 PMCID: PMC10460492 DOI: 10.1093/hmg/ddad094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.
Collapse
Affiliation(s)
- Zoe Crane-Smith
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sandra C P De Castro
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Evanthia Nikolopoulou
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Wolujewicz
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Emma Mather
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chloe Santos
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - M Elisabeth Ross
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
17
|
Kobayashi M, Kanbe F, Ishii R, Tsubouchi H, Hirai K, Miyasaka Y, Ohno T, Oda H, Ikeda S, Katoh H, Ichiyanagi K, Ishikawa A, Murai A, Horio F. C3H/HeNSlc mouse with low phospholipid transfer protein expression showed dyslipidemia. Sci Rep 2023; 13:13813. [PMID: 37620514 PMCID: PMC10449841 DOI: 10.1038/s41598-023-40917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
High serum levels of triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of coronary heart disease in humans. Herein, we first reported that the C3H/HeNSlc (C3H-S) mouse, a C3H/HeN-derived substrain, is a novel model for dyslipidemia. C3H-S showed hypertriglyceridemia and low total cholesterol (TC), HDL-C, and phospholipid (PL) concentrations. To identify the gene locus causing dyslipidemia in C3H-S, we performed genetic analysis. In F2 intercrosses between C3H-S mice and strains with normal serum lipids, the locus associated with serum lipids was identified as 163-168 Mb on chromosome 2. The phospholipid transfer protein (Pltp) gene was a candidate gene within this locus. Pltp expression and serum PLTP activity were markedly lower in C3H-S mice. Pltp expression was negatively correlated with serum TG and positively correlated with serum TC and HDL-C in F2 mice. Genome sequencing analysis revealed that an endogenous retrovirus (ERV) sequence called intracisternal A particle was inserted into intron 12 of Pltp in C3H-S. These results suggest that ERV insertion within Pltp causes aberrant splicing, leading to reduced Pltp expression in C3H-S. This study demonstrated the contribution of C3H-S to our understanding of the relationship between TG, TC, and PL metabolism via PLTP.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan.
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.
| | - Fumi Kanbe
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Reika Ishii
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiroki Tsubouchi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kana Hirai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Hiroaki Oda
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Saiko Ikeda
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Hirokazu Katoh
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Akira Ishikawa
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Atsushi Murai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Fumihiko Horio
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
- Department of Life Studies and Environmental Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
18
|
Yang F, Su W, Chung OW, Tracy L, Wang L, Ramsden DA, Zhang ZZZ. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 2023; 620:218-225. [PMID: 37438532 PMCID: PMC10691919 DOI: 10.1038/s41586-023-06327-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Retrotransposons are highly enriched in the animal genome1-3. The activation of retrotransposons can rewrite host DNA information and fundamentally impact host biology1-3. Although developmental activation of retrotransposons can offer benefits for the host, such as against virus infection, uncontrolled activation promotes disease or potentially drives ageing1-5. After activation, retrotransposons use their mRNA as templates to synthesize double-stranded DNA for making new insertions in the host genome1-3,6. Although the reverse transcriptase that they encode can synthesize the first-strand DNA1-3,6, how the second-strand DNA is generated remains largely unclear. Here we report that retrotransposons hijack the alternative end-joining (alt-EJ) DNA repair process of the host for a circularization step to synthesize their second-strand DNA. We used Nanopore sequencing to examine the fates of replicated retrotransposon DNA, and found that 10% of them achieve new insertions, whereas 90% exist as extrachromosomal circular DNA (eccDNA). Using eccDNA production as a readout, further genetic screens identified factors from alt-EJ as essential for retrotransposon replication. alt-EJ drives the second-strand synthesis of the long terminal repeat retrotransposon DNA through a circularization process and is therefore necessary for eccDNA production and new insertions. Together, our study reveals that alt-EJ is essential in driving the propagation of parasitic genomic retroelements. Our study uncovers a conserved function of this understudied DNA repair process, and provides a new perspective to understand-and potentially control-the retrotransposon life cycle.
Collapse
Affiliation(s)
- Fu Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Weijia Su
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Oliver W Chung
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lauren Tracy
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lu Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Z Z Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
19
|
Cornec A, Poirier EZ. Interplay between RNA interference and transposable elements in mammals. Front Immunol 2023; 14:1212086. [PMID: 37475864 PMCID: PMC10354258 DOI: 10.3389/fimmu.2023.1212086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
RNA interference (RNAi) plays pleiotropic roles in animal cells, from the post-transcriptional control of gene expression via the production of micro-RNAs, to the inhibition of RNA virus infection. We discuss here the role of RNAi in regulating the expression of self RNAs, and particularly transposable elements (TEs), which are genomic sequences capable of influencing gene expression and disrupting genome architecture. Dicer proteins act as the entry point of the RNAi pathway by detecting and degrading RNA of TE origin, ultimately leading to TE silencing. RNAi similarly targets cellular RNAs such as repeats transcribed from centrosomes. Dicer proteins are thus nucleic acid sensors that recognize self RNA in the form of double-stranded RNA, and trigger a silencing RNA interference response.
Collapse
Affiliation(s)
| | - Enzo Z. Poirier
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
20
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
21
|
Ferraj A, Audano PA, Balachandran P, Czechanski A, Flores JI, Radecki AA, Mosur V, Gordon DS, Walawalkar IA, Eichler EE, Reinholdt LG, Beck CR. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. CELL GENOMICS 2023; 3:100291. [PMID: 37228752 PMCID: PMC10203049 DOI: 10.1016/j.xgen.2023.100291] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023]
Abstract
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural variants (SVs) (variants ≥ 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic variation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences.
