1
|
Zhang SY, Luo Q, Xiao LR, Yang F, Zhu J, Chen XQ, Yang S. Role and mechanism of NCAPD3 in promoting malignant behaviors in gastric cancer. Front Pharmacol 2024; 15:1341039. [PMID: 38711992 PMCID: PMC11070777 DOI: 10.3389/fphar.2024.1341039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/30/2024] [Indexed: 05/08/2024] Open
Abstract
Background Gastric cancer (GC) is one of the major malignancies threatening human lives and health. Non-SMC condensin II complex subunit D3 (NCAPD3) plays a crucial role in the occurrence of many diseases. However, its role in GC remains unexplored. Materials and Methods The Cancer Genome Atlas (TCGA) database, clinical samples, and cell lines were used to analyze NCAPD3 expression in GC. NCAPD3 was overexpressed and inhibited by lentiviral vectors and the CRISPR/Cas9 system, respectively. The biological functions of NCAPD3 were investigated in vitro and in vivo. Gene microarray, Gene set enrichment analysis (GSEA) and ingenuity pathway analysis (IPA) were performed to establish the potential mechanisms. Results NCAPD3 was highly expressed in GC and was associated with a poor prognosis. NCAPD3 upregulation significantly promoted the malignant biological behaviors of gastric cancer cell, while NCAPD3 inhibition exerted a opposite effect. NCAPD3 loss can directly inhibit CCND1 and ESR1 expression to downregulate the expression of downstream targets CDK6 and IRS1 and inhibit the proliferation of gastric cancer cells. Moreover, NCAPD3 loss activates IRF7 and DDIT3 to regulate apoptosis in gastric cancer cells. Conclusion Our study revealed that NCAPD3 silencing attenuates malignant phenotypes of GC and that it is a potential target for GC treatment.
Collapse
Affiliation(s)
- Su-Yun Zhang
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiong Luo
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Li-Rong Xiao
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Fan Yang
- Departments of Respiratory and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiang-Qi Chen
- Departments of Respiratory and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, China
| | - Sheng Yang
- Departments of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Bhowmick C, Rahaman M, Bhattacharya S, Mukherjee M, Chakravorty N, Dutta PK, Mahadevappa M. Identification of hub genes to determine drug-disease correlation in breast carcinomas. Med Oncol 2023; 41:36. [PMID: 38153604 DOI: 10.1007/s12032-023-02246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/11/2023] [Indexed: 12/29/2023]
Abstract
The exact molecular mechanism underlying the heterogeneous drug response against breast carcinoma remains to be fully understood. It is urgently required to identify key genes that are intricately associated with varied clinical response of standard anti-cancer drugs, clinically used to treat breast cancer patients. In the present study, the utility of transcriptomic data of breast cancer patients in discerning the clinical drug response using machine learning-based approaches were evaluated. Here, a computational framework has been developed which can be used to identify key genes that can be linked with clinical drug response and progression of cancer, offering an immense opportunity to predict potential prognostic biomarkers and therapeutic targets. The framework concerned utilizes DeSeq2, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cytoscape, and machine learning techniques to find these crucial genes. Total RNA extraction and qRT-PCR were performed to quantify relative expression of few hub genes selected from the networks. In our study, we have experimentally checked the expression of few key hub genes like APOA2, DLX5, APOC3, CAMK2B, and PAK6 that were predicted to play an immense role in breast cancer tumorigenesis and progression in response to anti-cancer drug Paclitaxel. However, further experimental validations will be required to get mechanistic insights of these genes in regulating the drug response and cancer progression which will likely to play pivotal role in cancer treatment and precision oncology.
Collapse
Affiliation(s)
- Chiranjib Bhowmick
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Shatarupa Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Pranab Kumar Dutta
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Manjunatha Mahadevappa
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Identification of miRNA-mRNA-TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches. PLoS One 2022; 17:e0271262. [PMID: 36264868 PMCID: PMC9584516 DOI: 10.1371/journal.pone.0271262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Collapse
|
5
|
Effects of the Targeted Regulation of CCRK by miR-335-5p on the Proliferation and Tumorigenicity of Human Renal Carcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:2960050. [PMID: 36276294 PMCID: PMC9586783 DOI: 10.1155/2022/2960050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
Cell cycle-related kinase (CCRK) is most closely related to cyclin-dependent protein kinase, which may activate cyclin-dependent kinase 2 and is associated with the growth of human cancer cells. However, the expression and function of CCRK in the pathogenesis of clear cell renal cell cancer (ccRCC) are unclear. Herein, this research aimed to explore the potential mechanism of the targeted regulation of CCRK by miR-335-5p on the proliferation and tumorigenicity of human ccRCC cells. The results showed that CCRK was significantly overexpressed in ccRCC tissues and cells, and knockdown of the CCRK expression by shRNA inhibited cell proliferation in vitro and in vivo and enhanced cell apoptosis in vitro, which indicated that CCRK could be a potential target for antitumour drugs in the treatment of ccRCC. Moreover, miR-335-5p was found to bind directly to the 3′ untranslated region of CCRK, was expressed at markedly low levels in ccRCC cells, and was closely associated with the tumour stage. The overexpression of CCRK partially reversed the inhibitory effects of miR-335-5p on the cell growth of ccRCC, which implied that miR-335-5p could serve as a promising tumour inhibitor for ccRCC. In summary, CCRK could serve as an alternative antitumour drug target, and miR-335-5p could be a promising therapeutic tumour inhibitor for ccRCC treatment.
Collapse
|
6
|
Babu P, Palaniappan A. miR2Trait: an integrated resource for investigating miRNA-disease associations. PeerJ 2022; 10:e14146. [PMID: 36217386 PMCID: PMC9547587 DOI: 10.7717/peerj.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs are key components of cellular regulatory networks, and breakdown in miRNA function causes cascading effects leading to pathophenotypes. A better understanding of the role of miRNAs in diseases is essential for human health. Here, we have devised a method for comprehensively mapping the associations between miRNAs and diseases by merging on a common key between two curated omics databases. The resulting bidirectional resource, miR2Trait, is more detailed than earlier catalogs, uncovers new relationships, and includes analytical utilities to interrogate and extract knowledge from these datasets. miR2Trait provides resources to compute the disease enrichment of a user-given set of miRNAs and analyze the miRNA profile of a specified diseasome. Reproducible examples demonstrating use-cases for each of these resource components are illustrated. Furthermore we used these tools to construct pairwise miRNA-miRNA and disease-disease enrichment networks, and identified 23 central miRNAs that could underlie major regulatory functions in the human genome. miR2Trait is available as an open-source command-line interface in Python3 (URL: https://github.com/miR2Trait) with a companion wiki documenting the scripts and data resources developed, under MIT license for commercial and non-commercial use. A minimal web-based implementation has been made available at https://sas.sastra.edu/pymir18. Supplementary information is available at: https://doi.org/10.6084/m9.figshare.8288825.v3.
Collapse
Affiliation(s)
- Poornima Babu
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
7
|
Alba J, Barcia R, Gutiérrez-Berzal J, Ramos-Martínez JI. Could inhibition of metalloproteinases be used to block the process of metastasis? Cell Biochem Funct 2022; 40:600-607. [PMID: 35789101 PMCID: PMC9544369 DOI: 10.1002/cbf.3730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022]
Abstract
Metastasis is a multisequential process that allows tumor cells to migrate to tissues distant from the primary tumor. Only a small number of cells escape from the primary tumor; however, the metastases generated are responsible for more than 90% of cancer deaths. Many metastatic processes initially require the total or partial start‐up of a program for the transformation of tumor epithelial cells into mesenchymal cells (EMT). The launching of the EMT program is stimulated by cytokines and other elements produced by the diverse types of cells composing the tumor stroma. In parallel, a process of destabilization of the extracellular matrix (ECM) takes place by means of the synthesis of proteases of the matrix metalloproteinases (MMPs) family. EMC degradation allows the exportation of some tumor cells as mesenchymal cells to the circulatory system and their subsequent implantation in a tissue distant from the primary tumor. The blocking of these both processes appears as a hypothetical stop point in the metastatic mechanism. The present review deals with the different options to achieve the inhibition of MMPs, focusing on MMP7 as a target given its involvement in the metastatic processes of a wide variety of tumors. The simultaneous implantation of the epithelial–mesenchymal program and the synthesis and activation of matrix metalloproteinases during the first phases of the metastasis process is known. The inhibition of proteases could constitute a possible blockage of the process. The review describes the evolution of the different inhibition mechanisms that could inform applicable therapeutic mechanisms for the paralysis of the metastatic process.
Collapse
Affiliation(s)
- Jesús Alba
- Histobiomol, Hospital POLUSA, Lugo, Spain
| | - Ramiro Barcia
- Faculty of Sciences, University of Santiago de Compostela, Lugo, Spain
| | | | - Juan I Ramos-Martínez
- Department of Biochemistry and Molecular Biology, School of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
8
|
Khazei K, Jamali M, Sarhadi S, Dadashpour M, Shokrollahzade S, Zarghami N. Transcriptome profiling of curcumin-treated T47D human breast cancer cells by a system-based approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
10
|
Elevation of microRNA-365 impedes malignant behaviors of gastric cancer cells by inhibiting PAX6. Funct Integr Genomics 2022; 22:825-834. [PMID: 35484308 DOI: 10.1007/s10142-022-00858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
Abstract
MicroRNA-365 (miR-365) has been revealed to be a vital regulator in tumorigenesis of multiple cancers, while there is a large gap in the knowledge about miR-365 expression and gastric cancer (GC). This research focused on the effects of miR-365 and paired box 6 (PAX6) on GC development. Levels of miR-365 and PAX6 in GC tissues and cell lines were determined, followed by the screening of the AGS and NCI-N87 cells. Gain- or loss-of-function assays were used to analyze the effect of miR-365, PAX6 on AGS and NCI-N87 cell behaviors. The effects of altered miR-365 and PAX6 on animal models were observed. Moreover, to assess the interaction between miR-365 and PAX6, we implemented the bioinformatic method and dual luciferase reporter gene assay. MiR-365 was decreased while PAX6 was increased in GC tissues and cell lines. There existed a negative association between miR-365 and PAX6. The promoted miR-365 could repress oncogenicity in vivo and malignant transformation in vitro of GC. PAX6 was the target gene of miR-365. Overexpression of PAX6 reversed the inhibitory effect of up-regulated miR-365 on malignant behavior of gastric cancer cells. Our research displays that the amplification of miR-365 could suppress the malignant behaviors of GC cells via inhibiting PAX6, which may be helpful for GC treatment.
