1
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
2
|
Xie H, Xi X, Lei T, Liu H, Xia Z. CD8 + T cell exhaustion in the tumor microenvironment of breast cancer. Front Immunol 2024; 15:1507283. [PMID: 39717767 PMCID: PMC11663851 DOI: 10.3389/fimmu.2024.1507283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
CD8+ T cells are crucial cytotoxic components of the tumor immune system. In chronic inflammation, they become low-responsive, a state known as T cell exhaustion (TEX). The aim of immune checkpoint blockade is to counteract TEX, yet its dynamics in breast cancer remain poorly understood. This review defines CD8+ TEX and outlines its features and underlying mechanisms. It also discusses the primary mechanisms of CD8+ TEX in breast cancer, covering inhibitory receptors, immunosuppressive cells, cytokines, transcriptomic and epigenetic alterations, metabolic reprogramming, and exosome pathways, offering insights into potential immunotherapy strategies for breast cancer.
Collapse
Affiliation(s)
- Hanghang Xie
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiaowei Xi
- Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Ting Lei
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Hongli Liu
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
3
|
Oleksiewicz U, Kuciak M, Jaworska A, Adamczak D, Bisok A, Mierzejewska J, Sadowska J, Czerwinska P, Mackiewicz AA. The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy. Int J Mol Sci 2024; 25:11466. [PMID: 39519018 PMCID: PMC11546771 DOI: 10.3390/ijms252111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Monika Kuciak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Dominika Adamczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Bisok
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Julia Mierzejewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Justyna Sadowska
- Department of Health Sciences, The Jacob of Paradies University, 66-400 Gorzow Wielkopolski, Poland
| | - Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Andrzej A. Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| |
Collapse
|
4
|
Ohtani H, Inoue N, Iwatani Y, Takeno Y, Arakawa Y, Hidaka Y, Watanabe M. Effect of DNA methylation at the CTLA4 gene on the clinical status of autoimmune thyroid diseases. Clin Immunol 2024; 267:110338. [PMID: 39142493 DOI: 10.1016/j.clim.2024.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
The pathogenesis and manifestation of autoimmune thyroid diseases (AITDs), Graves' disease (GD), and Hashimoto's disease (HD) are associated with T cell activation. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) plays a crucial role in the regulation of T cell activation. DNA methylation levels of eight CpG sites in the CTLA4 gene and expression levels of soluble CTLA-4 were examined. Methylation levels of +22 CpG and CT60 CpG-SNPs in patients with GD and HD with the CT60 GG genotype were lower than those in control subjects. Methylation levels of the-15 CpG sites were lower in patients with intractable GD than those in GD patients in remission. These results suggest that demethylation of +22 CpG and CT60 CpG-SNPs may be associated with susceptibility to GD and HD in subjects with the CTLA4 CT60 GG genotype, and that demethylation of -15 CpG may be associated with the intractability of GD.
Collapse
Affiliation(s)
- Hiroki Ohtani
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Naoya Inoue
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Yamadaoka 2-15, Suita, Osaka 565-0871, Japan
| | - Yoshinori Iwatani
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yuri Takeno
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yuya Arakawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Yamadaoka 2-15, Suita, Osaka 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Deng K, Liang L, Yang Y, Wu Y, Li Y, Zhang R, Tian Y, Lu C. The Wdr5-H3K4me3 Epigenetic Axis Regulates Pancreatic Tumor Immunogenicity and Immune Suppression. Int J Mol Sci 2024; 25:8773. [PMID: 39201460 PMCID: PMC11354242 DOI: 10.3390/ijms25168773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The WDR5/MLL1-H3K4me3 epigenetic axis is often activated in both tumor cells and tumor-infiltrating immune cells to drive various cellular responses in the tumor microenvironment and has been extensively studied in hematopoietic cancer, but its respective functions in tumor cells and immune cells in the context of tumor growth regulation of solid tumor is still incompletely understood. We report here that WDR5 exhibits a higher expression level in human pancreatic tumor tissues compared with adjacent normal pancreas. Moreover, WDR5 expression is negatively correlated with patients' response to chemotherapy or immunotherapy in human colon cancer and melanoma. However, WDR5 expression is positively correlated with the HLA level in human cancer cells, and H3K4me3 enrichment is observed at the promoter region of the HLA-A, HLA-B, and HLA-C genes in pancreatic cancer cells. Using mouse tumor cell lines and in vivo tumor models, we determined that WDR5 deficiency or inhibition significantly represses MHC I expression in vitro and in vivo in pancreatic tumor cells. Mechanistically, we determine that WDR5 deficiency inhibits H3K4me3 deposition at the MHC I (H2K) promoter region to repress MHC I (H2K) transcription. On the other hand, WDR5 depletion leads to the effective downregulation of immune checkpoints and immunosuppressive cytokines, including TGFβ and IL6, in the pancreatic tumor microenvironments. Our data determine that WDR5 not only regulates tumor cell immunogenicity to suppress tumor growth but also activates immune suppressive pathways to promote tumor immune evasion. Selective activation of the WDR5-MHC I pathway and/or selective inhibition of the WDR5-immune checkpoint and WDR5-cytokine pathways should be considered in WDR5-based epigenetic cancer immunotherapy.
Collapse
Affiliation(s)
- Kaidi Deng
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Liyan Liang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Yanmin Wu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Yan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Rongrong Zhang
- Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China; (R.Z.); (Y.T.)
| | - Yulin Tian
- Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China; (R.Z.); (Y.T.)
