1
|
Martínez-Drudis L, Bérard M, Musiol D, Rivest S, Oueslati A. Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer's disease. Heliyon 2024; 10:e39571. [PMID: 39498012 PMCID: PMC11532864 DOI: 10.1016/j.heliyon.2024.e39571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Converging evidence from clinical and experimental studies suggest the potential significance of Polo-like kinase 2 (PLK2) in regulating the phosphorylation and toxicity of the Alzheimer's disease (AD)-related protein, amyloid precursor protein (APP). These findings have prompted various experimental trials aimed at inhibiting PLK2 kinase activity in different transgenic mouse models of AD. While positive impacts on cognitive decline were reported in these studies, the cellular effects remained controversial. In the present study, we sought to assess the cognitive and cellular consequences of chronic PLK2 inhibitor treatment in the APP/PS1 transgenic mouse model of AD. First, we confirmed that inhibiting PLK2 prevented cognitive decline in a sex-dependent manner, particularly by enhancing working memory in male APP/PS1 mice. Surprisingly, cellular analysis revealed that treatment with PLK2 inhibitor increased the load of amyloid plaques and elevated levels of soluble amyloid β (Aβ) 40 and Aβ42 in the cortex, as well as insoluble Aβ42 in the hippocampus of female mice, without affecting APP pathology in males. These results underscore the potential of PLK2 inhibition to mitigate cognitive symptoms in males. However, paradoxically, it intensifies amyloid pathology in females by enhancing APP amyloidogenic processing, creating a controversial aspect to its therapeutic impact. Overall, these data highlight the sex-dependent nature of the effects of PLK2 inhibition, which may also be influenced by the genetic background of the transgenic mouse model utilized.
Collapse
Affiliation(s)
- Laura Martínez-Drudis
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Morgan Bérard
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Dylan Musiol
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Serge Rivest
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec-Université Laval Research Center, Neuroscience Axis, 2705 Boulevard Laurier, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
2
|
Xu Y, Xue M, Li J, Ma Y, Wang Y, Zhang H, Liang H. Fucoidan Improves D-Galactose-Induced Cognitive Dysfunction by Promoting Mitochondrial Biogenesis and Maintaining Gut Microbiome Homeostasis. Nutrients 2024; 16:1512. [PMID: 38794753 PMCID: PMC11124141 DOI: 10.3390/nu16101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have indicated that fucoidan has the potential to improve cognitive impairment. The objective of this study was to demonstrate the protective effect and possible mechanisms of fucoidan in D-galactose (D-gal)-induced cognitive dysfunction. Sprague Dawley rats were injected with D-galactose (200 mg/kg, sc) and administrated with fucoidan (100 mg/kg or 200 mg/kg, ig) for 8 weeks. Our results suggested that fucoidan significantly ameliorated cognitive impairment in D-gal-exposed rats and reversed histopathological changes in the hippocampus. Fucoidan reduced D-gal-induced oxidative stress, declined the inflammation level and improved mitochondrial dysfunction in hippocampal. Fucoidan promoted mitochondrial biogenesis by regulating the PGC-1α/NRF1/TFAM pathway, thereby improving D-gal-induced mitochondrial dysfunction. The regulation effect of fucoidan on PGC-1α is linked to the upstream protein of APN/AMPK/SIRT1. Additionally, the neuroprotective action of fucoidan could be related to maintaining intestinal flora homeostasis with up-regulation of Bacteroidota, Muribaculaceae and Akkermansia and down-regulation of Firmicutes. In summary, fucoidan may be a natural, promising candidate active ingredient for age-related cognitive impairment interventions.
Collapse
Affiliation(s)
- Yan Xu
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Meilan Xue
- Basic Medical College, Qingdao University, Qingdao 266071, China;
| | - Jing Li
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Yiqing Ma
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Yutong Wang
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Huaqi Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| | - Hui Liang
- School of Public Health, Qingdao University, Qingdao 266071, China; (Y.X.); (J.L.); (Y.M.); (Y.W.); (H.Z.)
| |
Collapse
|
3
|
Meftah S, Cavallini A, Murray TK, Jankowski L, Bose S, Ashby MC, Brown JT, Witton J. Synaptic alterations associated with disrupted sensory encoding in a mouse model of tauopathy. Brain Commun 2024; 6:fcae134. [PMID: 38712321 PMCID: PMC11073755 DOI: 10.1093/braincomms/fcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer's disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration. We used the well-characterized rTg4510 mouse model of tauopathy at 5-6 months and 7-8 months of age, respectively, to study the functional impact of cortical synapse loss. The earlier age was used as a model of prodromal tauopathy, with the later age corresponding to more advanced tau pathology and presumed progression of neurodegeneration. Analysis of synaptic protein expression in the somatosensory cortex showed significant reductions in synaptic proteins and NMDA and AMPA receptor subunit expression in rTg4510 mice. Surprisingly, in vitro whole-cell patch clamp electrophysiology from putative pyramidal neurons in layer 2/3 of the somatosensory cortex suggested no functional alterations in layer 4 to layer 2/3 synaptic transmission at 5-6 months. From these same neurons, however, there were alterations in dendritic structure, with increased branching proximal to the soma in rTg4510 neurons. Therefore, in vivo whole-cell patch clamp recordings were utilized to investigate synaptic function and integration in putative pyramidal neurons in layer 2/3 of the somatosensory cortex. These recordings revealed a significant increase in the peak response to synaptically driven sensory stimulation-evoked activity and a loss of temporal fidelity of the evoked signal to the input stimulus in rTg4510 neurons. Together, these data suggest that loss of synapses, changes in receptor expression and dendritic restructuring may lead to alterations in synaptic integration at a network level. Understanding these compensatory processes could identify targets to help delay symptomatic onset of dementia.
