1
|
Van Dijck E, Diels S, Fransen E, Cremers TC, Verrijken A, Dirinck E, Hoischen A, Vandeweyer G, Vanden Berghe W, Van Gaal L, Francque S, Van Hul W. A Case-Control Study Supports Genetic Contribution of the PON Gene Family in Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:1051. [PMID: 39334710 PMCID: PMC11440101 DOI: 10.3390/antiox13091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The paraoxonase (PON) gene family (including PON1, PON2, and PON3), is known for its anti-oxidative and anti-inflammatory properties, protecting against metabolic diseases such as obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the influence of common and rare PON variants on both conditions was investigated. A total of 507 healthy weight individuals and 744 patients with obesity including 433 with histological liver assessment, were sequenced with single-molecule molecular inversion probes (smMIPs), allowing the identification of genetic contributions to obesity and MASLD-related liver features. Polymorphisms rs705379 and rs854552 in the PON1 gene displayed significant association with MASLD stage and fibrosis, respectively. Additionally, rare PON1 variants were strongly associated with obesity. This study thereby reinforces the genetic foundation of PON1 in obesity and various MASLD-related liver features, by extending previous findings from common variants to include rare variants. Additionally, rare and very rare variants in PON2 were discovered to be associated with MASLD-related hepatic fibrosis. Notably, we are the first to report an association between naturally occurring rare PON2 variants and MASLD-related liver fibrosis. Considering the critical role of liver fibrosis in MASLD outcome, PON2 emerges as a possible candidate for future research endeavors including exploration of biomarker potential.
Collapse
Affiliation(s)
- Evelien Van Dijck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sara Diels
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Tycho Canter Cremers
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alexander Hoischen
- Department of Human Genetics and Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert Vandeweyer
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling–Epigenetics Lab, Department Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Luc Van Gaal
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Bitterer F, Kupke P, Adenugba A, Evert K, Glehr G, Riquelme P, Scheibert L, Preverin G, Böhm C, Hornung M, Schlitt HJ, Wenzel JJ, Geissler EK, Safinia N, Hutchinson JA, Werner JM. Soluble CD46 as a diagnostic marker of hepatic steatosis. EBioMedicine 2024; 104:105184. [PMID: 38838471 PMCID: PMC11179574 DOI: 10.1016/j.ebiom.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The increasing prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) incurs substantial morbidity, mortality and healthcare costs. Detection and clinical intervention at early stages of disease improves prognosis; however, we are currently limited by a lack of reliable diagnostic tests for population screening and monitoring responses to therapy. To address this unmet need, we investigated human invariant Natural Killer T cell (iNKT) activation by fat-loaded hepatocytes, leading to the discovery that circulating soluble CD46 (sCD46) levels accurately predict hepatic steatosis. METHODS sCD46 in plasma was measured using a newly developed immuno-competition assay in two independent cohorts: Prospective living liver donors (n = 156; male = 66, female = 90) and patients with liver tumours (n = 91; male = 58, female = 33). sCD46 levels were statistically evaluated as a predictor of hepatic steatosis. FINDINGS Interleukin-4-secreting (IL-4+) iNKT cells were over-represented amongst intrahepatic lymphocytes isolated from resected human liver samples. IL-4+ iNKT cells preferentially developed in cocultures with a fat-loaded, hepatocyte-like cell line, HepaRG. This was attributed to induction of matrix metalloproteases (MMP) in fat-loaded HepaRG cells and primary human liver organoids, which led to indiscriminate cleavage of immune receptors. Loss of cell-surface CD46 resulted in unrepressed differentiation of IL-4+ iNKT cells. sCD46 levels were elevated in patients with hepatic steatosis. Discriminatory cut-off values for plasma sCD46 were found that accurately classified patients according to histological steatosis grade. INTERPRETATION sCD46 is a reliable clinical marker of hepatic steatosis, which can be conveniently and non-invasively measured in serum and plasma samples, raising the possibility of using sCD46 levels as a diagnostic method for detecting or grading hepatic steatosis. FUNDING F.B. was supported by the Else Kröner Foundation (Award 2016_kolleg.14). G.G. was supported by the Bristol Myers Squibb Foundation for Immuno-Oncology (Award FA-19-009). N.S. was supported by a Wellcome Trust Fellowship (211113/A/18/Z). J.A.H. received funding from the European Union's Horizon 2020 research and innovation programme (Award 860003). J.M.W. received funding from the Else Kröner Foundation (Award 2015_A10).