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| |
Collapse
|
7
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
9
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Linowiecka K, Guz J, Dziaman T, Urbanowska-Domańska O, Zarakowska E, Szpila A, Szpotan J, Skalska-Bugała A, Mijewski P, Siomek-Górecka A, Różalski R, Gackowski D, Oliński R, Foksiński M. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Sci Rep 2024; 14:6481. [PMID: 38499584 PMCID: PMC10948817 DOI: 10.1038/s41598-024-56326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Olga Urbanowska-Domańska
- Department of Oncology, Professor Franciszek Lukaszczyk Oncology Centre, Romanowskiej 2, 85-796, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Aleksandra Skalska-Bugała
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Paweł Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
| |
Collapse
|
11
|
Çerçi Alkaç B, Soyöz M, Pehlivan M, Kılıçaslan Ayna T, Tatar E, Karahan Çöven Hİ, Tanrısev M, Pirim İ. Assessment of CTLA-4 Gene Expression Levels on CD8+ T Cells in Renal Transplant Patients and Relation with Serum sCTLA-4 Levels. Biochem Genet 2024:10.1007/s10528-024-10723-7. [PMID: 38467886 DOI: 10.1007/s10528-024-10723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/28/2024] [Indexed: 03/13/2024]
Abstract
CTLA-4 (Cytotoxic T Lymphocyte Antigen-4) is an immune regulator molecule that is expressed on a variety of immune cells, including CD4+ and CD8+ T cells. After realizing the significance of this regulator molecule, researchers began to concentrate on its activation or inhibition in cancer. Even though there have been some studies on organ transplantation and autoimmunity, the role of the CTLA-4 molecule in renal transplantation has not been demonstrated. The goal of this study was to see how CTLA-4 gene expression and serum sCTLA-4 levels affected renal transplant patients. Peripheral blood samples were collected before and 1-3 months after renal transplantation from 29 recipients. CD8+ T lymphocytes were separated using magnetic beads and purity of the cells controlled by Flow cytometry. CTLA-4 mRNA levels were determined by Real-Time PCR while serum sCTLA-4 levels were assessed by ELISA. 55% of the patient had decreased level of CTLA-4 mRNA after transplantation when compared to pre-transplantation levels. Moreover 61% of the patient had lower serum sCTLA-4 levels after transplantation. sCTLA-4 levels were decreased 11% of the patients with rejection episode after transplantation when compared to stabile patients (5%). Kidney rejection is a complicated process influenced by numerous unknown factors. Several parameters should be evaluated together to precise rejection episodes or graft dysfunctions. Further research focused on the other immune checkpoint regulator molecules could give an opportunity to have an idea about the effect of these molecules on renal transplantation.
Collapse
Affiliation(s)
- Burcu Çerçi Alkaç
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye.
| | - Mustafa Soyöz
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| | - Melek Pehlivan
- Vocational School of Health Services, Izmir Katip Celebi University, Izmir, Türkiye
| | - Tülay Kılıçaslan Ayna
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| | - Erhan Tatar
- Department of Nephrology, Bozyaka Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - H İlayhan Karahan Çöven
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| | - Mehmet Tanrısev
- Department of Nephrology, Tepecik Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - İbrahim Pirim
- Department of Medical Biology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
12
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Granata S, Vivarelli F, Morosini C, Canistro D, Paolini M, Fairclough LC. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int J Mol Sci 2024; 25:2737. [PMID: 38473984 DOI: 10.3390/ijms25052737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Tobacco smoking remains one of the leading causes of premature death worldwide. Electronic Nicotine Delivery Systems (ENDSs) are proposed as a tool for smoking cessation. In the last few years, a growing number of different types of ENDSs were launched onto the market. Despite the manufacturing differences, ENDSs can be classified as "liquid e-cigarettes" (e-cigs) equipped with an atomizer that vaporizes a liquid composed of vegetable glycerin (VG), polypropylene glycol (PG), and nicotine, with the possible addition of flavorings; otherwise, the "heated tobacco products" (HTPs) heat tobacco sticks through contact with an electronic heating metal element. The presence of some metals in the heating systems, as well as in solder joints, involves the possibility that heavy metal ions can move from these components to the liquid, or they can be adsorbed into the tobacco stick from the heating blade in the case of HTPs. Recent evidence has indicated the presence of heavy metals in the refill liquids and in the mainstream such as arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), copper (Cu), and lead (Pb). The present review discusses the toxicological aspects associated with the exposition of heavy metals by consumption from ENDSs, focusing on metal carcinogenesis risk.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucy C Fairclough
- School of Life Sciences, University of Nottingham, East Dr, Nottingham NG7 2TQ, UK
| |
Collapse
|
14
|
Yin J, Gu T, Chaudhry N, Davidson NE, Huang Y. Epigenetic modulation of antitumor immunity and immunotherapy response in breast cancer: biological mechanisms and clinical implications. Front Immunol 2024; 14:1325615. [PMID: 38268926 PMCID: PMC10806158 DOI: 10.3389/fimmu.2023.1325615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Breast cancer (BC) is the most common non-skin cancer and the second leading cause of cancer death in American women. The initiation and progression of BC can proceed through the accumulation of genetic and epigenetic changes that allow transformed cells to escape the normal cell cycle checkpoint control. Unlike nucleotide mutations, epigenetic changes such as DNA methylation, histone posttranslational modifications (PTMs), nucleosome remodeling and non-coding RNAs are generally reversible and therefore potentially responsive to pharmacological intervention. Epigenetic dysregulations are critical mechanisms for impaired antitumor immunity, evasion of immune surveillance, and resistance to immunotherapy. Compared to highly immunogenic tumor types, such as melanoma or lung cancer, breast cancer has been viewed as an immunologically quiescent tumor which displays a relatively low population of tumor-infiltrating lymphocytes (TIL), low tumor mutational burden (TMB) and modest response rates to immune checkpoint inhibitors (ICI). Emerging evidence suggests that agents targeting aberrant epigenetic modifiers may augment host antitumor immunity in BC via several interrelated mechanisms such as enhancing tumor antigen presentation, activation of cytotoxic T cells, inhibition of immunosuppressive cells, boosting response to ICI, and induction of immunogenic cell death (ICD). These discoveries have established a highly promising basis for using combinatorial approaches of epigenetic drugs with immunotherapy as an innovative paradigm to improve outcomes of BC patients. In this review, we summarize the current understanding of how epigenetic processes regulate immune cell function and antitumor immunogenicity in the context of the breast tumor microenvironment. Moreover, we discuss the therapeutic potential and latest clinical trials of the combination of immune checkpoint blockers with epigenetic agents in breast cancer.
Collapse
Affiliation(s)
- Jun Yin
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tiezheng Gu
- The University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Norin Chaudhry
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nancy E. Davidson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Yi Huang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
15
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Torres-Rojas FI, Antonio-Véjar V, Ávila-López PA, Baños-Hernández CJ, Núñez-Martínez HN, Dircio-Maldonado R, Martínez-Carrillo DN, Ortiz-Ortiz J, Jiménez-Wences H. TET Enzymes and 5hmC Levels in Carcinogenesis and Progression of Breast Cancer: Potential Therapeutic Targets. Int J Mol Sci 2023; 25:272. [PMID: 38203443 PMCID: PMC10779134 DOI: 10.3390/ijms25010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.