Collapse
|
11
|
Wu Z, Liu P, Zhang G. Identification of circRNA-miRNA-Immune-Related mRNA Regulatory Network in Gastric Cancer. Front Oncol 2022; 12:816884. [PMID: 35280778 PMCID: PMC8907717 DOI: 10.3389/fonc.2022.816884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of gastric cancer (GC) is still not fully understood. We aimed to find the potential regulatory network for ceRNA (circRNA–miRNA–immune-related mRNA) to uncover the pathological molecular mechanisms of GC. The expression profiles of circRNA, miRNA, and mRNA in gastric tissue from GC patients were downloaded from the Gene Expression Omnibus (GEO) datasets. Differentially expressed circRNAs, miRNAs, and immune-related mRNAs were filtered, followed by the construction of the ceRNA (circRNA–miRNA–immune-related mRNA) network. Functional annotation and protein–protein interaction (PPI) analysis of immune-related mRNAs in the network were performed. Expression validation of circRNAs and immune-related mRNAs was performed in the new GEO and TCGA datasets and in-vitro experiment. A total of 144 differentially expressed circRNAs, 216 differentially expressed miRNAs, and 2,392 differentially expressed mRNAs were identified in GC. Some regulatory pairs of circRNA–miRNA–immune-related mRNA were obtained, including hsa_circ_0050102–hsa-miR-4537–NRAS–Tgd cells, hsa_circ_0001013–hsa-miR-485-3p–MAP2K1–Tgd cells, hsa_circ_0003763–hsa-miR-145-5p–FGF10–StromaScore, hsa_circ_0001789–hsa-miR-1269b–MET–adipocytes, hsa_circ_0040573–hsa-miR-3686–RAC1–Tgd cells, and hsa_circ_0006089–hsa-miR-5584-3p–LYN–neurons. Interestingly, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN had potential diagnostic value for GC patients. In the KEGG analysis, some signaling pathways were identified, such as Rap1 and Ras signaling pathways (involved NRAS and FGF10), Fc gamma R-mediated phagocytosis and cAMP signaling pathway (involved RAC1), proteoglycans in cancer (involved MET), T-cell receptor signaling pathway (involved MAP2K1), and chemokine signaling pathway (involved LYN). The expression validation of hsa_circ_0003763, hsa_circ_0004928, hsa_circ_0040573, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN was consistent with the integrated analysis. In conclusion, the identified ceRNA (circRNA–miRNA–immune-related mRNA) regulatory network may be associated with the development of GC.
Collapse
Affiliation(s)
- Zhenhai Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| | - Pengyuan Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ganlu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
12
|
Rahimmanesh I, Fatehi R, Khanahmad H. Identification of Significant Genes and Pathways Associated with Tenascin-C in Cancer Progression by Bioinformatics Analysis. Adv Biomed Res 2022; 11:17. [PMID: 35386538 PMCID: PMC8977614 DOI: 10.4103/abr.abr_201_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Background Tenascin-C (TNC) is a large glycoprotein of the extracellular matrix which associated with poor clinical outcomes in several malignancies. TNC over-expression is repeatedly observed in several cancer tissues and promotes several processes in tumor progression. Until quite recently, more needs to be known about the potential mechanisms of TNC as a key player in cancer progression and metastasis. Materials and Methods In the present study, we performed a bioinformatics analysis of breast and colorectal cancer expression microarray data to survey TNC role and function with holistic view. Gene expression profiles were analyzed to identify differentially expressed genes (DEGs) between normal samples and cancer biopsy samples. The protein-protein interaction (PPI) networks of the DEGs with CluePedia plugin of Cytoscape software were constructed. Furthermore, after PPI network construction, gene-regulatory networks analysis was performed to predict long noncoding RNAs and microRNAs associated with TNC and cluster analysis was performed. Using the Clue gene ontology (GO) plugin of Cytoscape software, the GO and pathway enrichment analysis were performed. Results PPI and DEGs-miRNA-lncRNA regulatory networks showed TNC is a significant node in a huge network, and one of the main gene with high centrality parameters. Furthermore, from the regulatory level perspective, TNC could be significantly impressed by miR-335-5p. GO analysis results showed that TNC was significantly enriched in cancer-related biological processes. Conclusions It is important to identify the TNC underlying molecular mechanisms in cancer progression, which may be clinically useful for tumor-targeting strategies. Bioinformatics analysis provides an insight into the significant roles that TNC plays in cancer progression scenarios.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Fatehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Hossein Khanahmad, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
13
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC. J Clin Med 2022; 11:jcm11030655. [PMID: 35160116 PMCID: PMC8836798 DOI: 10.3390/jcm11030655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The chemokine receptor 7/C-C ligand 19 chemokine (CCR7/CCL19) has been implicated in the development and progression of NSCLC. Its expression is regulated by various epigenetic factors including miRNAs. The aim of this study was to assess the expression of CCR7/CCL19 in cancer tissue in relation to that of miRNAs (miR-let-7a, miR-335) as transcriptional regulators. The expression of the tested miRNAs was also evaluated in serum exosomes. Sixty patients (n = 60) were enrolled in the study. The total expression of the studied mRNA and miRNAs were evaluated using qPCR. Tumor tissue fragments, macroscopically unchanged adjacent tissue, and serum were used as controls. Higher CCR7 and CCL19 mRNA expression levels were observed in tumor tissue compared to control. According to stages of the disease (AJCC tumor staging), the greatest expression level of the studied genes' mRNA was observed in patients with stage III. In NSCLC patients, lower miR let-7a expression level was observed in tumor tissue compared to serum; however, miR-335 expression level was higher (p < 0.05). The expression level of miR-335 positively correlated with tumor size (T features according to pTNM staging) and AJCC tumor staging, while miR let-7a had a negative correlation (p > 0.05) with liquid biopsy. Significantly greater miR-335 expression level and lower miR let-7a expression level in serum were observed in patients with metastases to lymph nodes. Our findings reveal a significant correlation between the expression levels of the mRNA of the studied genes and miRNAs. Changes in miR-335 and miR let-7a expression levels in the serum exosomes of NSCLC patients in relation to lymph node metastases and tumor stage may serve as a non-invasive molecular biomarker of tumor progression.
Collapse
|
15
|
Exploratory Profiling of Extracellular MicroRNAs in Cerebrospinal Fluid Comparing Leptomeningeal Metastasis with Other Central Nervous System Tumor Statuses. J Clin Med 2021; 10:jcm10214860. [PMID: 34768379 PMCID: PMC8584800 DOI: 10.3390/jcm10214860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The diagnosis of leptomeningeal metastasis (LM) is often difficult due to the paucity of cancer cells in cerebrospinal fluid (CSF) and nonspecific findings on neuroimaging. Investigations of extracellular microRNAs (miRNAs) in CSF could be used for both the diagnosis and study of LM pathogenesis because they reflect the activity of disseminating cancer cells. We isolated CSF extracellular miRNAs from patients (n = 65) of different central nervous system tumor statuses, including cancer control, healthy control, LM, brain metastasis (BM), and primary brain tumor (BT) groups, and performed miRNA microarrays. In unsupervised clustering analyses, all LM and two BM samples showed unique profiles. Among 30 miRNAs identified for LM-specific biomarkers via a Prediction Analysis of Microarrays, miR-335-5p and miR-34b-3p were confirmed in both the discovery and validation samples (n = 23). Next, we performed a significance analysis of the microarray (SAM) to extract discriminative miRNA profiles of two selected CSF groups, with LM samples revealing a greater number of discriminative miRNAs than BM and BT samples compared to controls. Using SAM comparisons between LM and BM samples, we identified 30 upregulated and 6 downregulated LM miRNAs. To reduce bias from different primary cancers, we performed a subset analysis with primary non-small cell lung cancer, and 12 of 13 upregulated miRNAs in LM vs. BM belonged to the upregulated miRNAs in LM. We identified possible target genes and their biological processes that could be affected by LM discriminative miRNAs in NSCLC using the gene ontology database. In conclusion, we identified a unique extracellular miRNA profile in LM CSF that was different from BM, suggesting the use of miRNAs as LM biomarkers in studies of LM pathogenesis.
Collapse
|
16
|
Song J, Zhang Z. Long non‑coding RNA SNHG20 promotes cell proliferation, migration and invasion in retinoblastoma via the miR‑335‑5p/E2F3 axis. Mol Med Rep 2021; 24:543. [PMID: 34080033 DOI: 10.3892/mmr.2021.12182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/08/2021] [Indexed: 11/05/2022] Open
Abstract
Current therapies for retinoblastoma (RB) are unsatisfactory and there is an urgent need for the development of new treatment modalities. Small nucleolar RNA host gene 20 (SNHG20) has been reported to serve a key oncogenic role in the development of various types of cancer, but its role in RB tumorigenesis remains to be fully determined. The present study aimed to investigate the expression patterns and biological roles of SNHG20 in RB. The expression levels of SNHG20 were measured via reverse transcription‑quantitative PCR in RB tissues and cell lines. The impact of SNHG20 status on cell proliferation, survival, migration and invasion was determined using small interfering RNA and a range of established experimental assays. The SNHG20/microRNA (miR)‑335‑5p/E2F transcription factor 3 (E2F3) signaling axis was further investigated using a dual‑luciferase activity reporter system and an RNA pull‑down assay combined with bioinformatics analyses. SNHG20 expression was significantly increased in RB tissues and cell lines. Silencing of SNHG20 in RB cells was shown to inhibit cell proliferation, clonogenic survival, migration and invasion. Moreover, mechanistic investigations demonstrated that SNHG20 could enhance the expression of E2F3 by sponging of miR‑335‑5p. These data suggested that the long non‑coding RNA SNHG20 may promote cell proliferation, migration and invasion in RB via the miR‑335‑5p/E2F3 axis.