Collapse
Affiliation(s)
- Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter A. Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | | | - Jacob I. Flores
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alexander A. Radecki
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Varun Mosur
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - David S. Gordon
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isha A. Walawalkar
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Evan E. Eichler
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
AIZAWA S, UEBANSO T, SHIMOHATA T, MAWATARI K, TAKAHASHI A. Effects of the loss of maternal gut microbiota before pregnancy on gut microbiota, food allergy susceptibility, and epigenetic modification on subsequent generations. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:203-212. [PMID: 37404565 PMCID: PMC10315195 DOI: 10.12938/bmfh.2022-093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 07/06/2023]
Abstract
Maternal environments affect the health of offspring in later life. Changes in epigenetic modifications may partially explain this phenomenon. The gut microbiota is a critical environmental factor that influences epigenetic modifications of host immune cells and the development of food allergies. However, whether changes in the maternal gut microbiota affect the development of food allergies and related epigenetic modifications in subsequent generations remains unclear. Here, we investigated the effects of antibiotic treatment before pregnancy on the development of the gut microbiota, food allergies, and epigenetic modifications in F1 and F2 mice. We found that pre-conception antibiotic treatment affected the gut microbiota composition in F1 but not F2 offspring. F1 mice born to antibiotic-treated mothers had a lower proportion of butyric acid-producing bacteria and, consequently, a lower butyric acid concentration in their cecal contents. The methylation level in the DNA of intestinal lamina propria lymphocytes, food allergy susceptibility, and production of antigen-specific IgE in the F1 and F2 mice were not different between those born to control and antibiotic-treated mothers. In addition, F1 mice born to antibiotic-treated mothers showed increased fecal excretion related to the stress response in a novel environment. These results suggest that the maternal gut microbiota is effectively passed onto F1 offspring but has little effect on food allergy susceptibility or DNA methylation levels in offspring.
Collapse
Affiliation(s)
- Shinta AIZAWA
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
| | - Takashi UEBANSO
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| | - Takaaki SHIMOHATA
- Faculty of Marine Biosciences, Fukui Prefectural University,
1-1 Gakuen-cho, Obama-shi, Fukui 917-0003, Japan
| | - Kazuaki MAWATARI
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| | - Akira TAKAHASHI
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| |
Collapse
|
23
|
Sun YH, Cui H, Song C, Shen JT, Zhuo X, Wang RH, Yu X, Ndamba R, Mu Q, Gu H, Wang D, Murthy GG, Li P, Liang F, Liu L, Tao Q, Wang Y, Orlowski S, Xu Q, Zhou H, Jagne J, Gokcumen O, Anthony N, Zhao X, Li XZ. Amniotes co-opt intrinsic genetic instability to protect germ-line genome integrity. Nat Commun 2023; 14:812. [PMID: 36781861 PMCID: PMC9925758 DOI: 10.1038/s41467-023-36354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hongxiao Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiafei Teng Shen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Xiaoyu Zhuo
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ruoqiao Huiyi Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rudo Ndamba
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Qian Mu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanwen Gu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Duolin Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gayathri Guru Murthy
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Pidong Li
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Fan Liang
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Lei Liu
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Qing Tao
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Sara Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, 14850, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Nick Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
24
|
Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022; 14:1704. [PMID: 36016325 PMCID: PMC9412291 DOI: 10.3390/v14081704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
A Human Betaretrovirus (HBRV) has been identified in humans, dating as far back as about 4500 years ago, with a high probability of it being acquired by our species around 10,000 years ago, following a species jump from mice to humans. HBRV is the human homolog of the MMTV (mouse mammary tumor virus), which is the etiological agent of murine mammary tumors. The hypothesis of a HMTV (human mammary tumor virus) was proposed about 50 years ago, and has acquired a solid scientific basis during the last 30 years, with the demonstration of a robust link with breast cancer and with PBC, primary biliary cholangitis. This article summarizes most of what is known about MMTV/HMTV/HBRV since the discovery of MMTV at the beginning of last century, to make evident both the quantity and the quality of the research supporting the existence of HBRV and its pathogenic role. Here, it is sufficient to mention that scientific evidence includes that viral sequences have been identified in breast-cancer samples in a worldwide distribution, that the complete proviral genome has been cloned from breast cancer and patients with PBC, and that saliva contains HBRV, as a possible route of inter-human infection. Controversies that have arisen concerning results obtained from human tissues, many of them outdated by new scientific evidence, are critically discussed and confuted.
Collapse
|
25
|
Du Z, D’Alessandro E, Asare E, Zheng Y, Wang M, Chen C, Wang X, Song C. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Reproductive Candidate Genes. Genes (Basel) 2022; 13:genes13081359. [PMID: 36011270 PMCID: PMC9407582 DOI: 10.3390/genes13081359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Retrotransposons account for more than one-third of the pig reference genome. On account of the genome variability in different breeds, structural variation (SV) caused by retrotranspos-on-generated deletion or insertion (indel) may have a function in the genome. Litter size is one of the most important reproductive traits and significantly impacts profitability in terms of pig production. We used the method of bioinformatics, genetics, and molecular biology to make an analysis among different pig genomes. Predicted 100 SVs were annotated as retrotransposon indel in 20 genes related to reproductive performance. The PCR detection based on these predicted SVs revealed 20 RIPs in 20 genes, that most RIPs (12) were generated by SINE indel, and eight RIPs were generated by the ERV indel. We selected 12 RIPs to make the second round PCR detection in 24 individuals among nine pig breeds. The PCR detection results revealed that the RIP-A1CF-4 insertion in the breed of Bama, Large White, and Meishan only had the homozygous genotype but low to moderately polymorphisms were present in other breeds. We found that RIP-CWH43-9, RIP-IDO2-9, RIP-PRLR-6, RIP-VMP1-12, and RIP-OPN-1 had a rich polymorphism in the breed of Large White pigs. The statistical analysis revealed that RIP-CWH43-9 had a SINE insertion profitable to the reproductive traits of TNB and NBA but was significantly affected (p < 0.01) and (p < 0.05) in the reproductive traits of litter birthweight (LW) in Large White. On the other hand, the SINE insertion in IDO2-9 may be a disadvantage to the reproductive traits of LW, which was significantly affected (p < 0.05) in Large White. These two RIPs are significant in pig genome research and could be useful molecular markers in the breeding system.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy;
| | - Emmanuel Asare
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (E.A.); (Y.Z.); (M.W.); (C.C.); (X.W.)