Collapse
Affiliation(s)
- Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Francisco Israel Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C. P. 44340, Jalisco, Mexico;
| | - Hober Nelson Núñez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C. P. 04510, Mexico;
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| |
Collapse
|
16
|
Zhang C, Sheng Q, Zhao N, Huang S, Zhao Y. DNA hypomethylation mediates immune response in pan-cancer. Epigenetics 2023; 18:2192894. [PMID: 36945884 PMCID: PMC10038033 DOI: 10.1080/15592294.2023.2192894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Abnormal DNA methylation is a fundamental characterization of epigenetics in cancer. Here we demonstrate that aberrant DNA methylating can modulate the tumour immune microenvironment in 16 cancer types. Differential DNA methylation in promoter region can regulate the transcriptomic pattern of immune-related genes and DNA hypomethylation mainly participated in the processes of immunity, carcinogenesis and immune infiltration. Moreover, many cancer types shared immune-related functions, like activation of innate immune response, interferon gamma response and NOD-like receptor signalling pathway. DNA methylation can further help identify molecular subtypes of kidney renal clear cell carcinoma. These subtypes are characterized by DNA methylation pattern, major histocompatibility complex, cytolytic activity and cytotoxic t lymphocyte and tumour mutation burden, and subtype with hypomethylation pattern shows unstable immune status. Then, we investigate the DNA methylation pattern of exhaustion-related marker genes and further demonstrate the role of hypomethylation in tumour immune microenvironment. In summary, our findings support the use of hypomethylation as a biomarker to understand the mechanism of tumour immune environment.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Qi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shan Huang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Wong RSJ, Ong RJM, Lim JSJ. Immune checkpoint inhibitors in breast cancer: development, mechanisms of resistance and potential management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:768-787. [PMID: 38263984 PMCID: PMC10804393 DOI: 10.20517/cdr.2023.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024]
Abstract
The use of immune checkpoint inhibitors (ICIs) has increased exponentially in the past decade, although its progress specifically for breast cancer has been modest. The first U.S. Food and Drug Administration approval for ICI in breast cancer came in 2019, eight years after the first-ever approval of an ICI. At present, current indications for ICIs are relevant only to a subset of patients with triple-negative breast cancer, or those displaying high microsatellite instability or deficiency in the mismatch repair protein pathway. With an increasing understanding of the limitations of using ICIs, which stem from breast cancer being innately poorly immunogenic, as well as the presence of various intrinsic and acquired resistance pathways, ongoing trials are evaluating different combination therapies to overcome these barriers. In this review, we aim to describe the development timeline of ICIs and resistance mechanisms limiting their utility, and summarise the available approaches and ongoing trials relevant to overcoming each resistance mechanism.
Collapse
Affiliation(s)
- Rachel SJ Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Rebecca JM Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joline SJ Lim
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
18
|
Long S, Wang B, Cui Y, Shao J, Zhao Y, Xu Y, Li H, Qiu H, Zhao H, Zeng J, Chen D, Li X, Gu Y. The upregulation of immune checkpoints after photodynamic therapy reducing immune effect for treating breast cancer. Lasers Med Sci 2023; 38:243. [PMID: 37882915 DOI: 10.1007/s10103-023-03894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
The immune effect induced by photodynamic therapy (PDT) has a limited effect on breast tumor. This study hypothesized that suppressive immune checkpoints on T cells might upregulate after PDT, which may reduce the antitumor effect of PDT for treating breast tumor. This study explored the alteration of immune checkpoint for the first time. A bilateral subcutaneous transplanted breast tumor mice model was established, and right tumors imitated primary tumors, and left tumors imitated distant tumors. Primary tumors were treated with PDT mediated by hematoporphyrin derivatives (HpD-PDT). Costimulatory molecules (ICOS, OX40, and 4-1BB) and immune checkpoints (PD1, LAG-3, CTLA-4, TIM-3, TIGIT) on tumor infiltrating T cells after HpD-PDT were analyzed by flow cytometry. Antitumor and immune effects were also assessed after HpD-PDT combined with anti-PD1 and LAG-3 antibodies. Primary tumors were suppressed, but distant tumors could not be inhibited after HpD-PDT. The number of T cells was increased, but function did not enhance after HpD-PDT. Additionally, costimulatory molecules (ICOS, OX40, and 4-1BB) were not elevated, but the suppressive immune checkpoints on tumor infiltrating T cells were upregulated after HpD-PDT. Notably, PD1+ LAG-3+ CD4+ T and PD1+ LAG-3+ CD8+ T cells were significantly increased. When PD1 and LAG-3 blockade combined with HpD-PDT, both primary and distant tumors were significantly suppressed, and antitumor immune effects were significantly enhanced. HpD-PDT could upregulate the PD1+ LAG-3+ CD4+ T and PD1+ LAG-3+ CD8+ T cells. Dual blockade of PD1 and LAG-3 immune checkpoints can enhance the antitumor effect of HpD-PDT.
Collapse
Affiliation(s)
- Shan Long
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- School of Medicine, Nankai University, Tianjin, 300072, China
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Bo Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yingshu Cui
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jiakang Shao
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yibing Zhao
- Department of Oncology, The Seventh Medical Center of Chinese, Dongcheng District, PLA General Hospital, 5 Nanmencang Hutong, DongshitiaoBeijing, 100039, China
| | - Yuanyuan Xu
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Hui Li
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Hongyou Zhao
- College of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jing Zeng
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China
| | - Defu Chen
- College of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaosong Li
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
- Department of Oncology, The Seventh Medical Center of Chinese, Dongcheng District, PLA General Hospital, 5 Nanmencang Hutong, DongshitiaoBeijing, 100039, China.
| | - Ying Gu
- School of Medicine, Nankai University, Tianjin, 300072, China.
- Department of Laser Medicine, The First Medical Center of Chinese, PLA General Hospital, Haidian District, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
19
|
Lei Z, Lian L, Zhang L, Liu C, Zhai S, Yuan X, Wei J, Liu H, Liu Y, Du Z, Gul I, Zhang H, Qin Z, Zeng S, Jia P, Du K, Deng L, Yu D, He Q, Qin P. Detection of Frog Virus 3 by Integrating RPA-CRISPR/Cas12a-SPM with Deep Learning. ACS OMEGA 2023; 8:32555-32564. [PMID: 37720737 PMCID: PMC10500685 DOI: 10.1021/acsomega.3c02929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A fast, easy-to-implement, highly sensitive, and point-of-care (POC) detection system for frog virus 3 (FV3) is proposed. Combining recombinase polymerase amplification (RPA) and CRISPR/Cas12a, a limit of detection (LoD) of 100 aM (60.2 copies/μL) is achieved by optimizing RPA primers and CRISPR RNAs (crRNAs). For POC detection, smartphone microscopy is implemented, and an LoD of 10 aM is achieved in 40 min. The proposed system detects four positive animal-derived samples with a quantitation cycle (Cq) value of quantitative PCR (qPCR) in the range of 13 to 32. In addition, deep learning models are deployed for binary classification (positive or negative samples) and multiclass classification (different concentrations of FV3 and negative samples), achieving 100 and 98.75% accuracy, respectively. Without temperature regulation and expensive equipment, the proposed RPA-CRISPR/Cas12a combined with smartphone readouts and artificial-intelligence-assisted classification showcases the great potential for FV3 detection, specifically POC detection of DNA virus.