Collapse
Affiliation(s)
- Soraya Meftah
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Annalisa Cavallini
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Tracey K Murray
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Lukasz Jankowski
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Suchira Bose
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Michael C Ashby
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jonathan T Brown
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
| | - Jonathan Witton
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
4
|
Alava B, Hery G, Sidhom S, Gutierrez-Monreal M, Prokop S, Esser KA, Abisambra J. Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function. AGING BRAIN 2024; 5:100110. [PMID: 38419621 PMCID: PMC10900120 DOI: 10.1016/j.nbas.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.
Collapse
Affiliation(s)
- Bryan Alava
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
| | - Gabriela Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
| | - Silvana Sidhom
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | | | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
5
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
6
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Alava B, Hery G, Sidhom S, Prokop S, Esser K, Abisambra J. Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567586. [PMID: 38014109 PMCID: PMC10680826 DOI: 10.1101/2023.11.17.567586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.
Collapse
Affiliation(s)
- Bryan Alava
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
| | - Gabriela Hery
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
| | - Silvana Sidhom
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
- Department of Pathology, University of Florida, Gainesville, Florida, 32610, USA
| | - Karyn Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, Florida, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, 32610, USA
- Brain Injury Rehabilitation and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, Florida, 32601, USA
| |
Collapse
|
8
|
Lippi SLP, Barkey RE, Rodriguez MN. High-fat diet negatively affects brain markers, cognitive behaviors, and noncognitive behaviors in the rTg4510 tau mouse model. Physiol Behav 2023; 271:114316. [PMID: 37543107 DOI: 10.1016/j.physbeh.2023.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) drastically impacts cognitive and noncognitive behaviors in both humans and animal models. Two hallmark proteins in AD, amyloid-β plaques and tau neurofibrillary tangles, accumulate in regions of the brain critical for learning and memory, including the hippocampus. Poor dietary choices have been shown to exacerbate cognitive deficits seen in AD. In this study, we assessed the effects of a high-fat diet (HFD - 60 kcal% fat) on cognitive & noncognitive behaviors as well as on brain markers in the rTg4510 tau mouse model. While all mice learned the Morris Water Maze (MWM) task, it was noted that on the last day of acquisition female tau mice had a significantly higher latency to find the platform than male tau mice (p < 0.01). Mice given the HFD spent significantly less time in the target quadrant than those given a control diet (CD) (p < 0.05). Tau mice showed impaired burrowing (p < 0.05) and nesting behaviors (p < 0.001) compared to WT mice and HFD administration worsened burrowing in tau mice. Tau mice exhibited greater levels of glial fibrillary acidic protein (GFAP) (p < 0.05) and significantly less hippocampal cell density than WT mice (p < 0.001). We observed trends of HFD mice having greater levels of GFAP and greater average tangle size than CD mice. These results highlight the importance of dietary choices, especially in older populations more susceptible to AD and its effects.
Collapse
Affiliation(s)
- Stephen L P Lippi
- University of Texas at San Antonio, Dept. Psychology, San Antonio, TX 78249, United States.