- Correspondence:
| |
Collapse
|
26
|
Inadvertent Transfer of Murine VL30 Retrotransposons to CAR-T Cells. ADVANCES IN CELL AND GENE THERAPY 2022; 2022. [PMID: 36081760 PMCID: PMC9450689 DOI: 10.1155/2022/6435077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For more than a decade, genetically engineered autologous T-cells have been successfully employed as immunotherapy drugs for patients with incurable blood cancers. The active components in some of these game-changing medicines are autologous T-cells that express viral vector-delivered chimeric antigen receptors (CARs), which specifically target proteins that are preferentially expressed on cancer cells. Some of these therapeutic CAR expressing T-cells (CAR-Ts) are engineered via transduction with
-retroviral vectors (
-RVVs) produced in a stable producer cell line that was derived from murine PG13 packaging cells (ATCC CRL-10686). Earlier studies reported on the copackaging of murine virus-like 30S RNA (VL30) genomes with
-retroviral vectors generated in murine stable packaging cells. In an earlier study, VL30 mRNA was found to enhance the metastatic potential of human melanoma cells. These findings raise biosafety concerns regarding the possibility that therapeutic CAR-Ts have been inadvertently contaminated with potentially oncogenic VL30 retrotransposons. In this study, we demonstrated the presence of infectious VL30 particles in PG13 cell-conditioned media and observed the ability of these particles to deliver transcriptionally active VL30 genomes to human cells. Notably, VL30 genomes packaged by HIV-1-based vector particles transduced naïve human cells in culture. Furthermore, we detected the transfer and expression of VL30 genomes in clinical-grade CAR-T cells generated by transduction with PG13 cell-derived
-retroviral vectors. Our findings raise biosafety concerns regarding the use of murine packaging cell lines in ongoing clinical applications.
Collapse
|
27
|
Kong L, Saha K, Hu Y, Tschetter JN, Habben CE, Whitmore LS, Yao C, Ge X, Ye P, Newkirk SJ, An W. Subfamily-specific differential contribution of individual monomers and the tether sequence to mouse L1 promoter activity. Mob DNA 2022; 13:13. [PMID: 35443687 PMCID: PMC9022269 DOI: 10.1186/s13100-022-00269-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The internal promoter in L1 5'UTR is critical for autonomous L1 transcription and initiating retrotransposition. Unlike the human genome, which features one contemporarily active subfamily, four subfamilies (A_I, Gf_I and Tf_I/II) have been amplifying in the mouse genome in the last one million years. Moreover, mouse L1 5'UTRs are organized into tandem repeats called monomers, which are separated from ORF1 by a tether domain. In this study, we aim to compare promoter activities across young mouse L1 subfamilies and investigate the contribution of individual monomers and the tether sequence. RESULTS We observed an inverse relationship between subfamily age and the average number of monomers among evolutionarily young mouse L1 subfamilies. The youngest subgroup (A_I and Tf_I/II) on average carry 3-4 monomers in the 5'UTR. Using a single-vector dual-luciferase reporter assay, we compared promoter activities across six L1 subfamilies (A_I/II, Gf_I and Tf_I/II/III) and established their antisense promoter activities in a mouse embryonic fibroblast cell line and a mouse embryonal carcinoma cell line. Using consensus promoter sequences for three subfamilies (A_I, Gf_I and Tf_I), we dissected the differential roles of individual monomers and the tether domain in L1 promoter activity. We validated that, across multiple subfamilies, the second monomer consistently enhances the overall promoter activity. For individual promoter components, monomer 2 is consistently more active than the corresponding monomer 1 and/or the tether for each subfamily. Importantly, we revealed intricate interactions between monomer 2, monomer 1 and tether domains in a subfamily-specific manner. Furthermore, using three-monomer 5'UTRs, we established a complex nonlinear relationship between the length of the outmost monomer and the overall promoter activity. CONCLUSIONS The laboratory mouse is an important mammalian model system for human diseases as well as L1 biology. Our study extends previous findings and represents an important step toward a better understanding of the molecular mechanism controlling mouse L1 transcription as well as L1's impact on development and disease.