Collapse
Affiliation(s)
- Zhengyang Lei
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Lijin Lian
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Likun Zhang
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Changyue Liu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Jiazhang Wei
- Department
of Otolaryngology & Head and Neck, The
People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi
Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Hong Liu
- Animal
and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Shenzhen, Guangdong Province 518045, China
| | - Ying Liu
- Animal
and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Shenzhen, Guangdong Province 518045, China
| | - Zhicheng Du
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Ijaz Gul
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Haihui Zhang
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Zhifeng Qin
- Animal
and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province 518033, China
| | - Shaoling Zeng
- Animal
and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province 518033, China
| | - Peng Jia
- Quality and
Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Ke Du
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Lin Deng
- Shenzhen
Bay Laboratory, Shenzhen 518132, China
| | - Dongmei Yu
- School
of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley
Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
- Tsinghua
Shenzhen International Graduate School, Institute of Biopharmaceutics and Health Engineering, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
20
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Nam AR, Heo M, Lee KH, Kim JY, Won SH, Cho JY. The landscape of PBMC methylome in canine mammary tumors reveals the epigenetic regulation of immune marker genes and its potential application in predicting tumor malignancy. BMC Genomics 2023; 24:403. [PMID: 37460953 DOI: 10.1186/s12864-023-09471-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Genome-wide dysregulation of CpG methylation accompanies tumor progression and characteristic states of cancer cells, prompting a rationale for biomarker development. Understanding how the archetypic epigenetic modification determines systemic contributions of immune cell types is the key to further clinical benefits. RESULTS In this study, we characterized the differential DNA methylome landscapes of peripheral blood mononuclear cells (PBMCs) from 76 canines using methylated CpG-binding domain sequencing (MBD-seq). Through gene set enrichment analysis, we discovered that genes involved in the growth and differentiation of T- and B-cells are highly methylated in tumor PBMCs. We also revealed the increased methylation at single CpG resolution and reversed expression in representative marker genes regulating immune cell proliferation (BACH2, SH2D1A, TXK, UHRF1). Furthermore, we utilized the PBMC methylome to effectively differentiate between benign and malignant tumors and the presence of mammary gland tumors through a machine-learning approach. CONCLUSIONS This research contributes to a better knowledge of the comprehensive epigenetic regulation of circulating immune cells responding to tumors and suggests a new framework for identifying benign and malignant cancers using genome-wide methylome.
Collapse
Affiliation(s)
- A-Reum Nam
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Heo
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Yoon Kim
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Ho Won
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
23
|
Manna S, Mishra J, Baral T, Kirtana R, Nandi P, Roy A, Chakraborty S, Niharika, Patra SK. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics 2023; 15:723-740. [PMID: 37661861 DOI: 10.2217/epi-2023-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Jagdish Mishra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Piyasa Nandi
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhajit Chakraborty
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niharika
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir K Patra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
24
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
25
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
26
|
Pagadala M, Sears TJ, Wu VH, Pérez-Guijarro E, Kim H, Castro A, Talwar JV, Gonzalez-Colin C, Cao S, Schmiedel BJ, Goudarzi S, Kirani D, Au J, Zhang T, Landi T, Salem RM, Morris GP, Harismendy O, Patel SP, Alexandrov LB, Mesirov JP, Zanetti M, Day CP, Fan CC, Thompson WK, Merlino G, Gutkind JS, Vijayanand P, Carter H. Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response. Nat Commun 2023; 14:2744. [PMID: 37173324 PMCID: PMC10182072 DOI: 10.1038/s41467-023-38271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.
Collapse
Affiliation(s)
- Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hyo Kim
- Undergraduate Bioengineering Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Castro
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James V Talwar
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Steven Cao
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Divya Kirani
- Undergraduate Biology and Bioinformatics Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Au
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivier Harismendy
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sandip Pravin Patel
- Center for Personalized Cancer Therapy, Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jill P Mesirov
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
Wang B, Zhou M, Shi YY, Chen XL, Ren YX, Yang YZ, Tang LY, Ren ZF. Survival is associated with repressive histone trimethylation markers in both HR-positive HER2-negative and triple-negative breast cancer patients. Virchows Arch 2023:10.1007/s00428-023-03534-5. [PMID: 37059917 DOI: 10.1007/s00428-023-03534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
About 30% of patients with hormone receptor (HR)-positive breast cancers and up to 50% of human epidermal growth factor receptor 2 (HER2)-positive patients develop progression due to treatment resistance, highlighting the need for more differentiated tumor classifications within the breast cancer molecular subtype to optimize the therapies. We aim to examine the roles of histone modification markers. The levels of common repressive histone markers, histone H3 lysine 9 trimethylation (H3K9me3), histone H3 lysine 27 trimethylation (H3K27me3), and histone H4 lysine 20 trimethylation (H4K20me3), in tumors were evaluated by immunohistochemistry for 914 breast cancer patients. The subjects were followed up until December 2021. Hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) were estimated using Cox regression models. For H3K27me3, patients with the high level had a longer PFS rate (81.3%) than that with the low level (73.9%) within HR-positive/HER2-negative subtype during a follow-up of 85 months only in univariate analysis (P < 0.05). For H3K9me3, the significant association between the high level of it and the longer OS [HR = 0.57, P < 0.05] was found within HR-positive/HER2-negative subtype in multivariate analysis. For H4K20me3, patients with the high level had a longer both OS [HR = 0.38] and PFS [HR = 0.46] within HR-positive/HER2-negative subtype, while had a shorter OS [HR = 3.28] in triple-negative breast cancer (TNBC) in multivariate analysis (all P < 0.05). H3K9me3 and H3K27me3 were the potential prognostic markers for breast cancer patients with HR-positive/HER2-negative subtype. Importantly, H4K20me3 was a robust prognostic marker for both HR-positive/HER2-negative and TNBC patients.