| | - Rachel E Barkey
- Pennsylvania State University College of Medicine, Dept. Neural and Behavioral Sciences, 700 HMC Crescent Road, Hershey, PA 17033, United States
| | - Mya N Rodriguez
- MD Anderson UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, United States
| |
Collapse
|
9
|
Anglada-Huguet M, Endepols H, Sydow A, Hilgers R, Neumaier B, Drzezga A, Kaniyappan S, Mandelkow E, Mandelkow EM. Reversal of Tau-Dependent Cognitive Decay by Blocking Adenosine A1 Receptors: Comparison of Transgenic Mouse Models with Different Levels of Tauopathy. Int J Mol Sci 2023; 24:ijms24119260. [PMID: 37298211 DOI: 10.3390/ijms24119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The accumulation of tau is a hallmark of several neurodegenerative diseases and is associated with neuronal hypoactivity and presynaptic dysfunction. Oral administration of the adenosine A1 receptor antagonist rolofylline (KW-3902) has previously been shown to reverse spatial memory deficits and to normalize the basic synaptic transmission in a mouse line expressing full-length pro-aggregant tau (TauΔK) at low levels, with late onset of disease. However, the efficacy of treatment remained to be explored for cases of more aggressive tauopathy. Using a combination of behavioral assays, imaging with several PET-tracers, and analysis of brain tissue, we compared the curative reversal of tau pathology by blocking adenosine A1 receptors in three mouse models expressing different types and levels of tau and tau mutants. We show through positron emission tomography using the tracer [18F]CPFPX (a selective A1 receptor ligand) that intravenous injection of rolofylline effectively blocks A1 receptors in the brain. Moreover, when administered to TauΔK mice, rolofylline can reverse tau pathology and synaptic decay. The beneficial effects are also observed in a line with more aggressive tau pathology, expressing the amyloidogenic repeat domain of tau (TauRDΔK) with higher aggregation propensity. Both models develop a progressive tau pathology with missorting, phosphorylation, accumulation of tau, loss of synapses, and cognitive decline. TauRDΔK causes pronounced neurofibrillary tangle assembly concomitant with neuronal death, whereas TauΔK accumulates only to tau pretangles without overt neuronal loss. A third model tested, the rTg4510 line, has a high expression of mutant TauP301L and hence a very aggressive phenotype starting at ~3 months of age. This line failed to reverse pathology upon rolofylline treatment, consistent with a higher accumulation of tau-specific PET tracers and inflammation. In conclusion, blocking adenosine A1 receptors by rolofylline can reverse pathology if the pathological potential of tau remains below a threshold value that depends on concentration and aggregation propensity.
Collapse
Affiliation(s)
- Marta Anglada-Huguet
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Sydow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Ronja Hilgers
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
10
|
Parka A, Volbracht C, Hall B, Bastlund JF, Nedergaard M, Laursen B, Botta P, Sotty F. Visual Evoked Potentials as an Early-Stage Biomarker in the rTg4510 Tauopathy Mouse Model. J Alzheimers Dis 2023; 93:247-262. [PMID: 37005884 DOI: 10.3233/jad-220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Tauopathies such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Early pathophysiological and functional changes related to neurofibrillary tangles formation are considered to occur prior to extensive neurodegeneration. Hyperphosphorylated tau has been detected in postmortem retinas of AD and FTD patients, and the visual pathway is an easily accessible system in a clinical setting. Hence, assessment of the visual function may offer the potential to detect consequences of early tau pathology in patients. Objective: The aim of this study was to evaluate visual function in a tauopathy mouse model in relation to tau hyperphosphorylation and neurodegeneration. Methods: In this study we explored the association between the visual system and functional consequences of tau pathology progression using a tauopathy rTg4510 mouse model. To this end, we recorded full-field electroretinography and visual evoked potentials in anesthetized and awake states at different ages. Results: While retinal function remained mostly intact within all the age groups investigated, we detected significant changes in amplitudes of visual evoked potential responses in young rTg4510 mice exhibiting early tau pathology prior to neurodegeneration. These functional alterations in the visual cortex were positively correlated with pathological tau levels. Conclusion: Our findings suggest that visual processing could be useful as a novel electrophysiological biomarker for early stages of tauopathy.
Collapse
Affiliation(s)
- Aleksandra Parka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Research, Valby, Denmark
| | | | | | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
11
|
Early impairments of visually-driven neuronal ensemble dynamics in the rTg4510 tauopathy mouse model. Neurobiol Dis 2023; 178:106012. [PMID: 36696792 DOI: 10.1016/j.nbd.2023.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.
Collapse
|
12
|
Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience 2022; 25:105232. [PMID: 36274955 PMCID: PMC9579020 DOI: 10.1016/j.isci.2022.105232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative disorders are associated with widespread disruption to brain activity and brain rhythms. Some disorders are linked to dysfunction of the membrane-associated protein Tau. Here, we ask how brain rhythms are affected in rTg4510 mouse model of tauopathy, at an early stage of tauopathy (5 months), and at a more advanced stage (8 months). We measured brain rhythms in primary visual cortex in presence or absence of visual stimulation, while monitoring pupil diameter and locomotion to establish behavioral state. At 5 months, we found increased low-frequency rhythms during resting state in tauopathic animals, associated with periods of abnormally increased neural synchronization. At 8 months, this increase in low-frequency rhythms was accompanied by a reduction of power in the gamma range. Our results therefore show that slower rhythms are impaired earlier than gamma rhythms in this model of tauopathy, and suggest that electrophysiological measurements can track the progression of tauopathic neurodegeneration.