Collapse
Affiliation(s)
- Jing Song
- Department of Ophthalmology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Ziping Zhang
- Department of Ophthalmology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
17
|
Wang L, Zhang M, Wang J, Zhang J. Diagnostic and therapeutic potencies of miR-18a-5p in mixed-type gastric adenocarcinoma. J Cell Biochem 2021; 122:1062-1071. [PMID: 33942935 PMCID: PMC8453821 DOI: 10.1002/jcb.29927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Mixed-type gastric adenocarcinoma (by Lauren Classification) has poor clinical outcomes with few targeted treatment options. The primary objective of this study was to find the prognostic factors, accurate treatment approaches, and effective postoperative adjuvant therapy strategies for patients with mixed-type gastric adenocarcinoma (GA). A microRNA sequencing data set and the corresponding clinical parameters of patients with gastric cancer were obtained from The Cancer Genome Atlas. Differentially expressed microRNAs (DEMs) of diffuse- and intestinal-type GA were, respectively, determined. Kaplan-Meier and log-rank tests were subsequently carried out to evaluate the prognostic relevance of each DEM. To study the common factors between diffuse- and intestinal-type GA, a pathway enrichment analysis was performed on the target genes of identified DEMs using the PANTHER database. After data preprocessing, we analyzed a total of 230 samples from 210 patients with GA. Eighty-six DEMs in diffuse-type GA samples and 59 DEMs in intestinal-type GA samples were, respectively, identified (p 2.0). The Kaplan-Meier survival method further screened out six prognosis-related DEMs for diffuse-type GA and seven prognosis-related DEMs for intestinal-type GA (p < 0.05). MiR-18a-5p was found to be the only common prognosis-related DEM between diffuse- and intestinal-type GA. The common signaling pathways further revealed that target genes of miR-18a-5p are involved in mixed-type GA progression. This study suggests that miR-18a-5p acts as a potential target for treatment, and common signal pathways provide a rich basis to seek reliable and effective molecular targets for the diagnosis, clinical treatment, and postoperative adjuvant therapy strategy of mixed-type GA.
Collapse
Affiliation(s)
- Li Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Department of SurgeryThe Hospital of Chang'an UniversityXi'anShaanxiChina
| | - Mingxin Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Jiansheng Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jia Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
18
|
Ping Q, Shi Y, Yang M, Li H, Zhong Y, Li J, Bi X, Wang C. LncRNA DANCR regulates lymphatic metastasis of bladder cancer via the miR-335/VEGF-C axis. Transl Androl Urol 2021; 10:1743-1753. [PMID: 33968662 PMCID: PMC8100837 DOI: 10.21037/tau-21-226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Substantial evidence indicate that long non-coding RNA (lncRNA) and microRNA (miRNA) act as key role in bladder cancer. Differentiation antagonistic ncRNA (DANCR) could be used as a biomarker in the occurrence and development of cancer. This study aims to explore the mechanism of DANCR/miR-335/VEGF-C axis affecting lymphatic metastasis of bladder cancer. Methods qRT-PCR detects the expression of DANCR in bladder cancer cell lines (SW780, 5637, T24, UM-UC-3) and normal bladder cell lines (SV-HUC-1), and selects T24 cell lines for subsequent experiments. The expression levels of DANCR, miR-335 and VEGF were measured by qRT-PCR, and the dual luciferase reporter gene verified the targeted regulation of DANCR on miR-335 and miR-335 on VEGF. CCK-8, Transwell and Wound healing assay detect the proliferation, invasion and migration ability of bladder cancer cells, Endothelial cell adhesion assay and Western blot further prove the lymphatic metastasis of bladder cancer. Results In this study, DANCR was highly expressed in bladder cancer cell lines. Transfection of si-DANCR significantly inhibits the proliferation, migration, invasion and lymphatic metastasis of bladder cancer cells. Dual luciferase assay confirmed that DANCR targets miR-335/VEGF-C. Transfection of miR-335 mimic promotes the proliferation, migration, invasion and lymphatic metastasis of bladder cancer cells, overexpression of DANCR eliminates the promotion of miR-335 mimic on bladder cancer cells. Further experiments proved that inhibition of miR-335 and overexpression of VEGF-C can reverse the inhibitory effect of silencing DANCR on bladder cancer cells. Conclusions In bladder cancer, DARCR plays an important role, which regulates the proliferation, migration, invasion and lymphatic metastasis of bladder cancer cells through the miR-335/VEGF-C molecular axis.
Collapse
Affiliation(s)
- Qinrong Ping
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yunqiang Shi
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Meng Yang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hui Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yiming Zhong
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jian Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Xiaofang Bi
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Chunhui Wang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, Lobos-González L, Riquelme I, Carrasco-Avino G, Bizama C, Norero E, Owen GI, Roa JC, Corvalán AH. Correction to: MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics 2021; 13:50. [PMID: 33685481 PMCID: PMC7938482 DOI: 10.1186/s13148-021-01036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Química, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Fundación Ciencia Y Vida, Parque Biotecnológico, Santiago, Chile
| | - Ismael Riquelme
- Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Carrasco-Avino
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Bizama
- Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr. Sótero del Río, Santiago, Chile.,Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Shaik S, Martin E, Hayes D, Gimble J, Devireddy R. microRNA Sequencing of CD34+ Sorted Adipose Stem Cells Undergoing Endotheliogenesis. Stem Cells Dev 2021; 30:265-288. [PMID: 33397204 PMCID: PMC7994430 DOI: 10.1089/scd.2020.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
While several microRNAs (miRNAs) that regulate the endotheliogenesis and further promote angiogenesis have been identified in various cancers, the identification of miRNAs that can drive the differentiation of adipose derived stromal/stem cells (ASCs) into the endothelial lineage has been largely unexplored. In this study, CD34+ ASCs sorted using magnetic bead separation were induced to differentiate along the endothelial pathway. miRNA sequencing of ASCs at day 3, 9, and 14 of endothelial differentiation was performed on Ion Proton sequencing system. The data obtained by this high-throughput method were aligned to the human genome HG38, and the differentially expressed miRNAs during endothelial differentiation at various time points (day 3, 9, and 14) were identified. The gene targets of the identified miRNAs were obtained through miRWalk database. The network-pathway analysis of miRNAs and their targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) bioinformatic tools to determine the potential candidate miRNAs that promote endothelial differentiation. Based on these analyses, six upregulated miRNAs (miR-181a-5p, miR-330-5p, miR-335-3p, miR-15b-5p, miR-99a-5p, and miR-199a-5p) and six downregulated miRNAs (miR-145-5p, miR-155-5p, miR-193a-3p, miR-125a-5p, miR-221-5p, and miR-222-3p) were chosen for further studies. In vitro evaluation of these miRNAs to induce endothelial differentiation when transfected into CD34+ sorted ASCs was studied using Von Willebrand Factor (VWF) staining and quantitative real time-polymerase chain reaction (qRT-PCR). Our results suggest that miRNAs: 335-5p, 330-5p, 181a-5p and anti-miRNAs: 125a-5p, 145-5p can likely induce endothelial differentiation in CD34+ sorted ASCs. Further studies are clearly required to elucidate the specific mechanisms on how miRNAs or anti-miRNAs identified through bioinformatics approach can induce the endotheliogenesis in ASCs.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Elizabeth Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jeffrey Gimble
- La Cell, LLC and Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
21
|
Hu X, Tan S, Yin H, Khoso PA, Xu Z, Li S. Selenium-mediated gga-miR-29a-3p regulates LMH cell proliferation, invasion, and migration by targeting COL4A2. Metallomics 2021; 12:449-459. [PMID: 32039426 DOI: 10.1039/c9mt00266a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenium (Se) is an essential trace element that has several functions in cellular processes related to cancer prevention. While the cancericidal effect of Se has been reported in liver cancer, the mechanism has not been clarified. MiR-29a has widely been reported as a tumor suppressor; however, it also acts as a carcinogenic agent by increasing cell invasion in human epithelial cancer cells and hepatoma cells. In a previous study, we found that miR-29a-3p is a Se-sensitive miRNA. However, its effect in the chicken hepatocellular carcinoma cell line (LMH) is still unknown. In the present study, we found that the expression of miR-29a-3p in LMH cells was decreased by Se supplementation and increased under Se-deficient conditions. Flow cytometry and CCK-8 results suggested that Se decreased LMH cell proliferation induced by miR-29a-3p overexpression. Transwell and gap-closure assays implied that Se mediated LMH cell invasion and migration by downregulating miR-29a-3p. Quantitative real-time polymerase chain reaction and Western blotting results suggested that Se mitigated miR-29a-3p overexpression-induced LMH cell proliferation by downregulating CDK2, cyclin-D1, CDK6, and cyclin-E1. We further demonstrated that collagen type IV alpha 2 (COL4A2) is a target gene of miR-29a-3p. COL4A2 activates the RhoA/ROCK pathway to promote LMH cell invasion and migration. In conclusion, Se mediated miR-29a-3p overexpression induced LMH cell invasion and migration by targeting COL4A2 to inactivate the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Siran Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
22
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
23
|
Abdi E, Latifi-Navid S, Abdi F, Taherian-Esfahani Z. Emerging circulating MiRNAs and LncRNAs in upper gastrointestinal cancers. Expert Rev Mol Diagn 2020; 20:1121-1138. [DOI: 10.1080/14737159.2020.1842199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Fatemeh Abdi
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Zahra Taherian-Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Wang Z, Yuan S, Cao X, Huang C, Zhang A, Lu C, Liu L. MiR‐335‐5p inhibits the progression of head and neck squamous cell carcinoma by targeting MAP3K2. FEBS Open Bio 2020. [PMCID: PMC7609806 DOI: 10.1002/2211-5463.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence has indicated that aberrantly expressed microRNAs (miRNAs) play key roles in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). Previous studies have shown that miR‐335‐5p can serve as a tumor suppressor or an oncogene in cancer. However, the clinical importance and biological effects of miR‐335‐5p in HNSCC have not been determined. Here, we investigated the expression pattern, functional role, and mechanisms of miR‐335‐5p in HNSCC. We showed a decreased expression of miR‐335‐5p in HNSCC samples from the TCGA and GEO databases. Consistently, we detected a downregulation of miR‐335‐5p in HNSCC cell lines and patient tissues. The expression of miR‐335‐5p was inversely correlated with advanced clinical TNM stage and lymph node metastasis in HNSCC patients. miR‐335‐5p overexpression inhibited HNSCC cell proliferation and induced apoptosis, while miR‐335‐5p inhibition had the opposite effects. miR‐335‐5p overexpression suppressed tumor growth in mice. Bioinformatic analyses and functional assays identified MAP3K2 as a target of miR‐335‐5p, and we showed that miR‐335‐5p downregulated mitogen‐activated protein kinase kinase kinase 2 (MAP3K2) expression in HNSCC cells. We found an inverse association between MAP3K2 and miR‐335‐5p expression in 38 pairs of HNSCC tissues. Furthermore, the effect of miR‐335‐5p overexpression on growth and metastasis as well as cell apoptosis in HNSCC cells could be partially rescued by MAP3K2 expression. Collectively, our data show that miR‐335‐5p inhibits the development of HNSCC by regulating MAP3K2 expression. Thus, these findings offer novel insights into a potential therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Shuoqing Yuan
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Xiaoming Cao
- Department of Otolaryngology Dezhou People‘s Hospital Dezhou China
| | - Chaoping Huang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Aobo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Cheng Lu
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery Beijing Friendship Hospital Capital Medical University Beijing China
| |
Collapse
|
25
|
Sheng LQ, Li JR, Qin H, Liu L, Zhang DD, Zhang Q, Huang ML, Li XL, Xu XY, Wei YN, Chen ZS, Luo H, Zhang JY, Zhou CH, Chen H, Chen ZG, Li FG, Li NF. Blood exosomal micro ribonucleic acid profiling reveals the complexity of hepatocellular carcinoma and identifies potential biomarkers for differential diagnosis. World J Gastrointest Oncol 2020; 12:1195-1208. [PMID: 33133386 PMCID: PMC7579736 DOI: 10.4251/wjgo.v12.i10.1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, but there is a shortage of effective biomarkers for its diagnosis.