Collapse
Affiliation(s)
- Bo Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meng Zhou
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yue-Yu Shi
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xing-Lei Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yue-Xiang Ren
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuan-Zhong Yang
- The Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H, Karimi-Shahri M. The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. J Cell Biochem 2023; 124:477-494. [PMID: 36966454 DOI: 10.1002/jcb.30402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The second leading cause of cancer death in women worldwide is breast cancer (BC), and despite significant advances in BC therapies, a significant proportion of patients develop metastasis and disease recurrence. Currently used treatments, like radiotherapy, chemotherapy, and hormone replacement therapy, result in poor responses and high recurrence rates. Alternative therapies are therefore needed for this type of cancer. Cancer patients may benefit from immunotherapy, a novel treatment strategy in cancer treatment. Even though immunotherapy has been successful in many cases, some patients do not respond to the treatment or those who do respond relapse or progress. The purpose of this review is to discuss several different immunotherapy approaches approved for the treatment of BC, as well as different strategies for immunotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Toktam Saadatmand
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
29
|
Unger K, Hess J, Link V, Buchner A, Eze C, Li M, Stief C, Kirchner T, Klauschen F, Zitzelsberger H, Niyazi M, Ganswindt U, Schmidt-Hegemann NS, Belka C. DNA-methylation and genomic copy number in primary tumors and corresponding lymph node metastases in prostate cancer from patients with low and high Gleason score. Clin Transl Radiat Oncol 2023; 39:100586. [PMID: 36935856 PMCID: PMC10014335 DOI: 10.1016/j.ctro.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose In prostate cancer, the indication to irradiate the pelvic lymphatic pathways in clinical node-negative patients is solely based on clinical nomograms. To define biological risk patterns of lymphatic spread, we studied DNA-methylation and genomic copy number in primary tumors and corresponding lymph nodes metastases. Methods/Patients DNA-methylation and genomic copy number profiles of primary tumors (PT) and paired synchronous lymph node metastases (LN) from Gleason Score (GS)-6/7a (n = 20 LN-positive, n = 20 LN-negative) and GS-9/10 patients (LN-positive n = 20) after prostatectomy and lymphonodectomy were analyzed. Results GS-6/7a pN0 PTs and GS-6/7a pN1 PTs differed in histone H3K27me3/H3K9me3 mediated methylation. PTs compared to LNs, in both, GS-6/7a pN1 and GS-9/10 pN1 patients showed large differences in DNA-methylation mediated by histones H3K4me1/2, in addition to copy number changes of chromosomal regions 11q13.1, 14q11.2 and 15q26.1. Between GS-6/7a pN1 and GS-9/10 pN1 patients, methylation levels differed more when comparing LNs than PTs. 16q21-22.1 was specifically lost in GS-9/10 pN0 PTs. Immune system-related pathways characterized the differences between PTs and LNs in both GS-6/7a pN1 and GS-9/10 pN1 patients. Comparing PTs and LKs between GS-6/7a pN1 and GS-9/10 pN1 patients revealed altered transmembrane and G-protein-coupled receptor signaling. Conclusions Our data suggest that progression of prostate cancer, including lymphatic spread, is associated with histone-mediated DNA-methylation and we hypothesize a methylation signature predicting lymphatic spread in GS-6/7a patients from primary tumors. Lymphatic spread in GS-6/7a patients, flanked by DNA-methylation and CNA alterations, appears to be more complex than in GS-9/10 patients, in whom the primary tumors already appear to bear lymph node metastasis-enabling alterations.
Collapse
Affiliation(s)
- Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Corresponding author at: Helmholtz Center Munich, Ingolstädter-Landstr. 1, 85622 Neuherberg, Germany.
| | - Julia Hess
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Vera Link
- Department of Pathology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Thomas Kirchner
- Department of Pathology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Frederick Klauschen
- Department of Pathology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Ute Ganswindt
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, Innsbruck Medical University, Austria
- Comprehensive Cancer Center Innsbruck (CCCI), Germany
| | - Nina-Sophie Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| | - Claus Belka
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer”, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Bavarian Center for Cancer Research (BZKF), Munich, Germany
- Comprehensive Cancer Center (CCC), Munich, Germany
| |
Collapse
|
30
|
Wang LY, Zhang LQ, Li QZ, Bai H. The risk model construction of the genes regulated by H3K36me3 and H3K79me2 in breast cancer. BIOPHYSICS REPORTS 2023; 9:45-56. [PMID: 37426199 PMCID: PMC10323774 DOI: 10.52601/bpr.2023.220022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/23/2023] [Indexed: 07/11/2023] Open
Abstract
Abnormal histone modifications (HMs) can promote the occurrence of breast cancer. To elucidate the relationship between HMs and gene expression, we analyzed HM binding patterns and calculated their signal changes between breast tumor cells and normal cells. On this basis, the influences of HM signal changes on the expression changes of breast cancer-related genes were estimated by three different methods. The results showed that H3K79me2 and H3K36me3 may contribute more to gene expression changes. Subsequently, 2109 genes with differential H3K79me2 or H3K36me3 levels during cancerogenesis were identified by the Shannon entropy and submitted to perform functional enrichment analyses. Enrichment analyses displayed that these genes were involved in pathways in cancer, human papillomavirus infection, and viral carcinogenesis. Univariate Cox, LASSO, and multivariate Cox regression analyses were then adopted, and nine potential breast cancer-related driver genes were extracted from the genes with differential H3K79me2/H3K36me3 levels in the TCGA cohort. To facilitate the application, the expression levels of nine driver genes were transformed into a risk score model, and its robustness was tested via time-dependent receiver operating characteristic curves in the TCGA dataset and an independent GEO dataset. At last, the distribution levels of H3K79me2 and H3K36me3 in the nine driver genes were reanalyzed in the two cell lines and the regions with significant signal changes were located.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
31
|
Wu Q, Tian R, Liu J, Ou C, Li Y, Fu X. Deciphering comprehensive features of tumor microenvironment controlled by chromatin regulators to predict prognosis and guide therapies in uterine corpus endometrial carcinoma. Front Immunol 2023; 14:1139126. [PMID: 36936912 PMCID: PMC10022674 DOI: 10.3389/fimmu.2023.1139126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Dysregulation of chromatin regulators (CRs) can perturb the tumor immune microenvironment, but the underlying mechanism remains unclear. We focused on uterine corpus endometrial carcinoma (UCEC) and used gene expression data from TCGA-UCEC to investigate this mechanism. Methods We used weighted gene co-expression network analysis (WGCNA) and consensus clustering algorithm to classify UCEC patients into Cluster_L and Cluster_H. TME-associated CRs were identified using WGCNA and differential gene expression analysis. A CR risk score (CRRS) was constructed using univariate Cox and LASSO-Cox regression analyses. A nomogram was developed based on CRRS and clinicopathologic factors to predict patients' prognosis. Results Lower CRRS was associated with lower grade, more benign molecular subtypes, and improved survival. Patients with low CRRS showed abundant immune infiltration, a higher mutation burden, fewer CNVs, and better response to immunotherapy. Moreover, low CRRS patients were more sensitive to 24 chemotherapeutic agents. Conclusion A comprehensive assessment of CRRS could identify immune activation and improve the efficacy of UCEC treatments.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Yimin Li, ; Chunlin Ou,