Collapse
Affiliation(s)
- Fabio R. Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | | | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samuel G. Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
13
|
Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:625-642. [PMID: 36090761 PMCID: PMC9424863 DOI: 10.1016/j.omtn.2022.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
Tau is a microtubule-associated protein (MAPT, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the MAPT locus resulted in the identification of hot spots for activity in the 3′ UTR. Further modifications to the LNA design resulted in the generation of ASO-001933, which selectively and potently reduces tau in primary cultures from hTau mice, monkey, and human neurons. ASO-001933 was well tolerated and produced a robust, long-lasting reduction in tau protein in both mouse and cynomolgus monkey brain. In monkey, tau protein reduction was maintained in brain for 20 weeks post injection and corresponded with tau protein reduction in the cerebrospinal fluid (CSF). Our results demonstrate that LNA-ASOs exhibit excellent drug-like properties and sustained efficacy likely translating to infrequent, intrathecal dosing in patients. These data further support the development of LNA-ASOs against tau for the treatment of tauopathies.
Collapse
|
14
|
de Oliveira P, Cella C, Locker N, Ravindran KKG, Mendis A, Wafford K, Gilmour G, Dijk DJ, Winsky-Sommerer R. Improved Sleep, Memory, and Cellular Pathological Features of Tauopathy, Including the NLRP3 Inflammasome, after Chronic Administration of Trazodone in rTg4510 Mice. J Neurosci 2022; 42:3494-3509. [PMID: 35273086 PMCID: PMC9034788 DOI: 10.1523/jneurosci.2162-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Several cellular pathways contribute to neurodegenerative tauopathy-related disorders. Microglial activation, a major component of neuroinflammation, is an early pathologic hallmark that correlates with cognitive decline, while the unfolded protein response (UPR) contributes to synaptic pathology. Sleep disturbances are prevalent in tauopathies and may also contribute to disease progression. Few studies have investigated whether manipulations of sleep influence cellular pathologic and behavioral features of tauopathy. We investigated whether trazodone, a licensed antidepressant with hypnotic efficacy in dementia, can reduce disease-related cellular pathways and improve memory and sleep in male rTg4510 mice with a tauopathy-like phenotype. In a 9 week dosing regimen, trazodone decreased microglial NLRP3 inflammasome expression and phosphorylated p38 mitogen-activated protein kinase levels, which correlated with the NLRP3 inflammasome, the UPR effector ATF4, and total tau levels. Trazodone reduced theta oscillations during rapid eye movement (REM) sleep and enhanced REM sleep duration. Olfactory memory transiently improved, and memory performance correlated with REM sleep duration and theta oscillations. These findings on the effects of trazodone on the NLRP3 inflammasome, the unfolded protein response and behavioral hallmarks of dementia warrant further studies on the therapeutic value of sleep-modulating compounds for tauopathies.SIGNIFICANCE STATEMENT Dementia and associated behavioral symptoms such as memory loss and sleep disturbance are debilitating. Identifying treatments that alleviate symptoms and concurrently target cellular pathways contributing to disease progression is paramount for the patients and their caregivers. Here we show that a chronic treatment with trazodone, an antidepressant with positive effects on sleep, has beneficial effects on several cellular pathways contributing to neuroinflammation and tau pathology, in tauopathy-like rTg4510 mice. Trazodone also improved rapid eye movement (REM) sleep, the slowing of brain oscillations, and olfactory memory disturbances, which are all early symptoms observed in Alzheimer's disease. Thus, trazodone and compounds with REM sleep-promoting properties may represent a promising treatment approach to reduce the early symptoms of tauopathy and slow down disease progression.
Collapse
Affiliation(s)
- Paula de Oliveira
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom
- Lilly Research Centre, Eli Lilly and Company, Windlesham GU20 6PH, United Kingdom
| | - Claire Cella
- Lilly Research Centre, Eli Lilly and Company, Windlesham GU20 6PH, United Kingdom
| | - Nicolas Locker
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Kiran K G Ravindran
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London W12 0BZ and University of Surrey, Guildford GU2 7XP, United Kingdom
| | - Agampodi Mendis
- Surrey Clinical Trials Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom
| | - Keith Wafford
- Lilly Research Centre, Eli Lilly and Company, Windlesham GU20 6PH, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly and Company, Windlesham GU20 6PH, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London W12 0BZ and University of Surrey, Guildford GU2 7XP, United Kingdom
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom
| |
Collapse
|
15
|
Xolalpa-Cueva L, García-Carlos CA, Villaseñor-Zepeda R, Orta-Salazar E, Díaz-Cintra S, Peña-Ortega F, Perry G, Mondragón-Rodríguez S. Hyperphosphorylated Tau Relates to Improved Cognitive Performance and Reduced Hippocampal Excitability in the Young rTg4510 Mouse Model of Tauopathy. J Alzheimers Dis 2022; 87:529-543. [PMID: 35342085 DOI: 10.3233/jad-215186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tau hyperphosphorylation at several sites, including those close to its microtubule domain (MD), is considered a key pathogenic event in the development of tauopathies. Nevertheless, we recently demonstrated that at the very early disease stage, tau phosphorylation (pTau) at MD sites promotes neuroprotection by preventing seizure-like activity. OBJECTIVE To further support the notion that very early pTau is not detrimental, the present work evaluated the young rTg4510 mouse model of tauopathy as a case study. Thus, in mice at one month of age (PN30-35), we studied the increase of pTau within the hippocampal area as well as hippocampal and locomotor function. METHODS We used immunohistochemistry, T-maze, nesting test, novel object recognition test, open field arena, and electrophysiology. RESULTS Our results showed that the very young rTg4510 mouse model has no detectable changes in hippocampal dependent tasks, such as spontaneous alternation and nesting, or in locomotor activity. However, at this very early stage the hippocampal neurons from PN30-35 rTg4510 mice accumulate pTau protein and exhibit changes in hippocampal oscillatory activity. Moreover, we found a significant reduction in the somatic area of pTau positive pyramidal and granule neurons in the young rTg4510 mice. Despite this, improved memory and increased number of dendrites per cell in granule neurons was found. CONCLUSION Altogether, this study provides new insights into the early pathogenesis of tauopathies and provides further evidence that pTau remodels hippocampal function and morphology.