AIM To explore blood exosomal micro ribonucleic acids (miRNAs) as potential biomarkers for HCC diagnosis.
METHODS T RESULTS The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p. The miRNA profiles also revealed the tumor stages of HCC patients. High expression of miR-455-5p and miR-30c-5p, which significantly correlated with better overall survival in tumor tissues, could also be detected in blood exosomes. Two pairs of miRNAs (miR-584-5p/miR-106-3p and miR-628-3p/miR-941) showed a 94.1% sensitivity and 68.4% specificity to differentiate HCC patients from non-HCC patients. The specificity of the combination was substantially influenced by alcohol consumption habits.
CONCLUSION This study suggested that blood exosomal miRNAs can be used as new non-invasive diagnostic tools for HCC. However, their accuracy could be affected by tumor stage and alcohol consumption habits.
Collapse
Affiliation(s)
- Lang-Qing Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jia-Rong Li
- Department of Biliopancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hao Qin
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Da-Dong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Meng-Li Huang
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Xiao-Li Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiao-Ya Xu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Yang-Nian Wei
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zi-Shuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Hui Luo
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ji-Yang Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Cheng-Hui Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hao Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Ze-Guo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Gen Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Nian-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
26
|
Chen D, Bao C, Zhao F, Yu H, Zhong G, Xu L, Yan S. Exploring Specific miRNA-mRNA Axes With Relationship to Taxanes-Resistance in Breast Cancer. Front Oncol 2020; 10:1397. [PMID: 32974144 PMCID: PMC7473300 DOI: 10.3389/fonc.2020.01397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the most prevalent type of malignancy in women worldwide. Taxanes (paclitaxel and docetaxel) are widely applied as first-line chemotherapeutic agents, while the therapeutic effect is seriously limited by the development of drug resistance. In the present study, we screened out several miRNAs dysregulated in taxanes-resistant breast cancer samples and confirmed that two miRNAs (miR-335-5p and let-7c-5p) played a major role in cell proliferation, apoptosis, and chemo-resistance. In addition, the weighted gene co-expression network analysis (WGCNA) for potential target genes of miR-335-5p and let-7c-5p identified three hub genes (CXCL9, CCR7, and SOCS1) with a positive relationship to taxanes-sensitivity. Further, target relationships between miR-335-5p and CXCL9, let-7c-5p and CCR7/SOCS1 were confirmed by dual-luciferase reporter assays. Importantly, the regulatory functions of CXCL9, CCR7, and SOCS1 on proliferation and chemoresistance were validated. In conclusion, our study shed light on clinical theragnostic relationships between miR-335-5p/CXCL9, let-7c-5p/CCR7/SOCS1 axes, and taxanes-resistance in breast cancer.
Collapse
Affiliation(s)
- Danni Chen
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Organ Transplantation, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Feng Zhao
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haogang Yu
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guansheng Zhong
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Xu
- Clinical Research Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Huo W, Zhang M, Li C, Wang X, Zhang X, Yang X, Fei H. Correlation of microRNA-335 expression level with clinical significance and prognosis in non-small cell lung cancer. Medicine (Baltimore) 2020; 99:e21369. [PMID: 32846757 PMCID: PMC7447412 DOI: 10.1097/md.0000000000021369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although treatments have improved significantly in recent years, the prognosis of patients with non-small cell lung cancer (NSCLC) remains poor. miR-335 has been demonstrated to play the antitumor role in several cancer types. Its expression was reduced in NSCLC tissues relative to noncancerous adjacent tissues. Furthermore, downregulation of miR-335 in A459 lung cancer cells promoted cell proliferation. In the present study, we aimed to investigate the clinical significance and prognostic value of miR-335 in NSCLC.The lung cancer tissues and adjacent nontumor lung tissues were obtained from 131 patients who underwent the primary surgical resection at Lianyungang First People's Hospital. Student t test was used to distinguish differences between groups. χ test was involved for analysis of clinicopathological data. The overall survival was analyzed by the Kaplan-Meier method and the log rank test. Multiple Cox proportional hazards regression analysis was carried out to identify the independent factors that had a significant impact on patient survival.miR-335 was significantly lower in NSCLC samples compared to non-cancerous samples (P < .001). The expression level of miR-335 was significantly correlated with tumor histology (P = .028), lymph node metastasis (P = .002), differentiation degree (P < .001), and pathological TNM stage (P < .001). The log-rank test indicated that patients with decreased miR-335 expression experienced poor overall survival in NSCLC (P = .029).The results of the present study indicated that miR-335 was down-expressed in NSCLC, and is associated with tumor progression and poor prognosis, suggesting that the expression of miR-335 might be an independent prognostic factor of overall survival in patients with NSCLC.
Collapse
Affiliation(s)
- Wen Huo
- Department of Respiratory and Critical Care Medicine
| | - Man Zhang
- Department of Respiratory and Critical Care Medicine
| | - Chunhua Li
- Department of Respiratory and Critical Care Medicine
| | - Xinying Wang
- Department of Respiratory and Critical Care Medicine
| | | | - Xiaona Yang
- Pain Department, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Jiangsu, P. R. China
| | - Haitao Fei
- Department of Respiratory and Critical Care Medicine
| |
Collapse
|
28
|
Yang JY, Li Y, Wang Q, Zhou WJ, Yan YN, Wei WB. MicroRNA-145 suppresses uveal melanoma angiogenesis and growth by targeting neuroblastoma RAS viral oncogene homolog and vascular endothelial growth factor. Chin Med J (Engl) 2020; 133:1922-1929. [PMID: 32826455 PMCID: PMC7462217 DOI: 10.1097/cm9.0000000000000875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. It has been demonstrated that microRNA-145 (miR-145) is correlated with the progression of various cancers by regulating the expression of multiple target genes, especially a number of genes that regulate angiogenesis and proliferation. However, the underlying mechanisms of miR-145 in tumor angiogenesis of UM are still not well illustrated. Thus, we aimed to explore the potential target genes or pathways regulated by miR-145 in UM and the effect of miR-145 on invasion and angiogenesis. METHODS Totally, 24 choroid samples were collected in our study, including 12 UM samples and 12 normal uveal tissues. The expression of neuroblastoma RAS viral oncogene homolog (N-RAS), phosphorylated protein kinase B (p-AKT), and vascular endothelial growth factor (VEGF) in UM tissues and normal uveal tissues was analyzed using Western blotting analysis. Lentivirus expression system was used to construct MUM-2B and OCM-1 cell lines with stable overexpression of miR-145. Transwell and endothelial cell tube formation assay were used to measure the effects of miR-145 on the invasion and angiogenesis of UM in vitro. The downstream target genes of miR-145 were predicted by bioinformatics and confirmed using a luciferase assay. BALB/c nude mice models were established to investigate the mechanisms of miR-145 on tumor growth and angiogenesis in vivo. Group data comparisons were performed using analysis of Student's t test. A two-tailed P < 0.05 was considered as statistically significant. RESULTS The results of Western blotting analysis indicated that the expressions of N-RAS (1.10 ± 0.35 vs. 0.41 ± 0.36, t = 3.997, P = 0.012), p-AKT (1.16 ± 0.22 vs. 0.57 ± 0.03, t = 7.05, P = 0.001), and VEGF (0.97 ± 0.32 vs. 0.45 ± 0.21, t = 3.314, P = 0.008) in UM tumor tissues were significantly higher than those in normal uveal tissue. Luciferase assay demonstrated N-RAS and VEGF as downstream targets of miR-145. Moreover, tube formation assay revealed that miR-145-transfected human microvascular endothelial cell line formed shorter tube length (36.10 ± 1.51 mm vs. 42.91 ± 0.94 mm, t = 6.603, P = 0.003) and less branch points (350.00 ± 19.97 vs. 406.67 ± 17.62, t = 3.685, P = 0.021) as compared with controls. In addition, the numbers of invaded MUM-2B and OCM-1 cells with miR-145 overexpression were significantly lower than the controls (35.7 ± 3.3 vs. 279.1 ± 4.9, t = 273.75, P < 0.001 and 69.5 ± 4.4 vs. 95.6 ± 4.7, t = 21.27, P < 0.001, respectively). In vivo, xenografts expressing miR-145 had smaller sizes (miR-145 vs. miR-scr, 717.41 ± 502.62 mmvs. 1694.80 ± 904.33 mm, t = 2.314, P = 0.045) and lower weights (miR-145 vs. miR-scr, 0.74 ± 0.46 g vs. 1.65 ± 0.85 g, t = 2.295, P = 0.045). CONCLUSION Our results indicated that miR-145 is an important tumor suppressor and the inhibitory strategies against N-RAS/VEGF signaling pathway might be potential therapeutic applications for UM in the future.