Collapse
Affiliation(s)
- Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Yuchi Hu
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Jada N Tschetter
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Chase E Habben
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Leanne S Whitmore
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Changfeng Yao
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xijin Ge
- Department of Mathematics & Statistics, South Dakota State University, Brookings, SD, 57007, USA
| | - Ping Ye
- Department of Pharmacy Practice, South Dakota State University, Brookings, SD, 57007, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
28
|
Zhou S, Sakashita A, Yuan S, Namekawa SH. Retrotransposons in the Mammalian Male Germline. Sex Dev 2022:1-19. [PMID: 35231923 DOI: 10.1159/000520683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons are a subset of DNA sequences that constitute a large part of the mammalian genome. They can translocate autonomously or non-autonomously, potentially jeopardizing the heritable germline genome. Retrotransposons coevolved with the host genome, and the germline is the prominent battlefield between retrotransposons and the host genome to maximize their mutual fitness. Host genomes have developed various mechanisms to suppress and control retrotransposons, including DNA methylation, histone modifications, and Piwi-interacting RNA (piRNA), for their own benefit. Thus, rapidly evolved retrotransposons often acquire positive functions, including gene regulation within the germline, conferring reproductive fitness in a species over the course of evolution. The male germline serves as an ideal model to examine the regulation and evolution of retrotransposons, resulting in genomic co-evolution with the host genome. In this review, we summarize and discuss the regulatory mechanisms of retrotransposons, stage-by-stage, during male germ cell development, with a particular focus on mice as an extensively studied mammalian model, highlighting suppression mechanisms and emerging functions of retrotransposons in the male germline.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| |
Collapse
|
29
|
Li W, Li X, Ma X, Xiao W, Zhang J. Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics 2022; 23:105. [PMID: 35135476 PMCID: PMC8822802 DOI: 10.1186/s12864-022-08350-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epigenetic modifications play important regulatory roles in tissue development, maintenance of physiological functions and pathological process. RNA methylations, including newly identified m1A, m5C, m6A and m7G, are important epigenetic modifications. However, how these modifications are distributed in the transcriptome of vertebrate brains and whether their abundance is altered under pathological conditions are still poorly understood. In this study, we chose the model animal of zebrafish to conduct a systematic study to investigate the mRNA methylation atlas in the brain. RESULTS By performing unbiased analyses of the m1A, m5C, m6A and m7G methylation of mRNA, we found that within the whole brain transcriptome, with the increase of the gene expression levels, the overall level of each of these four modifications on the related genes was also progressively increased. Further bioinformatics analysis indicated that the zebrafish brain has an abundance of m1A modifications. In the hypoxia-treated zebrafish brains, the proportion of m1A is decreased, affecting the RNA splicing and zebrafish endogenous retroviruses. CONCLUSIONS Our study presents the first comprehensive atlas of m1A, m5C, m6A and m7G in the epitranscriptome of the zebrafish brain and reveals the distribution of these modifications in mRNA under hypoxic conditions. These data provide an invaluable resource for further research on the involvement of m1A, m5C, m6A and m7G in the regulation of miRNA and repeat elements in vertebrates, and provide new thoughts to study the brain hypoxic injury on the aspect of epitranscriptome.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaoyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xunjie Ma
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
30
|
Mori M, Liu C, Yoshizawa T, Miyahara H, Dai J, Igarashi Y, Cui X, Li Y, Kang X, Higuchi K. Polygenic control of the wavy coat of the NCT mouse: involvement of an intracisternal A particle insertional mutation of the protease, serine 53 (Prss53) gene, and a modifier gene. Mamm Genome 2022; 33:451-464. [PMID: 35067752 DOI: 10.1007/s00335-021-09926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
The Nakano cataract mouse (NCT) manifests a wavy coat for their first hair as a genetic trait. In this study, we explored the molecular genetic basis of the wavy coat. We revealed by crossing experiments that the wavy coat is controlled by a major gene on chromosome 7 of NCT, homozygosity of which is a prerequisite for developing the wavy coat, and by a gene on chromosome 9 with a minor effect to reinforce the manifestation of the trait. In humans, a polymorphism of the protease, serine 53 (PRSS53) gene on the homologous chromosome is known to be associated with curly scalp hair. We then investigated the Prss53 gene and discovered that NCT has an insertion of an intracisternal A particle element in the first intron of the gene. Nevertheless, the expression of the Prss53 is not altered in the NCT skin both in transcript and protein levels. Subsequently, we created C57BL/6J-Prss53em1 knockout mice and found that these mice manifest vague wavy coats. A portion of backcross and intercross mice between the C57BL/6J-Prss53em1 and NCT manifested intense or vague wavy coats. These findings demonstrate the polygenic nature of the wavy coat of NCT and Prss53 knockout mice and highlight the similarity of the trait to the curly hair of humans associated with the PRSS53 alteration.
Collapse
Affiliation(s)
- Masayuki Mori
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan. .,Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, 390-8621, Japan. .,Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan.