Collapse
Affiliation(s)
- Lorena Xolalpa-Cueva
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Carlos Antonio García-Carlos
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Rocío Villaseñor-Zepeda
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Erika Orta-Salazar
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Sofia Díaz-Cintra
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Fernando Peña-Ortega
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México.,CONACYT National Council for Science and Technology, México, México
| |
Collapse
|
16
|
Papanikolaou A, Rodrigues FR, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Plasticity in visual cortex is disrupted in a mouse model of tauopathy. Commun Biol 2022; 5:77. [PMID: 35058544 PMCID: PMC8776781 DOI: 10.1038/s42003-022-03012-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease and other dementias are thought to underlie a progressive impairment of neural plasticity. Previous work in mouse models of Alzheimer's disease shows pronounced changes in artificially-induced plasticity in hippocampus, perirhinal and prefrontal cortex. However, it is not known how degeneration disrupts intrinsic forms of brain plasticity. Here we characterised the impact of tauopathy on a simple form of intrinsic plasticity in the visual system, which allowed us to track plasticity at both long (days) and short (minutes) timescales. We studied rTg4510 transgenic mice at early stages of tauopathy (5 months) and a more advanced stage (8 months). We recorded local field potentials in the primary visual cortex while animals were repeatedly exposed to a stimulus over 9 days. We found that both short- and long-term visual plasticity were already disrupted at early stages of tauopathy, and further reduced in older animals, such that it was abolished in mice expressing mutant tau. Additionally, visually evoked behaviours were disrupted in both younger and older mice expressing mutant tau. Our results show that visual cortical plasticity and visually evoked behaviours are disrupted in the rTg4510 model of tauopathy. This simple measure of plasticity may help understand how tauopathy disrupts neural circuits, and offers a translatable platform for detection and tracking of the disease.
Collapse
Affiliation(s)
- Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK.
| | - Fabio R Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Keith G Phillips
- Eli Lilly, Research and Development, Erl Wood, Surrey, GU20 6PH, UK
| | - Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Samuel G Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
17
|
Barabas AJ, Robbins LA, Gaskill BN. Home cage measures of Alzheimer's disease in the rTg4510 mouse model. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12795. [PMID: 35044727 PMCID: PMC9744509 DOI: 10.1111/gbb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease affects an array of activities in patients' daily lives but measures other than memory are rarely evaluated in animal models. Home cage behavior, however, may provide an opportunity to back translate a variety of measures seen in human disease progression to animal models, providing external and face validity. The aim of this study was to evaluate if home cage measures could indicate disease in the rTg4510 mouse model. We hypothesized that sleep, nesting, and smell discrimination would be altered in mutant mice. Thirty-two transgenic mice were used in a Latin square design of four genotypes x both sexes x two diets. Half the mice received a doxycycline diet to suppress tauopathy and evaluate tau severity on various measures. At 8-, 12-, and 16-weeks old, 24 h activity/sleep patterns, nest complexity, and odor discrimination were measured. After 16-weeks, tau concentration in the brain was quantified. Mutant mice had increased tau concentration in brain tissue, but it was reduced by the doxycycline diet. However, only nest complexity was different between mutant mice and controls. Overall, tauopathy in rTg4510 mice does seem to affect these commonly observed symptoms in human patients. However, while running this study, a report showed that the rTg4510 mutant phenotype is not caused by the mutation itself, but confounding factors from transgene insertion. Combined with report findings and our data, the rTg4510 model may not be an ideal model for all aspects of human Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | | |
Collapse
|
18
|
Evans HT, Taylor D, Kneynsberg A, Bodea LG, Götz J. Altered ribosomal function and protein synthesis caused by tau. Acta Neuropathol Commun 2021; 9:110. [PMID: 34147135 PMCID: PMC8214309 DOI: 10.1186/s40478-021-01208-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022] Open
Abstract
The synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function.