Collapse
Affiliation(s)
- Jing-Yan Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| | | | | | | | | | | |
Collapse
|
29
|
Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T. Non-coding RNAs in gastric cancer. Cancer Lett 2020; 493:55-70. [PMID: 32712234 DOI: 10.1016/j.canlet.2020.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that play crucial regulatory roles in many fundamental biological processes. The dysregulation of ncRNAs is significantly associated with the progression of human cancers, including gastric cancer. In this review, we have summarized the oncogenic or tumor-suppressive roles and the regulatory mechanisms of lncRNAs, miRNAs, circRNAs and piRNAs, and have discussed their potential as biomarkers or therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongxia Chang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Jin
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Feng Yang
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiaoyi Yan
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
30
|
Hallal S, Ebrahim Khani S, Wei H, Lee MYT, Sim HW, Sy J, Shivalingam B, Buckland ME, Alexander-Kaufman KL. Deep Sequencing of Small RNAs from Neurosurgical Extracellular Vesicles Substantiates miR-486-3p as a Circulating Biomarker that Distinguishes Glioblastoma from Lower-Grade Astrocytoma Patients. Int J Mol Sci 2020; 21:ijms21144954. [PMID: 32668808 PMCID: PMC7404297 DOI: 10.3390/ijms21144954] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play key roles in glioblastoma (GBM; astrocytoma grade IV) biology and are novel sources of biomarkers. EVs released from GBM tumors can cross the blood-brain-barrier into the periphery carrying GBM molecules, including small non-coding RNA (sncRNA). Biomarkers cargoed in circulating EVs have shown great promise for assessing the molecular state of brain tumors in situ. Neurosurgical aspirate fluids captured during tumor resections are a rich source of GBM-EVs isolated directly from tumor microenvironments. Using density gradient ultracentrifugation, EVs were purified from cavitron ultrasonic surgical aspirate (CUSA) washings from GBM (n = 12) and astrocytoma II-III (GII-III, n = 5) surgeries. The sncRNA contents of surgically captured EVs were profiled using the Illumina® NextSeqTM 500 NGS System. Differential expression analysis identified 27 miRNA and 10 piRNA species in GBM relative to GII-III CUSA-EVs. Resolved CUSA-EV sncRNAs could discriminate serum-EV sncRNA profiles from GBM and GII-III patients and healthy controls and 14 miRNAs (including miR-486-3p and miR-106b-3p) and cancer-associated piRNAs (piR_016658, _016659, _020829 and _204090) were also significantly expressed in serum-EVs. Circulating EV markers that correlate with histological, neuroradiographic and clinical parameters will provide objective measures of tumor activity and improve the accuracy of GBM tumor surveillance.
Collapse
Affiliation(s)
- Susannah Hallal
- Department of Neurosurgical Services, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Saeideh Ebrahim Khani
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
| | - Heng Wei
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Maggie Yuk Ting Lee
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Hao-Wen Sim
- Department of Medical Oncology and NHMRC Clinical Trials Centre, Chris O’Brien Lifehouse, Camperdown 2050, Australia;
- Central Clinical School, The University of Sydney, Camperdown 2006, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Darlinghurst 2010, Australia
| | - Joanne Sy
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Brindha Shivalingam
- Department of Neurosurgical Services, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
| | - Michael E. Buckland
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
| | - Kimberley L. Alexander-Kaufman
- Department of Neurosurgical Services, Chris O’Brien Lifehouse, Camperdown 2050, Australia; (S.H.); (B.S.)
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Camperdown 2006, Australia; (S.E.K.); (M.E.B.)
- Brainstorm Brain Cancer Research, Brain and Mind Centre, The University of Sydney, Camperdown 2050, Australia; (H.W.); (M.Y.T.L.)
- Neuropathology Department, Royal Prince Alfred Hospital, Camperdown 2050, Australia;
- Correspondence: ; Tel.: +61-2-8514-0675
| |
Collapse
|
31
|
Ghafouri-Fard S, Vafaee R, Shoorei H, Taheri M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene 2020; 757:144937. [PMID: 32640300 DOI: 10.1016/j.gene.2020.144937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have critical roles in regulation of expression of genes. They can inhibit or decrease expression of target genes mostly via interaction with 3' untranslated region of their targets. Their crucial roles in the regulation of expression of tumor suppressor genes and oncogenes have potentiated them as contributors in tumorigenesis. Moreover, their stability in body fluids has enhanced their potential as cancer biomarkers. In the present review article, we describe the role of miRNAs in the pathogenesis of gastric cancer and advances in application of miRNAs as biomarkers and therapeutic targets in this kind of malignancy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Zhou JD, Li XX, Zhang TJ, Xu ZJ, Zhang ZH, Gu Y, Wen XM, Zhang W, Ji RB, Deng ZQ, Lin J, Qian J. MicroRNA-335/ ID4 dysregulation predicts clinical outcome and facilitates leukemogenesis by activating PI3K/Akt signaling pathway in acute myeloid leukemia. Aging (Albany NY) 2020; 11:3376-3391. [PMID: 31147526 PMCID: PMC6555456 DOI: 10.18632/aging.101991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
MircoRNA-335 (miR-335) has been reported as a significant cancer-associated microRNA, which was often epigenetically silenced and acted as a tumor suppressor gene in diverse human solid tumors. Conversely, recent studies show that miR-335 overexpression was identified in both adult and pediatric acute myeloid leukemia (AML), suggesting that it might play an oncogenic role of miR-335 in AML. However, the role of miR-335 during leukemogenesis remains to be elucidated. MiR-335/ID4 expression was detected by real-time quantitative PCR and/or western blot. Survival analysis was performed to explore the association between miR-335/ID4 expression and the prognosis, and further validated by public databases. Gain-of-function experiments determined by cell proliferation, apoptosis, and differentiation were conducted to investigate the biological functions of miR-335/ID4. Herein, we found that miR-335 expression, independent of its methylation, was significantly increased and negatively correlated with reduced ID4 expression in AML. Moreover, aberrant miR-335/ID4 expression independently affected chemotherapy response and leukemia-free/overall survival in patients with AML. Gain-of-function experiments in vitro showed the oncogenic role of miR-335 by affecting cell apoptosis and proliferation in AML, and could be rescued by ID4 restoration. Mechanistically, we identified and verified that miR-335/ID4 contributed to leukemogenesis through activating PI3K/Akt signaling pathway. Collectively, aberrant miR-335/ID4 expression was an independent prognostic biomarker in AML. MiR-335/ID4 dysregulation facilitated leukemogenesis through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Xi-Xi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhi-Hui Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| | - Run-Bi Ji
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhao-Qun Deng
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China.,, Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, People's Republic of China
| |
Collapse
|
33
|
Wang Q, Jia Y, Peng X, Li C. Clinical and prognostic association of oncogene cadherin 11 in gastric cancer. Oncol Lett 2020; 19:4011-4023. [PMID: 32391104 PMCID: PMC7204628 DOI: 10.3892/ol.2020.11531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The abnormal expression of cadherin-11 (CDH11) affects the progression of several types of cancer. However, the expression pattern and prognostic value of CDH11 in gastric cancer (GC) have not been reported. In the present study, the expression of CDH11 in patients with GC and its effect on their survival were analyzed using public cancer databases. The expression of CDH11 in GC tissues was significantly higher compared with that in normal gastric tissues. The expression of CDH11 was higher in advanced GC compared with early GC, and increased CDH11 was associated with tumor progression and poor prognosis in patients with GC. The high level of methylation in the promoter of CDH11 in GC tissues was not sufficient to reverse the upregulation of CDH11 caused by transcriptional activation. Finally, the expression pattern and prognostic significance of CDH11 in GC were validated using data from patients with GC recruited for the present study. Collectively, the present results demonstrated that CDH11 was upregulated in GC tissues, and suggested that high CDH11 expression may be associated with progression and poor prognosis in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Yingdong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Xudong Peng
- Gastrointestinal Surgical Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China
| | - Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| |
Collapse
|
34
|
Yang F, Tang Z, Duan A, Yi B, Shen N, Bo Z, Yin L, Zhu B, Qiu Y, Li J. Long Noncoding RNA NEAT1 Upregulates Survivin and Facilitates Gallbladder Cancer Progression by Sponging microRNA-335. Onco Targets Ther 2020; 13:2357-2367. [PMID: 32256086 PMCID: PMC7093099 DOI: 10.2147/ott.s236350] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gallbladder cancer (GBC) is the most common cancer of the biliary tract, but molecularly targeted therapies are not available for GBC. Loss of microRNA (miR)-335 expression may be a useful predictor of clinical outcomes and the reversal of its loss of expression may be a useful treatment strategy for GBC. In this study, we investigated whether a long noncoding RNA, nuclear paraspeckle assembly transcript 1 (NEAT1) sponges miR-335 in GBC cells. Materials and Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to determine the expression of miR-335; NEAT1; survivin; and Ki67 in GBC cell lines (GBC-SD and SGC-996) and tissue samples from patients (n = 25). Cell Counting Kit-8, colony-formation, and Transwell migration and invasion assays were performed to measure cell proliferation, migration, and invasion. Bioinformatic analysis and dual-luciferase reporter assays were utilized to analyze correlativity. Results miR-335 overexpression resulted in inhibition of GBC cell proliferation and invasion. In addition, knockdown of NEAT1 resulted in downregulation of survivin expression. As NEAT1 competitively “sponges” miR-335, NEAT1 knockdown resulted in inhibited GBC cell proliferation and invasion in vitro and GBC tumor growth in vivo. Furthermore, NEAT1 was found to be upregulated in GBC samples, and its expression was inversely correlated with miR-335 levels, but positively correlated with survivin levels. Conclusion These findings indicate that NEAT1 promotes survivin expression by functioning as a competitive endogenous RNA for miR-335 in GBC cells; thus, we have identified a potential biomarker and target for GBC diagnosis and therapy.