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiaodan Fu, ; ; Yimin Li, ; Chunlin Ou,
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Yimin Li, ; Chunlin Ou,
| |
Collapse
|
32
|
Chen X, Yang C, Wang W, He X, Sun H, Lyu W, Zou K, Fang S, Dai Z, Dong H. Exploration of prognostic genes and risk signature in breast cancer patients based on RNA binding proteins associated with ferroptosis. Front Genet 2023; 14:1025163. [PMID: 36911389 PMCID: PMC9998954 DOI: 10.3389/fgene.2023.1025163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Breast cancer (BRCA) is a life-threatening malignancy in women with an unsatisfactory prognosis. The purpose of this study was to explore the prognostic biomarkers and a risk signature based on ferroptosis-related RNA-binding proteins (FR-RBPs). Methods: FR-RBPs were identified using Spearman correlation analysis. Differentially expressed genes (DEGs) were identified by the "limma" R package. The univariate Cox and multivariate Cox analyses were executed to determine the prognostic genes. The risk signature was constructed and verified with the training set, testing set, and validation set. Mutation analysis, immune checkpoint expression analysis in high- and low-risk groups, and correlation between risk signature and chemotherapeutic agents were conducted using the "maftools" package, "ggplot2" package, and the CellMiner database respectively. The Human Protein Atlas (HPA) database was employed to confirm protein expression trends of prognostic genes in BRCA and normal tissues. The expression of prognostic genes in cell lines was verified by Real-time quantitative polymerase chain reaction (RT-qPCR). Kaplan-meier (KM) plotter database analysis was applied to predict the correlation between the expression levels of signature genes and survival statuses. Results: Five prognostic genes (GSPT2, RNASE1, TIPARP, TSEN54, and SAMD4A) to construct an FR-RBPs-related risk signature were identified and the risk signature was validated by the International Cancer Genome Consortium (ICGC) cohort. Univariate and multivariate Cox regression analysis demonstrated the risk score was a robust independent prognostic factor in overall survival prediction. The Tumor Mutational Burden (TMB) analysis implied that the high- and low-risk groups responded differently to immunotherapy. Drug sensitivity analysis suggested that the risk signature may serve as a chemosensitivity predictor. The results of GSEA suggested that five prognostic genes might be related to DNA replication and the immune-related pathways. RT-qPCR results demonstrated that the expression trends of prognostic genes in cell lines were consistent with the results from public databases. KM plotter database analysis suggested that high expression levels of GSPT2, RNASE1, and SAMD4A contributed to poor prognoses. Conclusion: In conclusion, this study identified the FR-RBPs-related prognostic genes and developed an FR-RBPs-related risk signature for the prognosis of BRCA, which will be of great significance in developing new therapeutic targets and prognostic molecular biomarkers for BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenzhi Lyu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuo Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong SAR, China.,Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
33
|
Xu P, Jin K, Zhou J, Gu J, Gu X, Dong L, Sun X. G9a inhibition promotes the formation of pacemaker-like cells by reducing the enrichment of H3K9me2 in the HCN4 promoter region. Mol Med Rep 2022; 27:21. [PMID: 36484369 PMCID: PMC9813554 DOI: 10.3892/mmr.2022.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Biological pacemakers, made of pacemaker-like cells, are promising in the treatment of bradyarrhythmia; however, the inefficiency of stem cell differentiation into pacemaker-like cells has limited their clinical application. Previous studies have reported that histone H3 at lysine 9 (H3K9) methylation is widely involved in the proliferation and differentiation of cardiomyocytes, but the specific role of H3K9 dimethylation (H3K9me2) in the formation of pacemaker cells remains unclear. The present study evaluated the functional role of H3K9me2 in the differentiation of bone marrow mesenchymal stem cells (BMSCs) into pacemaker-like cells. Rat BMSCs pretreated with the euchromatic histone lysine methyltransferase 2 (G9a) inhibitor BIX01294 were transfected with a T-box 18 overexpression plasmid to induce BMSCs to form pacemaker-like cells. The induced pacemaker-like cells were analyzed using reverse transcription-quantitative PCR (RT-qPCR) and immunofluorescence to assess the efficiency of differentiation. The enrichment of H3K9me2 in the hyperpolarized-activated cyclic nucleotide-gated cation channel (HCN)4 promoter region was assessed by chromatin immunoprecipitation (ChIP). In addition, BIX01294 was injected into rats, and the protein and mRNA expression levels of HCN4 were assessed using western blotting and RT-qPCR. After interference with G9a using BIX01294, ChIP results demonstrated that H3K9me2 levels in the promoter region of HCN4 were markedly decreased. Immunofluorescence and RT-qPCR demonstrated that the protein expression levels of certain cardio-specific proteins in the treated group were significantly higher compared with those in the untreated group. In vivo experiments demonstrated that interference with G9a could cause pathological hypertrophy. Furthermore, in vitro and in vivo inhibition of G9a could increase the differentiation and proliferation of pacemaker-like cells by decreasing the levels of H3K9me2 in the promoter region of HCN4 gene.
Collapse
Affiliation(s)
- Pei Xu
- Department of Haematology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Kai Jin
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jing Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiangun Gu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Lijuan Dong
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaolin Sun
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China,Correspondence to: Dr Xiaolin Sun, Department of Cardiology, Taizhou People's Hospital, 366 Taihu Road, Taizhou, Jiangsu 225300, P.R. China, E-mail:
| |
Collapse
|
34
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
35
|
Zhou M, Yan JQ, Chen QX, Yang YZ, Li YL, Ren YX, Weng ZJ, Zhang XF, Guan JX, Tang LY, Ren ZF. Association of H3K9me3 with breast cancer prognosis by estrogen receptor status. Clin Epigenetics 2022; 14:135. [PMID: 36303253 PMCID: PMC9609245 DOI: 10.1186/s13148-022-01363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cellular experiments revealed that a decreased histone H3 lysine 9 trimethylation (H3K9me3) level was associated with the upregulation of oncogenes in breast cancer cells. Moreover, the role of H3K9me3 in breast cancer was closely associated with estrogen receptor (ER) status. Therefore, we aimed to examine the prognostic value of H3K9me3 on breast cancer by ER status. The level of H3K9me3 in tumors were evaluated with tissue microarrays by immunohistochemistry for 917 women diagnosed with primary invasive breast cancer. Hazard ratios (HRs) and their 95% confidence intervals (CIs) for overall survival (OS) and progression-free survival (PFS) were estimated using Cox regression models. Interaction between H3K9me3 and ER on the prognosis was assessed on multiplicative scale. Results The level of H3K9me3 in tumor tissues was lower than that in adjacent tissues. The high level of H3K9me3 was associated with a better OS (HR = 0.43, 95% CI: 0.21–0.86) and PFS (HR = 0.49, 95% CI: 0.29–0.81) among only ER-positive but not ER-negative tumors. Moreover, the interaction between the level of H3K9me3 and ER status (negative and positive) on the prognosis was significant (Pinteraction = 0.011 for OS; Pinteraction = 0.022 for PFS). Furthermore, the ER-positive tumors were stratified by ER-low and ER-high positive tumors, and the prognostic role of H3K9me3 was significant among only ER-high positive patients (HR = 0.34, 95% CI: 0.13–0.85 for OS; HR = 0.47, 95% CI: 0.26–0.86 for PFS). Conclusions Our study showed that the prognostic value of H3K9me3 on breast cancer was related to ER status and expression level, and the high level of H3K9me3 was associated with a better prognosis among ER-positive tumors, particularly ER-high positive tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01363-y.