Collapse
|
19
|
Differential accumulation of tau pathology between reciprocal F1 hybrids of rTg4510 mice. Sci Rep 2021; 11:9623. [PMID: 33953293 PMCID: PMC8100160 DOI: 10.1038/s41598-021-89142-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Tau, a family of microtubule-associated proteins, forms abnormal intracellular inclusions, so-called tau pathology, in a range of neurodegenerative diseases collectively known as tauopathies. The rTg4510 mouse model is a well-characterized bitransgenic F1 hybrid mouse model of tauopathy, which was obtained by crossing a Camk2α-tTA mouse line (on a C57BL/6 J background) with a tetO-MAPT*P301L mouse line (on a FVB/NJ background). The aim of this study was to investigate the effects of the genetic background and sex on the accumulation of tau pathology in reciprocal F1 hybrids of rTg4510 mice, i.e., rTg4510 on the (C57BL/6 J × FVB/NJ)F1 background (rTg4510_CxF) and on the (FVB/NJ × C57BL/6 J)F1 background (rTg4510_FxC). As compared with rTg4510_CxF mice, the rTg4510_FxC mice showed marked levels of tau pathology in the forebrain. Biochemical analyses indicated that the accumulation of abnormal tau species was accelerated in rTg4510_FxC mice. There were strong effects of the genetic background on the differential accumulation of tau pathology in rTg4510 mice, while sex had no apparent effect. Interestingly, midline-1 (Mid1) was identified as a candidate gene associated with this difference and exhibited significant up/downregulation according to the genetic background. Mid1 silencing with siRNA induced pathological phosphorylation of tau in HEK293T cells that stably expressed human tau with the P301L mutation, suggesting the role of Mid1 in pathological alterations of tau. Elucidation of the underlying mechanisms will provide novel insights into the accumulation of tau pathology and is expected to be especially informative to researchers for the continued development of therapeutic interventions for tauopathies.
Collapse
|
20
|
Kubota T, Kirino Y. Age-dependent impairment of memory and neurofibrillary tangle formation and clearance in a mouse model of tauopathy. Brain Res 2021; 1765:147496. [PMID: 33894222 DOI: 10.1016/j.brainres.2021.147496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Insoluble, fibrillar intraneuronal accumulation of the tau protein termed neurofibrillary tangles (NFTs), are characteristic hallmarks of Alzheimer's disease (AD). They play a significant role in the behavioral phenotypes of AD. Certain mice (rTg4510) constitutively express mutant human tau until transgene expression is inactivated by the administration of doxycycline (DOX). The present study aimed to determine the timing of the onset of memory impairment in rTg4510 mice and define the relationship between the extent of memory deficit and the duration of NFT overexpression. In 6-month-old (young) rTg4510 mice, both spatial memory and object recognition memory were impaired. These impairments were prevented by pre-treatment with DOX for 2 months. In parallel, the expression of NFTs decreased in the DOX-treated group. Ten-month-old (aged) rTg4510 mice showed severe impairments in memory performance. Pretreatment with DOX did not prevent these impairments. Increasing levels of NFTs were observed in aged rTg4510 mice. DOX treatment did not prevent tau pathology in aged rTg4510 mice. Expression of the autophagy markers LC3A and LC3B increased in rTg4510 mice, along with an increase in NFT formation. These results suggest that the clearance mechanisms of NFTs are impaired at 10 months of age.
Collapse
Affiliation(s)
- Takashi Kubota
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Yutaka Kirino
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| |
Collapse
|
21
|
Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, Barron AM. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation 2021; 18:76. [PMID: 33740987 PMCID: PMC7980620 DOI: 10.1186/s12974-021-02122-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background The translocator protein (TSPO) has been identified as a positron emission tomography (PET)-visible biomarker of inflammation and promising immunotherapeutic target for the treatment of Alzheimer’s disease (AD). While TSPO ligands have been shown to reduce the accumulation of the toxic Alzheimer’s beta-amyloid peptide, their effect on tau pathology has not yet been investigated. To address this, we analyzed the effects of TSPO ligand, Ro5-4864, on the progression of neuropathology in rTg4510 tau transgenic mice (TauTg). Methods Brain atrophy, tau accumulation, and neuroinflammation were assessed longitudinally using volumetric magnetic resonance imaging, tau-PET, and TSPO-PET, respectively. In vivo neuroimaging results were confirmed by immunohistochemistry for markers of neuronal survival (NeuN), tauopathy (AT8), and inflammation (TSPO, ionized calcium-binding adaptor molecule 1 or IBA-1, and complement component 1q or C1q) in brain sections from scanned mice. Results TSPO ligand treatment attenuated brain atrophy and hippocampal neuronal loss in the absence of any detected effect on tau depositions. Atrophy and neuronal loss were strongly associated with in vivo inflammatory signals measured by TSPO-PET, IBA-1, and levels of C1q, a regulator of the complement cascade. In vitro studies confirmed that the TSPO ligand Ro5-4864 reduces C1q expression in a microglial cell line in response to inflammation, reduction of which has been shown in previous studies to protect synapses and neurons in models of tauopathy. Conclusions These findings support a protective role for TSPO ligands in tauopathy, reducing neuroinflammation, neurodegeneration, and brain atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02122-1.