Collapse
Affiliation(s)
- Facai Yang
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Anqi Duan
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Bin Yi
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Ningjia Shen
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Zhiyuan Bo
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Lei Yin
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Bin Zhu
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Yinghe Qiu
- Department of Biliary II, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai 200438, People's Republic of China
| | - Jingdong Li
- Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| |
Collapse
|
35
|
Liu C, Zhang M, Zhao J, Zhu X, Zhu L, Yan M, Zhang X, Zhang R. LncRNA FOXD3-AS1 Mediates AKT Pathway to Promote Growth and Invasion in Hepatocellular Carcinoma Through Regulating RICTOR. Cancer Biother Radiopharm 2020; 35:292-300. [PMID: 32191537 DOI: 10.1089/cbr.2019.3335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) has high morbidity and mortality, but current therapeutic methods cannot effectively improve patient's prognosis. FOXD3-AS1, a new identified long noncoding RNA, is dysregulated in several cancers and functions as a carcinogenic or tumor-suppressor factor. However, the function of FOXD3-AS1 in HCC has not been reported. Materials and Methods: Quantitative real time-polymerase chain reaction was applied to evaluate the expression of FOXD3-AS1 in HCC tissues and cell lines. miRDB and TargetScan websites were utilized to predict the interaction network of FOXD3-AS1 as a competing endogenous RNA. The interaction was confirmed by luciferase reporter assay and RNA binding protein immunoprecipitation (RIP) assay. The effect of FOXD3-AS1 on HCC cells (Huh6) were measured by cell counting kit (CCK)-8, BrdU cell proliferation assay, Transwell invasion assay, and wound healing assay. Results: FOXD3-AS1 was overexpressed in HCC, and HCC patients with the high level of FOXD3-AS1 had a poor prognosis. In addition, FOXD3-AS1 knockdown considerably inhibited the proliferation, migration, and invasion of Huh6 cells. Besides, FOXD3-AS1 functioned as a sponge of miR-335, and RICTOR was a direct target gene of miR-335. Furthermore, FOXD3-AS1 could enhance the level of RICTOR through sponging miR-335. Moreover, the knockdown of FOXD3-AS1 could competitively bind with miR-335 to suppress RICTOR expression, thereby inhibiting the growth of Huh6 cells through the deactivation of AKT signaling pathway. Conclusions: FOXD3-AS1 is crucial for the tumorigenesis and progression of HCC. The interaction among FOXD3-AS1, miR-335, and RICTOR provides a novel insight for understanding the molecular mechanism of HCC, and FOXD3-AS1, miR-335, and RICTOR can be regarded as the potential targets for HCC treatment.
Collapse
Affiliation(s)
- Chao Liu
- School of Medical Technology, Jiangsu College of Nursing, Huai 'an City, Jiangsu Province, China
| | - Meng Zhang
- Department of Hepatobiliary, Affiliated Hospital of Hebei University, Baoding City, Hebei Province, China
| | - Jisen Zhao
- Department of Hepatobiliary, Affiliated Hospital of Hebei University, Baoding City, Hebei Province, China
| | - Xinshu Zhu
- School of Medical Technology, Jiangsu College of Nursing, Huai 'an City, Jiangsu Province, China
| | - Ling Zhu
- School of Medical Technology, Jiangsu College of Nursing, Huai 'an City, Jiangsu Province, China
| | - Mengdan Yan
- School of Medical Technology, Jiangsu College of Nursing, Huai 'an City, Jiangsu Province, China
| | - Xiaoxian Zhang
- School of Medical Technology, Jiangsu College of Nursing, Huai 'an City, Jiangsu Province, China
| | - Rui Zhang
- Department of Hepatobiliary, Affiliated Hospital of Hebei University, Baoding City, Hebei Province, China
| |
Collapse
|
36
|
Gu X, Yao X, Liu D. Up-regulation of microRNA-335-5p reduces inflammation via negative regulation of the TPX2-mediated AKT/GSK3β signaling pathway in a chronic rhinosinusitis mouse model. Cell Signal 2020; 70:109596. [PMID: 32156642 DOI: 10.1016/j.cellsig.2020.109596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023]
Abstract
Chronic rhinosinusitis (CRS) is featured with chronic symptoms of inflammation or infection in the nasal and sinus tissues. MicroRNAs (miRNAs/miRs), such as dysregulated expression of miR-125b and miR-26a, has been previously demonstrated to be related to CRS. The present study is intended to define the role of miR-335-5p in inflammation and the related mechanism in a mouse model of CRS. The differentially expressed genes associated with CRS were screened by microarray analysis. The targeting relationship between miR-335-5p and TPX2 was analyzed by target prediction program and dual luciferase reporter gene assay. The mouse model of CRS was established, and mice were introduced with miR-335-5p mimics, miR-335-5p inhibitors, or siRNA against TPX2 to explore the regulatory functions of miR-335-5p. The regulatory effect of miR-335-5p on inflammation with the involvement of the AKT signaling pathway was also analyzed with the expression of inflammatory cytokines and AKT signaling pathway-related factors measured. It was indicated that miR-335-5p regulated the TPX2 gene-mediated AKT signaling pathway. TPX2 was identified as a target gene of miR-335-5p, and miR-335-5p elevation inhibited the activation of the AKT signaling pathway. In mice with CRS, up-regulation of miR-335-5p or silence of TPX2 inhibited the inflammation, as evidenced by decreased levels of TNF-α, IL-6 and IL-8, and higher levels of GSK3β and IL-10. Collectively, miR-335-5p inhibits the activation of AKT signaling pathway by negatively mediating TPX2, which may confer anti-inflammatory protection in CRS.
Collapse
Affiliation(s)
- Xiao Gu
- Department of E.N.T, Linyi People's Hospital, Linyi 276000, PR China
| | - Xiaocui Yao
- Clinical Laboratory, Linyi People's Hospital, Linyi 276000, PR China
| | - Dengtao Liu
- Clinical Laboratory, Linyi People's Hospital, Linyi 276000, PR China.
| |
Collapse
|
37
|
Lou W, Ding B, Fu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front Cell Dev Biol 2020; 8:85. [PMID: 32185172 PMCID: PMC7058547 DOI: 10.3389/fcell.2020.00085] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudogenes, abundant in the human genome, are traditionally considered as non-functional “junk genes.” However, recent studies have revealed that pseudogenes act as key regulators at DNA, RNA or protein level in diverse human disorders (including cancer), among which pseudogene-derived long non-coding RNA (lncRNA) transcripts are extensively investigated and has been reported to be frequently dysregulated in various types of human cancer. Growing evidence demonstrates that pseudogene-derived lncRNAs play important roles in cancer initiation and progression by serving as competing endogenous RNAs (ceRNAs) through competitively binding to shared microRNAs (miRNAs), thus affecting both their cognate genes and unrelated genes. Herein, we retrospect those current findings about expression, functions and potential ceRNA mechanisms of pseudogene-derived lncRNAs in human cancer, which may provide us with some crucial clues in developing potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Pu X, Jiang H, Li W, Xu L, Wang L, Shu Y. Upregulation of the Coatomer Protein Complex Subunit beta 2 (COPB2) Gene Targets microRNA-335-3p in NCI-H1975 Lung Adenocarcinoma Cells to Promote Cell Proliferation and Migration. Med Sci Monit 2020; 26:e918382. [PMID: 32004259 PMCID: PMC7006366 DOI: 10.12659/msm.918382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The coatomer protein complex subunit beta 2 (COPB2) gene is upregulated and promotes cell proliferation in some cancer cells. This study aimed to investigate the role of microRNA (miRNA) targeting by COPB2 gene expression in human lung adenocarcinoma cell lines, including NCI-H1975 cells. MATERIAL AND METHODS COPB2 expression in normal human bronchial epithelial cells and lung adenocarcinoma cells was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. NCI-H1975 human lung adenocarcinoma cells were transfected with short-interfering COPB2 (siCOPB2). Cell apoptosis and cell proliferation were evaluated by flow cytometry and Cell Counting Kit-8 (CCK-8) assays, respectively. The transwell assay evaluated cell migration. Targeting of miR-335-3p by COPB2 was predicted using TargetScan 7.2 and verified using a dual-luciferase reporter assay in NCI-H1975 cells. MiR-335-3p mimics were transfected into NCI-H1975 cells. The further functional analysis included detection of protein expression for cyclin D1, tissue inhibitor matrix metalloproteinase-1 (TIMP-1), matrix metallopeptidase 9 (MMP9), Bcl-2, and Bax, to verify the role of miR-335-3p targeting by COPB2 in lung adenocarcinoma cells. RESULTS COPB2 was upregulated in lung adenocarcinoma cells and was a direct target of miR-335-3p mimics. COPB2 knockdown promoted cell apoptosis, inhibited cell migration and proliferation in NCI-H1975 cells. The effects of COPB2 knockdown on NCI-H1975 cells were increased by miR-335-3p mimics, which also further reduced the expression levels of cyclin D1, MMP9, and Bcl-2 and further increased TIMP-1 and Bax by siCOPB2. CONCLUSIONS This study showed that COPB2 was the functional target of miR-335-3p in NCI-H1975 human adenocarcinoma cells.