Collapse
Affiliation(s)
- Florian Bitterer
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Paul Kupke
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Akinbami Adenugba
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg 93053, Germany
| | - Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Paloma Riquelme
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Lena Scheibert
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Giulia Preverin
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Christina Böhm
- Oxford Nanopore Technologies PLC, Oxford Science Park, Oxford OX4 4DQ, United Kingdom
| | - Matthias Hornung
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg 93053, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Niloufar Safinia
- Department of Hepatology, King's College London, London SE5 8AF, United Kingdom
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany.
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany.
| |
Collapse
|
3
|
Castañé H, Jiménez-Franco A, Martínez-Navidad C, Placed-Gallego C, Cambra-Cortés V, Perta AM, París M, del Castillo D, Arenas M, Camps J, Joven J. Serum Arylesterase, Paraoxonase, and Lactonase Activities and Paraoxonase-1 Concentrations in Morbidly Obese Patients and Their Relationship with Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2023; 12:2038. [PMID: 38136158 PMCID: PMC10741051 DOI: 10.3390/antiox12122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Paraoxonase-1 (PON1) is an antioxidant enzyme associated with high-density lipoproteins (HDL). Reduced serum PON1 activity is found in diseases marked by oxidative stress and inflammation, but its role in obesity remains unclear. This study investigated PON1 activities and concentrations in morbidly obese individuals and explored the impacts of the genetic polymorphism PON1 rs662 and non-alcoholic fatty liver disease on enzymatic properties. We recruited 1349 morbidly obese patients undergoing bariatric surgery and 823 non-obese volunteers. PON1-related variables, including arylesterase, paraoxonase, and lactonase activities and PON1 concentrations, were examined. Our results showed that morbidly obese individuals exhibited higher PON1 concentrations but lower enzymatic activities than non-obese individuals. We observed inverse associations of arylesterase and paraoxonase activities with waist circumference (rho = -0.24, p < 0.001, and rho = -0.30, p < 0.001, respectively) and body mass index (rho = -0.15, p = 0.001, and rho = -0.23, p < 0.001), as well as direct associations of arylesterase, paraoxonase, and lactonase activities with HDL cholesterol (rho = 0.11, p = 0.005, rho = 0.20, p < 0.001, and rho = 0.20, p < 0.001). No significant differences were observed regarding metabolic syndrome, type 2 diabetes mellitus, hypertension, dyslipidemia, rs662 polymorphism allele frequencies, or the diagnosis of non-alcoholic steatohepatitis. Nevertheless, correlations were found between certain PON1-related variables, steatosis, and ballooning. In conclusion, changes in PON1-related variables in morbidly obese patients are dependent on the disease itself and HDL levels. The relationships between these variables and specific liver histological changes raise intriguing questions for consideration in future studies.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Cristina Placed-Gallego
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Adelina-Miruna Perta
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Marta París
- Department of Bariatric Surgery, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (M.P.); (D.d.C.)
| | - Daniel del Castillo
- Department of Bariatric Surgery, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (M.P.); (D.d.C.)
| | - Meritxell Arenas
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Jorge Joven
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Obesity is accompanied by atherogenic dyslipidemia, a specific lipid disorder characterized by both quantitative and qualitative changes of plasma lipoproteins. The main alterations in the lipid profile include hypertriglyceridemia, reduced high-density lipoprotein (HDL) cholesterol level, and elevated small dense low-density lipoprotein (LDL) particles. Epidemiological data show that obesity is more common in women and is a frequent risk factor for reproductive disorders, metabolic complications in pregnancy, and cardiometabolic disease later in life. The aim of this narrative review is to discuss recent advances in the research of dyslipidemia in obesity, with an emphasis on female-specific disorders and cardiometabolic risk. RECENT FINDINGS The focus of current research on dyslipidemia in obesity is moving toward structurally and functionally modified plasma lipoproteins. Special attention is paid to the pro-atherogenic role of triglyceride-rich lipoproteins and their remnants. Introduction of advanced analytical techniques enabled identification of novel lipid biomarkers with potential clinical applications. In particular, proteomic and lipidomic studies have provided significant progress in the comprehensive research of HDL's alterations in obesity. Obesity-related dyslipidemia is a widespread metabolic disturbance in polycystic ovary syndrome patients and high-risk pregnancies, but is seldom evaluated with respect to its impact on future cardiometabolic health. Obesity and associated cardiometabolic diseases require a more depth insight into the quality of lipoprotein particles. Further application of omics-based techniques would enable a more comprehensive evaluation of dyslipidemia in order to reduce an excessive cardiovascular risk attributable to increased body weight. However, more studies on obesity-related female reproductive disorders are needed for this approach to be adopted in daily clinical practice.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, P. Box 146, 11000, Belgrade, Serbia.