Collapse
Affiliation(s)
- Lauren H Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Naruhiko Sahara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Bin Ji
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Tetsuya Suhara
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore. .,National Institute of Radiological Science, Chiba City, Chiba Province, 263-8555, Japan.
| |
Collapse
|
22
|
Keenan RJ, Oberrauch S, Bron R, Nowell CJ, Challis LM, Hoyer D, Jacobson LH. Decreased Orexin Receptor 1 mRNA Expression in the Locus Coeruleus in Both Tau Transgenic rTg4510 and Tau Knockout Mice and Accompanying Ascending Arousal System Tau Invasion in rTg4510. J Alzheimers Dis 2021; 79:693-708. [PMID: 33361602 DOI: 10.3233/jad-201177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sleep/wake disturbances (e.g., insomnia and sleep fragmentation) are common in neurodegenerative disorders, especially Alzheimer's disease (AD) and frontotemporal dementia (FTD). These symptoms are somewhat reminiscent of narcolepsy with cataplexy, caused by the loss of orexin-producing neurons. A bidirectional relationship between sleep disturbance and disease pathology suggests a detrimental cycle that accelerates disease progression and cognitive decline. The accumulation of brain tau fibrils is a core pathology of AD and FTD-tau and clinical evidence supports that tau may impair the orexin system in AD/FTD. This hypothesis was investigated using tau mutant mice. OBJECTIVE To characterize orexin receptor mRNA expression in sleep/wake regulatory brain centers and quantify noradrenergic locus coeruleus (LC) and orexinergic lateral hypothalamus (LH) neurons, in tau transgenic rTg4510 and tau-/- mice. METHODS We used i n situ hybridization and immunohistochemistry (IHC) in rTg4510 and tau-/- mice. RESULTS rTg4510 and tau-/- mice exhibited a similar decrease in orexin receptor 1 (OX1R) mRNA expression in the LC compared with wildtype controls. IHC data indicated this was not due to decreased numbers of LC tyrosine hydroxylase-positive (TH) or orexin neurons and demonstrated that tau invades TH LC and orexinergic LH neurons in rTg4510 mice. In contrast, orexin receptor 2 (OX2R) mRNA levels were unaffected in either model. CONCLUSION The LC is strongly implicated in the regulation of sleep/wakefulness and expresses high levels of OX1R. These findings raise interesting questions regarding the effects of altered tau on the orexin system, specifically LC OX1Rs, and emphasize a potential mechanism which may help explain sleep/wake disturbances in AD and FTD.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Romke Bron
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Leesa M Challis
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, University of Melbourne, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Jang YN, Jang H, Kim GH, Noh JE, Chang KA, Lee KJ. RAPGEF2 mediates oligomeric Aβ-induced synaptic loss and cognitive dysfunction in the 3xTg-AD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 47:625-639. [PMID: 33345400 PMCID: PMC8359155 DOI: 10.1111/nan.12686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS Amyloid-β (Aβ) oligomers trigger synaptic degeneration that precedes plaque and tangle pathology. However, the signalling molecules that link Aβ oligomers to synaptic pathology remain unclear. Here, we addressed the potential role of RAPGEF2 as a novel signalling molecule in Aβ oligomer-induced synaptic and cognitive impairments in human-mutant amyloid precursor protein (APP) mouse models of Alzheimer's disease (AD). METHODS To investigate the role of RAPGEF2 in Aβ oligomer-induced synaptic and cognitive impairments, we utilised a combination of approaches including biochemistry, molecular cell biology, light and electron microscopy, behavioural tests with primary neuron cultures, multiple AD mouse models and post-mortem human AD brain tissue. RESULTS We found significantly elevated RAPGEF2 levels in the post-mortem human AD hippocampus. RAPGEF2 levels also increased in the transgenic AD mouse models, generating high levels of Aβ oligomers before exhibiting synaptic and cognitive impairment. RAPGEF2 upregulation activated the downstream effectors Rap2 and JNK. In cultured hippocampal neurons, oligomeric Aβ treatment increased the fluorescence intensity of RAPGEF2 and reduced the number of dendritic spines and the intensities of synaptic marker proteins, while silencing RAPGEF2 expression blocked Aβ oligomer-induced synapse loss. Additionally, the in vivo knockdown of RAPGEF2 expression in the AD hippocampus prevented cognitive deficits and the loss of excitatory synapses. CONCLUSIONS These findings demonstrate that the upregulation of RAPGEF2 levels mediates Aβ oligomer-induced synaptic and cognitive disturbances in the AD hippocampus. We propose that an early intervention regarding RAPGEF2 expression may have beneficial effects on early synaptic pathology and memory loss in AD.