Collapse
Affiliation(s)
- Xiaolin Pu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Lin Wang
- Depertment of Oncology, Jiangsu Province Geriatric Institute, Nanjing, Jiangsu, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
39
|
Zou J, Wu K, Lin C, Jie ZG. LINC00319 acts as a microRNA-335-5p sponge to accelerate tumor growth and metastasis in gastric cancer by upregulating ADCY3. Am J Physiol Gastrointest Liver Physiol 2020; 318:G10-G22. [PMID: 31433213 DOI: 10.1152/ajpgi.00405.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is one of the most common cancers in the world and remains a heavy burden of health worldwide. Adenylate cyclase 3 (ADCY3) is a widely expressed membrane-associated protein in human tissues and has been identified to be a new molecular target of GC. Long noncoding RNAs have a substantial influence on tumorigenesis and progression of tumors by binding to microRNAs. Therefore, this study is to clarify the mechanism by which LINC00319 sponges micro RNA-335-5p (miR-335-5p) to influence the development of GC. Initially, microarray analysis identified GC-related differentially expressed LINC00319 and ADCY3 for this study. The interaction was confirmed that LINC00319 interacted with miR-335-5p to regulate ADCY3. Next, SGC-7901 cells presenting with the lowest LINC00319 expression and the highest miR-335-5p expression were transfected with LINC00319, miR-335-5p inhibitor, or ADCY3 vector to examine their roles in growth and metastasis of GC cells, which was further ascertained by in vivo experiments. LINC00319 was upregulated and miR-335-5p was downregulated in GC cells. LINC00319 overexpression, miR-335-5p inhibitor, or ADCY3 overexpression was shown to significantly elevate the expression of cyclin-dependent kinase 4 and metastasis associated 1, decrease that of growth arrest-specific 1, and promote tumor growth and metastasis by increasing proliferation and migration and reducing cell apoptosis. Importantly, it was found that overexpressed miR-335-5p exerted its tumor suppressive role in GC through downregulating ADCY3. Collectively, LINC00319 expedited growth and metastasis of GC by upregulating miR-335-5p-mediated ADCY3.NEW & NOTEWORTHY This study is carried out based on in vivo and in vitro studies in mice and gastric cancer (GC) cells with the aim of clarifying the role of LINC00319 on GC growth and metastasis, which associated with micro RNA-335-5p-mediated adenylate cyclase 3. Altogether, we identified LINC00319 to be a potential therapy to treat GC.
Collapse
Affiliation(s)
- Jun Zou
- Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Surgery, Jiangxi Tumor Hospital, Nanchang, People's Republic of China
| | - Kun Wu
- Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Surgery, Jiangxi Tumor Hospital, Nanchang, People's Republic of China
| | - Chao Lin
- Department of Surgery, Jiangxi Tumor Hospital, Nanchang, People's Republic of China
| | - Zhi-Gang Jie
- Department of Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
40
|
Pathak GA, Zhou Z, Silzer TK, Barber RC, Phillips NR. Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer's and cancer. Alzheimers Dement 2020; 16:162-177. [PMID: 31914222 DOI: 10.1002/alz.12003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We compared genetic variants between Alzheimer's disease (AD) and two age-related cancers-breast and prostate -to identify single-nucleotide polymorphisms (SNPs) that are associated with inverse comorbidity of AD and cancer. METHODS Bayesian multinomial regression was used to compare sex-stratified cases (AD and cancer) against controls in a two-stage study. A ±500 KB region around each replicated hit was imputed and analyzed after merging individuals from the two stages. The microRNAs (miRNAs) that target the genes involving these SNPs were analyzed for miRNA family enrichment. RESULTS We identified 137 variants with inverse odds ratios for AD and cancer located on chromosomes 19, 4, and 5. The mapped miRNAs within the network were enriched for miR-17 and miR-515 families. DISCUSSION The identified SNPs were rs4298154 (intergenic), within TOMM40/APOE/APOC1, MARK4, CLPTM1, and near the VDAC1/FSTL4 locus. The miRNAs identified in our network have been previously reported to have inverse expression in AD and cancer.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Zhengyang Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Robert C Barber
- Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
41
|
Ong J, van den Berg A, Faiz A, Boudewijn IM, Timens W, Vermeulen CJ, Oliver BG, Kok K, Terpstra MM, van den Berge M, Brandsma CA, Kluiver J. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int J Mol Sci 2019; 20:ijms20205176. [PMID: 31635387 PMCID: PMC6829537 DOI: 10.3390/ijms20205176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3.
Collapse
Affiliation(s)
- Jennie Ong
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Cornelis J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, New South Wales 2037, Australia.
- University of Technology Sydney, School of Life Sciences, Sydney, New South Wales 2007, Australia.
| | - Klaas Kok
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Martijn M Terpstra
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Joost Kluiver
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
42
|
Pravoverov K, Whiting K, Thapa S, Bushong T, Trang K, Lein PJ, Chandrasekaran V. MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons. Cell Mol Neurobiol 2019; 39:917-934. [PMID: 31104181 PMCID: PMC6713596 DOI: 10.1007/s10571-019-00688-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/14/2019] [Indexed: 01/28/2023]
Abstract
Neuronal connectivity is dependent on size and shape of the dendritic arbor. However, mechanisms controlling dendritic arborization, especially in the peripheral nervous system, are not completely understood. Previous studies have shown that bone morphogenetic proteins (BMPs) are important initiators of dendritic growth in peripheral neurons. In this study, we examined the hypothesis that post-transcriptional regulation mediated by microRNAs (miRNAs) is necessary for BMP-7-induced dendritic growth in these neurons. To examine the role of miRNAs in BMP-7-induced dendritic growth, microarray analyses was used to profile miRNA expression in cultured sympathetic neurons from the superior cervical ganglia of embryonic day 21 rat pups at 6 and 24 h after treatment with BMP-7 (50 ng/mL). Our data showed that BMP-7 significantly regulated the expression of 43 of the 762 miRNAs. Of the 43 miRNAs, 22 showed robust gene expression; 14 were upregulated by BMP-7 and 8 were downregulated by BMP-7. The expression profile for miR-335, miR-664-1*, miR-21, and miR-23b was confirmed using qPCR analyses. Functional studies using morphometric analyses of dendritic growth in cultured sympathetic neurons transfected with miRNA mimics and inhibitors indicated that miR-664-1*, miR-23b, and miR-21 regulated early stages of BMP-7-induced dendritic growth. In summary, our data provide evidence for miRNA-mediated post-transcriptional regulation as important downstream component of BMP-7 signaling during early stages of dendritic growth in sympathetic neurons.
Collapse
Affiliation(s)
- Kristina Pravoverov
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Katherine Whiting
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Slesha Thapa
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Trevor Bushong
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Karen Trang
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, 1089 Veterinary Medicine Drive, Davis, Davis, CA 95616
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94556.,Corresponding author: Vidya Chandrasekaran, Department of Biology, Saint Mary’s College of California, Moraga, CA 94556.
| |
Collapse
|
43
|
Martins MR, Almeida RS, Lucena-Silva N, Coutinho-Camilo CM, Torjal I, Dos Santos RL, Miranda-Furtado CL, Rios ÁFL, Torres LC, Begnami MDFS. MicroRNA expression profiling provides novel insights into immune-related pathways involved in gastric cancer. Med Oncol 2019; 36:81. [PMID: 31399867 DOI: 10.1007/s12032-019-1305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
Gastric cancer is one of the most common cancers, and an increasing number of studies have found that microRNAs (miRNAs) play essential roles in gastric cancer progression; however, the roles of specific miRNAs involved in the immune response to this disease remain unclear. We compared the miRNA expression in tissues from primary gastric cancer patients and healthy controls to find miRNAs dysregulated in gastric cancer and used bioinformatics tools to determine potential roles of these miRNAs in the immune system. We evaluated 25 primary gastric cancer tissues and five healthy gastric tissues. Quantitative real-time polymerase chain reaction was performed for a set of miRNAs, followed by the prediction of their target genes and functional enrichment analysis of these targets. Analysis of a microarray dataset showed that the miRNA miR-196a-5p was significantly upregulated, while miR-374a-5p and miR-375 were downregulated in gastric cancer patients. In addition, miR-374-5p was significantly downregulated in patients with metastasis compared with its expression levels in non-metastatic patients (p = 0.03). Bioinformatics analysis suggested that the pathways regulated by these differentially expressed miRNAs were related to the immune response, cell adhesion, and cell migration. Most importantly, this study provides a new insight into the potential use of multiple miRNAs to find distinct pathways of immune regulation in gastric cancer.
Collapse
Affiliation(s)
- Mário Rino Martins
- Oncology Surgical Department, Sociedade Pernambucana de Combate ao Câncer - Hospital do Câncer de Pernambuco, Recife, Brazil.
| | | | | | | | - Israel Torjal
- International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Rogério Luiz Dos Santos
- Oncology Surgical Department, Sociedade Pernambucana de Combate ao Câncer - Hospital do Câncer de Pernambuco, Recife, Brazil
| | - Cristiana Libardi Miranda-Furtado
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Science, Federal University of Ceará, Fortaleza, Brazil
| | - Álvaro Fabrício Lopes Rios
- Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Leuridan Cavalcante Torres
- Translational Research Laboratory Prof. C.A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
| | | |
Collapse
|
44
|
Feng W, Ding Y, Zong W, Ju S. Non-coding RNAs in regulating gastric cancer metastasis. Clin Chim Acta 2019; 496:125-133. [PMID: 31276633 DOI: 10.1016/j.cca.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide, and mortality remains high, especially in East Asia. At present, the main method to diagnose gastric cancer is pathological biopsy. At the time of diagnosis, most patients have been diagnosed with advanced cancer and metastasis. The treatment of gastric cancer patients is mainly radical surgical resection and chemoradiotherapy, while patients with metastatic tumor have great challenges to radical surgery and are prone to drug resistance. Metastasis is an important factor affecting tumor development. In addition, evidence accumulated in the literature indicates that non-coding RNA plays a key role in tumor metastasis. This article reviews the role of ncRNAs in gastric cancer metastasis and discusses the regulatory mechanism in the development and treatment of gastric cancer.