| | - Chang Liu
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, 390-8621, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Hiroki Miyahara
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| | - Jian Dai
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| | - Yuichi Igarashi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Xiaoran Cui
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Ying Li
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, 390-8621, Japan
| | - Xiaojing Kang
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, 390-8621, Japan
| | - Keiichi Higuchi
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan.,Department of Aging Biology, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, 390-8621, Japan.,Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| |
Collapse
|
31
|
Ramirez P, Zuniga G, Sun W, Beckmann A, Ochoa E, DeVos SL, Hyman B, Chiu G, Roy ER, Cao W, Orr M, Buggia-Prevot V, Ray WJ, Frost B. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog Neurobiol 2022; 208:102181. [PMID: 34670118 PMCID: PMC8712387 DOI: 10.1016/j.pneurobio.2021.102181] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Transposable elements comprise almost half of the mammalian genome. A growing body of evidence suggests that transposable element dysregulation accompanies brain aging and neurodegenerative disorders, and that transposable element activation is neurotoxic. Recent studies have identified links between pathogenic forms of tau, a protein that accumulates in Alzheimer's disease and related "tauopathies," and transposable element-induced neurotoxicity. Starting with transcriptomic analyses, we find that age- and tau-induced transposable element activation occurs in the mouse brain. Among transposable elements that are activated at the RNA level in the context of brain aging and tauopathy, we find that the endogenous retrovirus (ERV) class of retrotransposons is particularly enriched. We show that protein encoded by Intracisternal A-particle, a highly active mouse ERV, is elevated in brains of tau transgenic mice. Using two complementary approaches, we find that brains of tau transgenic mice contain increased DNA copy number of transposable elements, raising the possibility that these elements actively retrotranspose in the context of tauopathy. Taken together, our study lays the groundwork for future mechanistic studies focused on transposable element regulation in the aging mouse brain and in mouse models of tauopathy and provides support for ongoing therapeutic efforts targeting transposable element activation in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Wenyan Sun
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Adrian Beckmann
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Elizabeth Ochoa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Sarah L. DeVos
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Bradley Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gabriel Chiu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Ethan R. Roy
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Wei Cao
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX
| | - Miranda Orr
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC,WG Hefner VA Medical Center, Salisbury, NC
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas,Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas,Corresponding Author and Lead Contact: Bess Frost, Ph.D., Associate Professor, 4939 Charles Katz, Barshop Institute, rm 1041, University of Texas Health San Antonio, San Antonio, TX 78229, Phone: 210-562-5037,
| |
Collapse
|
32
|
Zhou X, Sam TW, Lee AY, Leung D. Mouse strain-specific polymorphic provirus functions as cis-regulatory element leading to epigenomic and transcriptomic variations. Nat Commun 2021; 12:6462. [PMID: 34753915 PMCID: PMC8578388 DOI: 10.1038/s41467-021-26630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Polymorphic integrations of endogenous retroviruses (ERVs) have been previously detected in mouse and human genomes. While most are inert, a subset can influence the activity of the host genes. However, the molecular mechanism underlying how such elements affect the epigenome and transcriptome and their roles in driving intra-specific variation remain unclear. Here, by utilizing wildtype murine embryonic stem cells (mESCs) derived from distinct genetic backgrounds, we discover a polymorphic MMERGLN (GLN) element capable of regulating H3K27ac enrichment and transcription of neighboring loci. We demonstrate that this polymorphic element can enhance the neighboring Klhdc4 gene expression in cis, which alters the activity of downstream stress response genes. These results suggest that the polymorphic ERV-derived cis-regulatory element contributes to differential phenotypes from stimuli between mouse strains. Moreover, we identify thousands of potential polymorphic ERVs in mESCs, a subset of which show an association between proviral activity and nearby chromatin states and transcription. Overall, our findings elucidate the mechanism of how polymorphic ERVs can shape the epigenome and transcriptional networks that give rise to phenotypic divergence between individuals.
Collapse
Affiliation(s)
- Xuemeng Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Tsz Wing Sam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ah Young Lee
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China. .,Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
33
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Modzelewski AJ, Shao W, Chen J, Lee A, Qi X, Noon M, Tjokro K, Sales G, Biton A, Anand A, Speed TP, Xuan Z, Wang T, Risso D, He L. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 2021; 184:5541-5558.e22. [PMID: 34644528 PMCID: PMC8787082 DOI: 10.1016/j.cell.2021.09.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.
Collapse
Affiliation(s)
- Andrew J Modzelewski
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wanqing Shao
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqi Chen
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Lee
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xin Qi
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mackenzie Noon
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristy Tjokro
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova 35122, Italy
| | - Anne Biton
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris 75015, France
| | - Aparna Anand
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terence P Speed
- Bioinformatics Division, WEHI, Parkville, VIC 3052, Australia
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ting Wang
- Department of Genetics, Edison Family Center for Genome Science and System Biology, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova 35122, Italy.
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Costello KR, Leung A, Trac C, Lee M, Basam M, Pospisilik JA, Schones DE. Sequence features of retrotransposons allow for epigenetic variability. eLife 2021; 10:71104. [PMID: 34668484 PMCID: PMC8555987 DOI: 10.7554/elife.71104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here, we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.
Collapse
Affiliation(s)
- Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | | | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| |
Collapse
|
36
|
An L1 retrotransposon insertion-induced deafness mouse model for studying the development and function of the cochlear stria vascularis. Proc Natl Acad Sci U S A 2021; 118:2107933118. [PMID: 34583993 DOI: 10.1073/pnas.2107933118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/23/2023] Open
Abstract
Dysregulation of ion and potential homeostasis in the scala media is the most prevalent cause of hearing loss in mammals. However, it is not well understood how the development and function of the stria vascularis regulates this fluid homeostasis in the scala media. From a mouse genetic screen, we characterize a mouse line, named 299, that displays profound hearing impairment. Histology suggests that 299 mutant mice carry a severe, congenital structural defect of the stria vascularis. The in vivo recording of 299 mice using double-barreled electrodes shows that endocochlear potential is abolished and potassium concentration is reduced to ∼20 mM in the scala media, a stark contrast to the +80 mV endocochlear potential and the 150 mM potassium concentration present in healthy control mice. Genomic analysis revealed a roughly 7-kb-long, interspersed nuclear element (LINE-1 or L1) retrotransposon insertion on chromosome 11. Strikingly, the deletion of this L1 retrotransposon insertion from chromosome 11 restored the hearing of 299 mutant mice. In summary, we characterize a mouse model that enables the study of stria vascularis development and fluid homeostasis in the scala media.
Collapse
|
37
|
Yu PL, Cao SJ, Wu R, Zhao Q, Yan QG. Regulatory effect of m 6 A modification on different viruses. J Med Virol 2021; 93:6100-6115. [PMID: 34329499 DOI: 10.1002/jmv.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.