Collapse
Affiliation(s)
- Meng Zhou
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080 China
| | - Jin-qi Yan
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080 China
| | - Qian-xin Chen
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080 China
| | - Yuan-zhong Yang
- grid.488530.20000 0004 1803 6191The Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue-lin Li
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XThe First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue-xiang Ren
- grid.12981.330000 0001 2360 039XThe Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Rd, Guangzhou, 510630 China
| | - Zi-jin Weng
- grid.12981.330000 0001 2360 039XThe Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Rd, Guangzhou, 510630 China
| | - Xiao-fang Zhang
- grid.12981.330000 0001 2360 039XThe Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Rd, Guangzhou, 510630 China
| | - Jie-xia Guan
- grid.12981.330000 0001 2360 039XThe Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Rd, Guangzhou, 510630 China
| | - Lu-ying Tang
- grid.12981.330000 0001 2360 039XThe Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Rd, Guangzhou, 510630 China
| | - Ze-fang Ren
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080 China
| |
Collapse
|
36
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
37
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
38
|
Annese T, Tamma R, Ribatti D. Update in TIGIT Immune-Checkpoint Role in Cancer. Front Oncol 2022; 12:871085. [PMID: 35656508 PMCID: PMC9152184 DOI: 10.3389/fonc.2022.871085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The in-depth characterization of cross-talk between tumor cells and T cells in solid and hematological malignancies will have to be considered to develop new therapeutical strategies concerning the reactivation and maintenance of patient-specific antitumor responses within the patient tumor microenvironment. Activation of immune cells depends on a delicate balance between activating and inhibitory signals mediated by different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT blockade as monotherapy or in combination with other inhibitor receptors or drugs is emerging in clinical trials in patients with cancer. The purpose of this review is to update the role of TIGIT in cancer progression, looking at TIGIT pathways that are often upregulated in immune cells and at possible therapeutic strategies to avoid tumor aggressiveness, drug resistance, and treatment side effects. However, in the first part, we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and ligands, and summarized the key immune cells that express TIGIT.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
39
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
40
|
Update on lymphocyte-activation gene 3 (LAG-3) in cancers: from biological properties to clinical applications. Chin Med J (Engl) 2022; 135:1203-1212. [PMID: 35170503 PMCID: PMC9337260 DOI: 10.1097/cm9.0000000000001981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy that targets checkpoints, especially programmed cell death protein 1 and programmed cell death ligand 1, has revolutionized cancer therapy regimens. The overall response rate to mono-immunotherapy, however, is limited, emphasizing the need to potentiate the efficacy of these regimens. The functions of immune cells are modulated by multiple stimulatory and inhibitory molecules, including lymphocyte activation gene 3 (LAG-3). LAG-3 is co-expressed together with other inhibitory checkpoints and plays key roles in immune suppression. Increasing evidence, particularly in the last 5 years, has shown the potential of LAG-3 blockade in anti-tumor immunity. This review provides an update on the biological properties and clinical applications of LAG-3 in cancers.
Collapse
|
41
|
Jones BE, Maerz MD, Bahnson HT, Somasundaram A, McCarthy LH, Speake C, Buckner JH. Fewer LAG-3 + T Cells in Relapsing-Remitting Multiple Sclerosis and Type 1 Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:594-602. [PMID: 35022272 PMCID: PMC8820445 DOI: 10.4049/jimmunol.2100850] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
The coinhibitory receptor lymphocyte activation gene 3 (LAG-3) is an immune checkpoint molecule that negatively regulates T cell activation, proliferation, and homeostasis. Blockade or deletion of LAG-3 in autoimmune-prone backgrounds or induced-disease models has been shown to exacerbate disease. We observed significantly fewer LAG-3+ CD4 and CD8 T cells from subjects with relapsing-remitting multiple sclerosis (RRMS) and type 1 diabetes. Low LAG-3 protein expression was linked to alterations in mRNA expression and not cell surface cleavage. Functional studies inhibiting LAG-3 suggest that in subjects with RRMS, LAG-3 retains its ability to suppress T cell proliferation. However, LAG-3 expression was associated with the expression of markers of apoptosis, indicating a role for low LAG-3 in T cell resistance to cell death. In T cells from subjects with RRMS, we observed a global dysregulation of LAG-3 expression stemming from decreased transcription and persisting after T cell stimulation. These findings further support the potential clinical benefits of a LAG-3 agonist in the treatment of human autoimmunity.
Collapse
Affiliation(s)
- Britta E Jones
- Translational Research Program, Benaroya Research Institute, Seattle, WA
| | - Megan D Maerz
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| | - Henry T Bahnson
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA; and
| | - Ashwin Somasundaram
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lucas H McCarthy
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA; and
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA; and
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA;
| |
Collapse
|
42
|
Liang Y, Turcan S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines 2022; 10:biomedicines10020211. [PMID: 35203421 PMCID: PMC8868629 DOI: 10.3390/biomedicines10020211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Epigenetic drugs are used for the clinical treatment of hematologic malignancies; however, their therapeutic potential in solid tumors is still under investigation. Current evidence suggests that epigenetic drugs may lead to antitumor immunity by increasing antigen presentation and may enhance the therapeutic effect of immune checkpoint inhibitors. Here, we highlight their impact on the tumor epigenome and discuss the recent evidence that epigenetic agents may optimize the immune microenvironment and promote antiviral response.