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, P. Box 146, 11000, Belgrade, Serbia
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, P. Box 146, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
Yerra VG, Drosatos K. Specificity Proteins (SP) and Krüppel-like Factors (KLF) in Liver Physiology and Pathology. Int J Mol Sci 2023; 24:4682. [PMID: 36902112 PMCID: PMC10003758 DOI: 10.3390/ijms24054682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The liver acts as a central hub that controls several essential physiological processes ranging from metabolism to detoxification of xenobiotics. At the cellular level, these pleiotropic functions are facilitated through transcriptional regulation in hepatocytes. Defects in hepatocyte function and its transcriptional regulatory mechanisms have a detrimental influence on liver function leading to the development of hepatic diseases. In recent years, increased intake of alcohol and western diet also resulted in a significantly increasing number of people predisposed to the incidence of hepatic diseases. Liver diseases constitute one of the serious contributors to global deaths, constituting the cause of approximately two million deaths worldwide. Understanding hepatocyte transcriptional mechanisms and gene regulation is essential to delineate pathophysiology during disease progression. The current review summarizes the contribution of a family of zinc finger family transcription factors, named specificity protein (SP) and Krüppel-like factors (KLF), in physiological hepatocyte functions, as well as how they are involved in the onset and development of hepatic diseases.
Collapse
Affiliation(s)
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Papageorgiou L, Papakonstantinou E, Diakou I, Pierouli K, Dragoumani K, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Semantic and Population Analysis of the Genetic Targets Related to COVID-19 and Its Association with Genes and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:59-78. [PMID: 37525033 DOI: 10.1007/978-3-031-31978-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 is a coronavirus responsible for one of the most serious, modern worldwide pandemics, with lasting and multifaceted effects. By late 2021, SARS-CoV-2 has infected more than 180 million people and has killed more than 3 million. The virus gains entrance to human cells through binding to ACE2 via its surface spike protein and causes a complex disease of the respiratory system, termed COVID-19. Vaccination efforts are being made to hinder the viral spread, and therapeutics are currently under development. Toward this goal, scientific attention is shifting toward variants and SNPs that affect factors of the disease such as susceptibility and severity. This genomic grammar, tightly related to the dark part of our genome, can be explored through the use of modern methods such as natural language processing. We present a semantic analysis of SARS-CoV-2-related publications, which yielded a repertoire of SNPs, genes, and disease ontologies. Population data from the 1000 Genomes Project were subsequently integrated into the pipeline. Data mining approaches of this scale have the potential to elucidate the complex interaction between COVID-19 pathogenesis and host genetic variation; the resulting knowledge can facilitate the management of high-risk groups and aid the efforts toward precision medicine.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece.
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
7
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
8
|
Bardhi E, McDaniels J, Rousselle T, Maluf DG, Mas VR. Nucleic acid biomarkers to assess graft injury after liver transplantation. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100439. [PMID: 35243279 PMCID: PMC8856989 DOI: 10.1016/j.jhepr.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Many risk factors and complications impact the success of liver transplantation, such as ischaemia-reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft function, and iii) the prediction of acute and chronic disease development. To date, no established molecular biomarkers have been used to guide clinical decision-making in transplantation. In this review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft injury in liver transplant recipients. Prior work in this area can be divided into two categories: biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the extracellular environment pertaining to different biological fluids such as bile, blood, urine, and perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and interorgan communication. Thus, decoding their biological function, cellular origins and molecular composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and improving overall patient survival. Herein, we discuss the most promising molecular biomarkers, their state of development, and the critical aspects of study design in biomarker research for early detection of post-transplant liver injury. Future advances in biomarker studies are expected to personalise post-transplant therapy, leading to improved patient care and outcomes.
Collapse
|