Collapse
Affiliation(s)
- Pei-Lun Yu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - San-Jie Cao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qi-Gui Yan
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
38
|
Pasquesi GIM, Perry BW, Vandewege MW, Ruggiero RP, Schield DR, Castoe TA. Vertebrate Lineages Exhibit Diverse Patterns of Transposable Element Regulation and Expression across Tissues. Genome Biol Evol 2021; 12:506-521. [PMID: 32271917 PMCID: PMC7211425 DOI: 10.1093/gbe/evaa068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) comprise a major fraction of vertebrate genomes, yet little is known about their expression and regulation across tissues, and how this varies across major vertebrate lineages. We present the first comparative analysis integrating TE expression and TE regulatory pathway activity in somatic and gametic tissues for a diverse set of 12 vertebrates. We conduct simultaneous gene and TE expression analyses to characterize patterns of TE expression and TE regulation across vertebrates and examine relationships between these features. We find remarkable variation in the expression of genes involved in TE negative regulation across tissues and species, yet consistently high expression in germline tissues, particularly in testes. Most vertebrates show comparably high levels of TE regulatory pathway activity across gonadal tissues except for mammals, where reduced activity of TE regulatory pathways in ovarian tissues may be the result of lower relative germ cell densities. We also find that all vertebrate lineages examined exhibit remarkably high levels of TE-derived transcripts in somatic and gametic tissues, with recently active TE families showing higher expression in gametic tissues. Although most TE-derived transcripts originate from inactive ancient TE families (and are likely incapable of transposition), such high levels of TE-derived RNA in the cytoplasm may have secondary, unappreciated biological relevance.
Collapse
Affiliation(s)
- Giulia I M Pasquesi
- Department of Biology, University of Texas at Arlington.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington
| | | | | | - Drew R Schield
- Department of Biology, University of Texas at Arlington.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
39
|
Karahan G, Chan D, Shirane K, McClatchie T, Janssen S, Baltz JM, Lorincz M, Trasler J. Paternal MTHFR deficiency leads to hypomethylation of young retrotransposons and reproductive decline across two successive generations. Development 2021; 148:dev199492. [PMID: 34128976 PMCID: PMC8276981 DOI: 10.1242/dev.199492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
5,10-Methylenetetrahydrofolate reductase (MTHFR) is a crucial enzyme in the folate metabolic pathway with a key role in generating methyl groups. As MTHFR deficiency impacts male fertility and sperm DNA methylation, there is the potential for epimutations to be passed to the next generation. Here, we assessed whether the impact of MTHFR deficiency on testis morphology and sperm DNA methylation is exacerbated across generations in mouse. Although MTHFR deficiency in F1 fathers has only minor effects on sperm counts and testis weights and histology, F2 generation sons show further deterioration in reproductive parameters. Extensive loss of DNA methylation is observed in both F1 and F2 sperm, with >80% of sites shared between generations, suggestive of regions consistently susceptible to MTHFR deficiency. These regions are generally methylated during late embryonic germ cell development and are enriched in young retrotransposons. As retrotransposons are resistant to reprogramming of DNA methylation in embryonic germ cells, their hypomethylated state in the sperm of F1 males could contribute to the worsening reproductive phenotype observed in F2 MTHFR-deficient males, compatible with the intergenerational passage of epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Kenjiro Shirane
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Taylor McClatchie
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, ON K1H 8M5, Canada
| | - Sanne Janssen
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jay M. Baltz
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, ON K1H 8M5, Canada
| | - Matthew Lorincz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
40
|
Clapes T, Polyzou A, Prater P, Sagar, Morales-Hernández A, Ferrarini MG, Kehrer N, Lefkopoulos S, Bergo V, Hummel B, Obier N, Maticzka D, Bridgeman A, Herman JS, Ilik I, Klaeylé L, Rehwinkel J, McKinney-Freeman S, Backofen R, Akhtar A, Cabezas-Wallscheid N, Sawarkar R, Rebollo R, Grün D, Trompouki E. Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration. Nat Cell Biol 2021; 23:704-717. [PMID: 34253898 PMCID: PMC8492473 DOI: 10.1038/s41556-021-00707-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.
Collapse
Affiliation(s)
- Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Aikaterini Polyzou
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pia Prater
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Natalie Kehrer
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stylianos Lefkopoulos
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nadine Obier
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Daniel Maticzka
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Josip S Herman
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ibrahim Ilik
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Lhéanna Klaeylé
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, UK
| | - Rita Rebollo
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, Villeurbanne, France
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Stow EC, Kaul T, deHaro DL, Dem MR, Beletsky AG, Morales ME, Du Q, LaRosa AJ, Yang H, Smither E, Baddoo M, Ungerleider N, Deininger P, Belancio VP. Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Res 2021; 49:5813-5831. [PMID: 34023901 PMCID: PMC8191783 DOI: 10.1093/nar/gkab369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.8% of loci shared between organs of the same organism. This organ specificity in L1 mRNA expression is preserved in male and female mice and across age groups. We discovered notable differences in L1 mRNA expression between sexes with only 5% of expressed L1 loci shared between male and female mice. Moreover, we report that the levels of total L1 mRNA expression and the number and spectrum of expressed L1 loci fluctuate with age as independent variables, demonstrating different patterns in different organs and sexes. Overall, our comparisons between organs and sexes and across ages ranging from 2 to 22 months establish previously unforeseen dynamic changes in L1 mRNA expression in vivo. These findings establish the beginning of an atlas of endogenous L1 mRNA expression across a broad range of biological variables that will guide future studies.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Madeleine R Dem
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Anna G Beletsky
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Maria E Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Alexis J LaRosa
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| |
Collapse
|
42
|
Blythe MJ, Kocer A, Rubio-Roldan A, Giles T, Abakir A, Ialy-Radio C, Wheldon LM, Bereshchenko O, Bruscoli S, Kondrashov A, Drevet JR, Emes RD, Johnson AD, McCarrey JR, Gackowski D, Olinski R, Cocquet J, Garcia-Perez JL, Ruzov A. LINE-1 transcription in round spermatids is associated with accretion of 5-carboxylcytosine in their open reading frames. Commun Biol 2021; 4:691. [PMID: 34099857 PMCID: PMC8184969 DOI: 10.1038/s42003-021-02217-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.