Collapse
Affiliation(s)
- Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
45
|
Xie Y, Deng H, Wei R, Sun W, Qi Y, Yao S, Cai L, Wang Y, Deng Z. Overexpression of miR-335 inhibits the migration and invasion of osteosarcoma by targeting SNIP1. Int J Biol Macromol 2019; 133:137-147. [DOI: 10.1016/j.ijbiomac.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023]
|
46
|
Chen JH, Huang WC, Bamodu OA, Chang PMH, Chao TY, Huang TH. Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer 2019; 19:634. [PMID: 31248373 PMCID: PMC6598338 DOI: 10.1186/s12885-019-5811-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Metastasis is a leading cause of breast cancer mortality. The induction of epithelial-to-mesenchymal transition (EMT) and complex oncogenic signaling is a vital step in the evolution of highly metastatic and therapeutically-intractable breast cancer; necessitating novel target discovery or development of therapeutics that target metastatic breast cells (MBCs). Methods To achieve this, this study employs a combination of in silico bioinformatics analyses, protein and transcript analyses, drug sensitivity assays, functional assays and animal studies. Results The present study identified CDH11 as an inductor and/or facilitator of metastatic signaling, and biomarker of poor prognosis in MBCs. Furthermore, we showed that in the presence of CDH11-rich cancer-associated fibroblasts (CAFs), MCF7 and MDA-MB-231 MBC cell lines acquired enhanced metastatic phenotype with increased CDH11, β-catenin, vimentin, and fibronectin (FN) expression. We also demonstrated, for the first time to the best of our knowledge that exposure to anti-CDH11 antibody suppresses metastasis, reduces CDH11, FN and β-catenin expression, and abrogate the cancer stem cell (CSC)-like traits of MBC cells. Interestingly, ectopic expression of miR-335 suppressed CDH11, β-catenin and vimentin expression, in concert with attenuated metastatic and CSC potentials of the MBC cells; conversely, inhibition of miR-335 resulted in increased metastatic potential. Finally, corroborating the in silica and in vitro findings, in vivo assays showed that the administration of anti-CDH11 antibody or miR-335 mimic suppressed tumorigenesis and inhibited cancer metastasis. Conclusions These findings validate our hypotheses that miR-335 mediates anti-CDH11 antibody therapy response and that an enhanced miR-335/CDH11 ratio elicits marked suppression of the MBC CSC-like and metastatic phenotypes, thus revealing a therapeutically-exploitable inverse correlation between CDH11-enhanced CSC-like and metastatic phenotype and miR-335 expression in MBCs. Thus, we highlight the therapeutic promise of humanized anti-CDH11 antibodies or miR-335-mimic, making a case for their clinical application as efficacious therapeutic option in patients with MBC. Electronic supplementary material The online version of this article (10.1186/s12885-019-5811-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Hong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan.,Division of Hematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defence Medical Center, Taipei City, 114, Taiwan
| | - Wen-Chien Huang
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Medical College, Taipei City, 252, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan. .,Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan.
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei City, 112, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan. .,Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan. .,Taipei Cancer Center, Taipei Medical University, Taipei City, 110, Taiwan.
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 105, Taiwan. .,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, 333, Taiwan. .,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei City, 112, Taiwan.
| |
Collapse
|
47
|
Qi J, Shi LY, Wu Y, Shen XJ, Yuan J, Jin CJ, Cong H, Ju SQ. Epigenetic silencing of miR-335 induces migration by targeting insulin-like growth factor-1 receptor in multiple myeloma. Leuk Lymphoma 2019; 60:3188-3198. [PMID: 31190579 DOI: 10.1080/10428194.2019.1627534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy and remains incurable. MiRNA-335 is a classic tumor suppressor, yet its expression pattern and biological role in MM is unclear. The aim of the present study was to determine the expression pattern, biological role, and mechanism of miR-335 in MM. In this study, we found that miR-335 expression was decreased in MM. The promoter of miR-335 was also hypermethylated in MM. It was found that over-expression of miR-335 or 5-azacytidine treatment suppressed migration of MM cells and down-regulated the expression of IGF-1R. MiR-335 thus acts as a metastatic suppressor by targeting IGF-1R in MM. Moreover, aberrant promoter hyper-methylation is critical for miR-335 silencing in MM. We also found that miR-335 assisted in predicting both the prognosis and progression of disease in MM patients. Observations might offer a new complementary diagnostic and therapeutic target in MM.
Collapse
Affiliation(s)
- Jing Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lin-Ying Shi
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yin Wu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Xian-Juan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yuan
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chun-Jing Jin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Cong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shao-Qing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
48
|
Fatima N, Srivastava AN, Nigam J, Raza ST, Rizvi S, Siddiqui Z, Kumar V. Low Expression of MicroRNA335-5p Is Associated with Malignant Behavior of Gallbladder Cancer: A Clinicopathological Study. Asian Pac J Cancer Prev 2019; 20:1895-1900. [PMID: 31244315 PMCID: PMC7021618 DOI: 10.31557/apjcp.2019.20.6.1895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) are non-coding RNAs that regulate multiple cellular processes during cancer
progression, identified to be involved in tumorgenesis of several cancers including cancers of digestive system. However
its role in gallbladder inflammatory disease (GID) and gallbladder cancer (GBC) has not been well documented.
The present study was aimed to investigate the clinical significance of hsa-miRNA-335-5p (miR-335) in GBC and
GID. Subjects and Methods: This prospective case control study, conducted from July 1, 2014 to December 1, 2017
in Era’s Lucknow Medical College & Hospital, India, evaluated miR-335 expression by real-time polymerase chain
reaction. Hundred tissue samples GID (control; n=50) and GBC (case; n=50) were studied. Relative quantification of
target miR-335 expression was examined using the comparative cycle threshold method. Their expression was correlated
with different clinicopathological parameters. Fishers’ exact test, Student’s t-test, and Chi-square test were used as
appropriate for data analysis. Kaplan-Meier methods were used to calculate overall and disease-free survival rate.
Two sided P<0.05 was considered as significant. Results: miR-335 expression was found to be significantly low in
GBC lesions when compared with GID lesions (P<0.001). The low expression level of miR-335 was correlated with
histological grade (P=0.007), clinical stage (P<0.001), lymph node metastasis (P<0.001) and liver metastasis (P=0.016).
Reduced expression of miRNA-335 was associated with a shorter median overall survival (7 months vs. 25 months)
in GBC patients (P<0.001). Conclusions: Down regulation of miR-335 is associated with the severity of the disease
and thus indicate that miR-335 expression may serve as prognostic marker for GBC.
Collapse
Affiliation(s)
- Naseem Fatima
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | | | - Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow India
| | - Syed Tasleem Raza
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Saliha Rizvi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Lucknow India
| |
Collapse
|
49
|
Tian L, Wang ZY, Hao J, Zhang XY. miR-505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1. J Cell Biochem 2019; 120:8044-8052. [PMID: 30525214 DOI: 10.1002/jcb.28082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Gastric cancer (GC) is a frequent type of malignant tumor worldwide. GC metastasis results in the majority of clinical treatment failures. MicroRNAs (miRNA) are identified to exhibit crucial roles in GC. Our current study aimed to explore the biological roles of miR-505 in GC progression. It was observed that miR-505 was robustly decreased in GC cells compared with human normal gastric epithelial GES-1 cells. Overexpression of miR-505 was able to repress GC progression in AGS and BGC-823 cells. In addition, high-mobility group box 1 (HMGB1) has been identified as a crucial oncogene in several cancer types. By carrying out bioinformatics analysis, HMGB1 was predicted as a direct target of miR-505. Meanwhile, HMGB1 was found to be significantly increased in GC cells and it was confirmed in our study that miR-505 can directly target HMGB1 in vitro. miR-505 mimics can inhibit HMGB1 messenger RNA and protein expression dramatically. Subsequently, knockdown of HMGB1 can inhibit GC cell proliferation, colony formation, and induce cell apoptosis. Furthermore, HMGB1 silence suppressed GC cell migration and invasion greatly in vitro. Finally, it was validated that miR-505 can inhibit GC progression by targeting HMGB1 in vivo. Taken these together, it was indicated that miR-505/HMGB1 axis was involved in the development of GC. miR-505 can serve as a potential prognostic indicator in GC therapy.
Collapse
Affiliation(s)
- Liang Tian
- Department of Rehabilitation, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zheng-Yu Wang
- Department of Pharmacy, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Jun Hao
- Department of Clinical Laboratory Center, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Xiao-Yu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
50
|
The Possible Role of Complete Loss of Myostatin in Limiting Excessive Proliferation of Muscle Cells (C2C12) via Activation of MicroRNAs. Int J Mol Sci 2019; 20:ijms20030643. [PMID: 30717351 PMCID: PMC6386905 DOI: 10.3390/ijms20030643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Myostatin (MSTN) is a member of the TGF-β superfamily that negatively regulates skeletal muscle growth and differentiation. However, the mechanism by which complete MSTN deletion limits excessive proliferation of muscle cells remains unclear. In this study, we knocked out MSTN in mouse myoblast lines using a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system and sequenced the mRNA and miRNA transcriptomes. The results show that complete loss of MSTN upregulates seven miRNAs targeting an interaction network composed of 28 downregulated genes, including TGFB1, FOS and RB1. These genes are closely associated with tumorigenesis and cell proliferation. Our study suggests that complete loss of MSTN may limit excessive cell proliferation via activation of miRNAs. These data will contribute to the treatment of rhabdomyosarcoma (RMS).
Collapse
|