Collapse
|
43
|
Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer 2021; 20:171. [PMID: 34930302 PMCID: PMC8691037 DOI: 10.1186/s12943-021-01464-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms play vital roles not only in cancer initiation and progression, but also in the activation, differentiation and effector function(s) of immune cells. In this review, we summarize current literature related to epigenomic dynamics in immune cells impacting immune cell fate and functionality, and the immunogenicity of cancer cells. Some important immune-associated genes, such as granzyme B, IFN-γ, IL-2, IL-12, FoxP3 and STING, are regulated via epigenetic mechanisms in immune or/and cancer cells, as are immune checkpoint molecules (PD-1, CTLA-4, TIM-3, LAG-3, TIGIT) expressed by immune cells and tumor-associated stromal cells. Thus, therapeutic strategies implementing epigenetic modulating drugs are expected to significantly impact the tumor microenvironment (TME) by promoting transcriptional and metabolic reprogramming in local immune cell populations, resulting in inhibition of immunosuppressive cells (MDSCs and Treg) and the activation of anti-tumor T effector cells, professional antigen presenting cells (APC), as well as cancer cells which can serve as non-professional APC. In the latter instance, epigenetic modulating agents may coordinately promote tumor immunogenicity by inducing de novo expression of transcriptionally repressed tumor-associated antigens, increasing expression of neoantigens and MHC processing/presentation machinery, and activating tumor immunogenic cell death (ICD). ICD provides a rich source of immunogens for anti-tumor T cell cross-priming and sensitizing cancer cells to interventional immunotherapy. In this way, epigenetic modulators may be envisioned as effective components in combination immunotherapy approaches capable of mediating superior therapeutic efficacy.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgical Oncology, China Medical University, Shenyang, China
| | - Shudipto Wahed
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
44
|
Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021; 190:5-17. [PMID: 34322780 PMCID: PMC8560575 DOI: 10.1007/s10549-021-06337-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The clinical implementation of immunotherapy has profoundly transformed cancer treatment. Targeting the immune system to mount anti-tumor responses can elicit a systemically durable response. Employing immune checkpoint blockade (ICB) has suppressed tumor growth and vastly improved patient overall and progression-free survival in several cancer types, most notably melanoma and non-small cell lung carcinoma. Despite widescale clinical success, ICB response is heterogeneously efficacious across tumor types. Many cancers, including breast cancer, are frequently refractory to ICB. In this review, we will discuss the challenges facing immunotherapy success and address the underlying mechanisms responsible for primary and acquired breast cancer resistance to immunotherapy. FINDINGS Even in initially ICB-responsive tumors, many acquire resistance due to tumor-specific alterations, loss of tumor-specific antigens, and extrinsic mechanisms that reshape the immune landscape within the tumor microenvironment (TME). The tumor immune interaction circumvents the benefits of immunotherapy; tumors rewire the tumor-suppressive functions of activated immune cells within their stroma to propagate tumor growth and progression. CONCLUSIONS The breast cancer immune TME is complex and the mechanisms driving resistance to ICB are multifaceted. Continued study in both preclinical models and clinical trials should help elucidate these mechanisms so they can be targeted to benefit more breast cancer patients.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin M Balko
- Department of Medicine, Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
45
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
47
|
Noonepalle SKR, Karabon L, Chiappinelli KB, Villagra A. Editorial: Genetic and Epigenetic Control of Immune Responses. Front Immunol 2021; 12:775101. [PMID: 34675944 PMCID: PMC8523980 DOI: 10.3389/fimmu.2021.775101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Satish kumar R. Noonepalle
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington DC, United States
| | - Lidia Karabon
- Department of Experimental Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington DC, United States
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington DC, United States
| |
Collapse
|
48
|
Triki H, Declerck K, Charfi S, Ben Kridis W, Chaabane K, Ben Halima S, Sellami T, Rebai A, Berghe WV, Cherif B. Immune checkpoint CD155 promoter methylation profiling reveals cancer-associated behaviors within breast neoplasia. Cancer Immunol Immunother 2021; 71:1139-1155. [PMID: 34608548 DOI: 10.1007/s00262-021-03064-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND CD155 immune checkpoint has recently emerged as a compelling immunotherapeutic target. Epigenetic DNA methylation changes are recognized as key molecular mechanisms in cancer development. Hence, the identification of methylation markers that are sensitive and specific for breast cancer may improve early detection and predict prognosis. We speculate that CD155 promoter methylation can be a valuable epigenetic biomarker, based upon strong indications for its immunoregulatory functions. METHODS Methylation analyses were conducted on 14 CpGs sites in the CD155 promoter region by bisulfite pyrosequencing. To elucidate the related gene expression changes, a transcriptional study using RT-qPCR was performed. Statistical analyses were performed to evaluate correlations of CD155 methylation profiles with mRNA expression together with clinical-pathological features, prognosis and immune infiltrate. RESULTS CD155 promoter methylation profile was significantly associated with SBR grade, tumor size, molecular subgroups, HER2 and hormonal receptors expression status. Low CD155 methylation rates correlated with better prognosis in univariate cox proportional hazard analysis and appeared as an independent survival predictor in cox-regression multivariate analysis. Further, methylation changes at CD155 specific CpG sites were consistent with CD155 membranous mRNA isoform expression status. Statistical analyses also showed a significant association with immune Natural Killer cell infiltrate when looking at the CpG7, CpG8, CpG9 and CpG11 sites. CONCLUSION Altogether, our results contribute to a better understanding of the impact of CD155 immune checkpoint modality expression in breast tumors, revealing for the first time that specific CpG sites from CD155 promoter may be a potential biomarker in breast cancer monitoring.
Collapse
Affiliation(s)
- Hana Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Slim Charfi
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Kais Chaabane
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Sawssan Ben Halima
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Tahya Sellami
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Boutheina Cherif
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
49
|
Yadollahi P, Jeon YK, Ng WL, Choi I. Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity. BMB Rep 2021. [PMID: 33298250 PMCID: PMC7851443 DOI: 10.5483/bmbrep.2021.54.1.241] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.
Collapse
Affiliation(s)
- Pedram Yadollahi
- Innovative Therapeutic Research Institute, Inje University, Busan 47397; Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Korea
| | - You-Kyoung Jeon
- Innovative Therapeutic Research Institute, Inje University, Busan 47397; Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Korea
| | - Wooi Loon Ng
- Innovative Therapeutic Research Institute, Inje University, Busan 47397, Korea
| | - Inhak Choi
- Innovative Therapeutic Research Institute, Inje University, Busan 47397; Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Korea
| |
Collapse
|
50
|
Cong Y, Liu J, Chen G, Qiao G. The Emerging Role of T-Cell Immunoglobulin Mucin-3 in Breast Cancer: A Promising Target For Immunotherapy. Front Oncol 2021; 11:723238. [PMID: 34504800 PMCID: PMC8421567 DOI: 10.3389/fonc.2021.723238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer treatment through immune checkpoint receptor blockade has made significant advances in the recent years. However, resistance to the current immune checkpoint inhibitors (ICIs) has been observed in many patients, who consequently do not respond to these treatments. T-cell immunoglobulin mucin-3 (Tim-3) is a novel immune checkpoint molecule emerging as a potential therapeutic target for cancer immunotherapy. Epidemiologic findings reveal that genetic polymorphisms in the Tim-3 gene are associated with increased susceptibility to breast cancer. In patients with breast cancer, Tim-3 is expressed both on immune and tumor cells. Accumulating evidence demonstrates that Tim-3 can notably affect breast cancer treatment outcome and prognosis. Therefore, Tim-3 is being regarded as a high-potential target for improving breast cancer therapy. In this review, we summarize the role of Tim-3 in breast cancer and the regulation mechanisms of Tim-3 to furnish evidences for future research and therapy.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|