Collapse
Affiliation(s)
- Martin J Blythe
- Deep Seq, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Alejandro Rubio-Roldan
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Tom Giles
- Digital Research Service, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Abdulkadir Abakir
- School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Côme Ialy-Radio
- INSERM U1016, Institut Cochin - CNRS UMR8104 - Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lee M Wheldon
- Medical Molecular Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Oxana Bereshchenko
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Richard D Emes
- Digital Research Service, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK. .,School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK.
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Daniel Gackowski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Julie Cocquet
- INSERM U1016, Institut Cochin - CNRS UMR8104 - Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jose L Garcia-Perez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexey Ruzov
- School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
43
|
Mangiavacchi A, Liu P, Della Valle F, Orlando V. New insights into the functional role of retrotransposon dynamics in mammalian somatic cells. Cell Mol Life Sci 2021; 78:5245-5256. [PMID: 33990851 PMCID: PMC8257530 DOI: 10.1007/s00018-021-03851-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Retrotransposons are genetic elements present across all eukaryotic genomes. While their role in evolution is considered as a potentially beneficial natural source of genetic variation, their activity is classically considered detrimental due to their potentially harmful effects on genome stability. However, studies are increasingly shedding light on the regulatory function and beneficial role of somatic retroelement reactivation in non-pathological contexts. Here, we review recent findings unveiling the regulatory potential of retrotransposons, including their role in noncoding RNA transcription, as modulators of mammalian transcriptional and epigenome landscapes. We also discuss technical challenges in deciphering the multifaceted activity of retrotransposable elements, highlighting an unforeseen central role of this neglected portion of the genome both in early development and in adult life.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peng Liu
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francesco Della Valle
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Valerio Orlando
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
44
|
Osakabe A, Jamge B, Axelsson E, Montgomery SA, Akimcheva S, Kuehn AL, Pisupati R, Lorković ZJ, Yelagandula R, Kakutani T, Berger F. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W. Nat Cell Biol 2021; 23:391-400. [PMID: 33833428 DOI: 10.1038/s41556-021-00658-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Mobile transposable elements (TEs) not only participate in genome evolution but also threaten genome integrity. In healthy cells, TEs that encode all of the components that are necessary for their mobility are specifically silenced, yet the precise mechanism remains unknown. Here, we characterize the mechanism used by a conserved class of chromatin remodelers that prevent TE mobility. In the Arabidopsis chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1), we identify two conserved binding domains for the histone variant H2A.W, which marks plant heterochromatin. DDM1 is necessary and sufficient for the deposition of H2A.W onto potentially mobile TEs, yet does not act on TE fragments or host protein-coding genes. DDM1-mediated H2A.W deposition changes the properties of chromatin, resulting in the silencing of TEs and, therefore, prevents their mobility. This distinct mechanism provides insights into the interplay between TEs and their host in the contexts of evolution and disease, and potentiates innovative strategies for targeted gene silencing.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Bhagyshree Jamge
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Svetlana Akimcheva
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Annika Luisa Kuehn
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Rahul Pisupati
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Tetsuji Kakutani
- National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
45
|
Bertozzi TM, Takahashi N, Hanin G, Kazachenka A, Ferguson-Smith AC. A spontaneous genetically induced epiallele at a retrotransposon shapes host genome function. eLife 2021; 10:e65233. [PMID: 33755012 PMCID: PMC8084528 DOI: 10.7554/elife.65233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Intracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (Iap5-1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (Iap5-1full), Iap5-1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the Iap5-1solo variant. Iap5-1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of Iap5-1 as a genetically induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Nozomi Takahashi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Geula Hanin
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | | | | |
Collapse
|
46
|
Sun S, Frontini F, Qi W, Hariharan A, Ronner M, Wipplinger M, Blanquart C, Rehrauer H, Fonteneau JF, Felley-Bosco E. Endogenous retrovirus expression activates type-I interferon signaling in an experimental mouse model of mesothelioma development. Cancer Lett 2021; 507:26-38. [PMID: 33713739 DOI: 10.1016/j.canlet.2021.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Early events in an experimental model of mesothelioma development include increased levels of editing in double-stranded RNA (dsRNA). We hypothesised that expression of endogenous retroviruses (ERV) contributes to dsRNA formation and type-I interferon signaling. ERV and interferon stimulated genes (ISGs) expression were significantly higher in tumor compared to non-tumor samples. 12 tumor specific ERV ("MesoERV1-12") were identified and verified by qPCR in mouse tissues. "MesoERV1-12" expression was lower in mouse embryonic fibroblasts (MEF) compared to mesothelioma cells. "MesoERV1-12" levels were significantly increased by demethylating agent 5-Aza-2'-deoxycytidine treatment and were accompanied by increased levels of dsRNA and ISGs. Basal ISGs expression was higher in mesothelioma cells compared to MEF and was significantly decreased by JAK inhibitor Ruxolitinib, by blocking Ifnar1 and by silencing Mavs. "MesoERV7" promoter was demethylated in asbestos-exposed compared to sham mice tissue as well as in mesothelioma cells and MEF upon 5-Aza-CdR treatment. These observations uncover novel aspects of asbestos-induced mesothelioma whereby ERV expression increases due to promoter demethylation and is paralleled by increased levels of dsRNA and activation of type-I IFN signaling. These features are important for early diagnosis and therapy.
Collapse
Affiliation(s)
- Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Francesca Frontini
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | - Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland
| | | | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
47
|
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc'his D. m 6A RNA methylation regulates the fate of endogenous retroviruses. Nature 2021; 591:312-316. [PMID: 33442060 DOI: 10.1038/s41586-020-03135-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Endogenous retroviruses (ERVs) are abundant and heterogenous groups of integrated retroviral sequences that affect genome regulation and cell physiology throughout their RNA-centred life cycle1. Failure to repress ERVs is associated with cancer, infertility, senescence and neurodegenerative diseases2,3. Here, using an unbiased genome-scale CRISPR knockout screen in mouse embryonic stem cells, we identify m6A RNA methylation as a way to restrict ERVs. Methylation of ERV mRNAs is catalysed by the complex of methyltransferase-like METTL3-METTL144 proteins, and we found that depletion of METTL3-METTL14, along with their accessory subunits WTAP and ZC3H13, led to increased mRNA abundance of intracisternal A-particles (IAPs) and related ERVK elements specifically, by targeting their 5' untranslated region. Using controlled auxin-dependent degradation of the METTL3-METTL14 enzymatic complex, we showed that IAP mRNA and protein abundance is dynamically and inversely correlated with m6A catalysis. By monitoring chromatin states and mRNA stability upon METTL3-METTL14 double depletion, we found that m6A methylation mainly acts by reducing the half-life of IAP mRNA, and this occurs by the recruitment of the YTHDF family of m6A reader proteins5. Together, our results indicate that RNA methylation provides a protective effect in maintaining cellular integrity by clearing reactive ERV-derived RNA species, which may be especially important when transcriptional silencing is less stringent.
Collapse
Affiliation(s)
- Tomasz Chelmicki
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
| | - Emeline Roger
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Aurélie Teissandier
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Mathilde Dura
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Lorraine Bonneville
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Sofia Rucli
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | | | | | - Sonia Lameiras
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, Paris, France
| | - Deborah Bourc'his
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
| |
Collapse
|
48
|
Elmer JL, Hay AD, Kessler NJ, Bertozzi TM, Ainscough EAC, Ferguson-Smith AC. Genomic properties of variably methylated retrotransposons in mouse. Mob DNA 2021; 12:6. [PMID: 33612119 PMCID: PMC7898769 DOI: 10.1186/s13100-021-00235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs in mice that exhibit inter-individual variability in this methylation (VM-IAPs) with implications for genome function. RESULTS Here we validate these metastable epialleles and discover a novel class that exhibit tissue specificity (tsVM-IAPs) in addition to those with uniform methylation in all tissues (constitutive- or cVM-IAPs); both types have the potential to regulate genes in cis. Screening for variable methylation at other TEs shows that this phenomenon is largely limited to IAPs, which are amongst the youngest and most active endogenous retroviruses. We identify sequences enriched within cVM-IAPs, but determine that these are not sufficient to confer epigenetic variability. CTCF is enriched at VM-IAPs with binding inversely correlated with DNA methylation. We uncover dynamic physical interactions between cVM-IAPs with low methylation ranges and other genomic loci, suggesting that VM-IAPs have the potential for long-range regulation. CONCLUSION Our findings indicate that a recently evolved interplay between genetic sequence, CTCF binding, and DNA methylation at young TEs can result in inter-individual variability in transcriptional outcomes with implications for phenotypic variation.
Collapse
Affiliation(s)
- Jessica L. Elmer
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Amir D. Hay
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Noah J. Kessler
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Tessa M. Bertozzi
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | | | | |
Collapse
|
49
|
Hintze M, Griesing S, Michels M, Blanck B, Wischhof L, Hartmann D, Bano D, Franz T. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mamm Genome 2021; 32:12-29. [PMID: 33367954 PMCID: PMC7878237 DOI: 10.1007/s00335-020-09854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.
Collapse
Affiliation(s)
- Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany.
- Medical Department, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Griesing
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
- Dept. of Oncology, National Taiwan University Hospital, Taipei City, 100, Taiwan, ROC
| | - Marion Michels
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Birgit Blanck
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Franz
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Bertozzi TM, Elmer JL, Macfarlan TS, Ferguson-Smith AC. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability. Proc Natl Acad Sci U S A 2020; 117:31290-31300. [PMID: 33239447 PMCID: PMC7733849 DOI: 10.1073/pnas.2017053117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most transposable elements (TEs) in the mouse genome are heavily modified by DNA methylation and repressive histone modifications. However, a subset of TEs exhibit variable methylation levels in genetically identical individuals, and this is associated with epigenetically conferred phenotypic differences, environmental adaptability, and transgenerational epigenetic inheritance. The evolutionary origins and molecular mechanisms underlying interindividual epigenetic variability remain unknown. Using a repertoire of murine variably methylated intracisternal A-particle (VM-IAP) epialleles as a model, we demonstrate that variable DNA methylation states at TEs are highly susceptible to genetic background effects. Taking a classical genetics approach coupled with genome-wide analysis, we harness these effects and identify a cluster of KRAB zinc finger protein (KZFP) genes that modifies VM-IAPs in trans in a sequence-specific manner. Deletion of the cluster results in decreased DNA methylation levels and altered histone modifications at the targeted VM-IAPs. In some cases, these effects are accompanied by dysregulation of neighboring genes. We find that VM-IAPs cluster together phylogenetically and that this is linked to differential KZFP binding, suggestive of an ongoing evolutionary arms race between TEs and this large family of epigenetic regulators. These findings indicate that KZFP divergence and concomitant evolution of DNA binding capabilities are mechanistically linked to methylation variability in mammals, with implications for phenotypic variation and putative paradigms of mammalian epigenetic inheritance.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Jessica L Elmer
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|