Collapse
Affiliation(s)
- You-Na Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - HoChung Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeong-Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
24
|
Ridler T, Witton J, Phillips KG, Randall AD, Brown JT. Impaired speed encoding and grid cell periodicity in a mouse model of tauopathy. eLife 2020; 9:e59045. [PMID: 33242304 PMCID: PMC7690954 DOI: 10.7554/elife.59045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Dementia is associated with severe spatial memory deficits which arise from dysfunction in hippocampal and parahippocampal circuits. For spatially sensitive neurons, such as grid cells, to faithfully represent the environment these circuits require precise encoding of direction and velocity information. Here, we have probed the firing rate coding properties of neurons in medial entorhinal cortex (MEC) in a mouse model of tauopathy. We find that grid cell firing patterns are largely absent in rTg4510 mice, while head-direction tuning remains largely intact. Conversely, neural representation of running speed information was significantly disturbed, with smaller proportions of MEC cells having firing rates correlated with locomotion in rTg4510 mice. Additionally, the power of local field potential oscillations in the theta and gamma frequency bands, which in wild-type mice are tightly linked to running speed, was invariant in rTg4510 mice during locomotion. These deficits in locomotor speed encoding likely severely impact path integration systems in dementia.
Collapse
Affiliation(s)
- Thomas Ridler
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly LaboratoriesExeterUnited Kingdom
| | - Jonathan Witton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly LaboratoriesExeterUnited Kingdom
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUnited Kingdom
| | - Keith G Phillips
- Lilly United Kingdom Erl Wood Manor WindleshamSurreyUnited Kingdom
| | - Andrew D Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly LaboratoriesExeterUnited Kingdom
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUnited Kingdom
| | - Jonathan T Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly LaboratoriesExeterUnited Kingdom
| |
Collapse
|
25
|
Ma D, Luo Y, Huang R, Zhao Z, Wang Q, Li L, Zhang L. Cornel Iridoid Glycoside Suppresses Tau Hyperphosphorylation and Aggregation in a Mouse Model of Tauopathy through Increasing Activity of PP2A. Curr Alzheimer Res 2020; 16:1316-1331. [PMID: 31902362 DOI: 10.2174/1567205017666200103113158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/12/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND rTg4510 mice are transgenic mice expressing P301L mutant tau and have been developed as an animal model of tauopathy including Alzheimer's Disease (AD). Cornel Iridoid Glycoside (CIG) is an active ingredient extracted from Cornus officinalis, a traditional Chinese herb. The purpose of the present study was to investigate the effects of CIG on tau pathology and underlying mechanisms using rTg4510 mice. METHODS The cognitive functions were detected by Morris water maze and objective recognition tests. Western blotting and immunofluorescence were conducted to measure the levels of phosphorylated tau and related proteins. Serine/threonine phosphatase assay was applied to detect the activity of protein phosphatase 2A (PP2A). RESULTS Intragastric administration of CIG for 3 months improved learning and memory abilities, prevented neuronal and synapse loss, halted brain atrophy, elevated levels of synaptic proteins, protected cytoskeleton, reduced tau hyperphosphorylation and aggregation in the brain of rTg4510 mice. In the mechanism studies, CIG increased the activity of PP2A, elevated the methylation of PP2A catalytic C (PP2Ac) at leucine 309, decreased the phosphorylation of PP2Ac at tyrosine 307, and increased protein expression of leucine carboxyl methyltransferase 1 (LCMT-1), protein tyrosine phosphatase 1B (PTP1B), and protein phosphatase 2A phosphatase activator (PTPA) in the brain of rTg4510 mice. CONCLUSION CIG might have the potential to treat tauopathy such as AD via activating PP2A.
Collapse
Affiliation(s)
- Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yi Luo
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rui Huang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Zirun Zhao
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, United States
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
26
|
Beauchamp LC, Liu XM, Sedjahtera A, Bogeski M, Vella LJ, Bush AI, Adlard PA, Barnham KJ. S-Adenosylmethionine Rescues Cognitive Deficits in the rTg4510 Animal Model by Stabilizing Protein Phosphatase 2A and Reducing Phosphorylated Tau. J Alzheimers Dis 2020; 77:1705-1715. [DOI: 10.3233/jad-200756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alterations in the methionine cycle and abnormal tau phosphorylation are implicated in many neurodegenerative diseases, including Alzheimer’s disease and frontotemporal dementia. rTg4510 mice express mutant human P301L tau and are a model of tau hyperphosphorylation. The cognitive deficit seen in these animals correlates with a burden of hyperphosphorylated tau and is a model to test therapies aimed at lowering phosphorylated tau. Objective: This study aimed to increase protein phosphatase 2A activity through supplementation of S-adenosylmethionine and analyze the effect on spatial memory and tau in treated animals. Methods: 6-month-old rTg4510 mice were treated with 100 mg/kg S-adenosylmethionine by oral gavage for 3 weeks. Spatial recognition memory was tested in the Y-maze. Alterations to phosphorylated tau and protein phosphatase 2A were explored using immunohistochemistry, western blot, and enzyme-linked immunosorbent assays. Results: Treatment with S-adenosylmethionine increased the Y-maze novel arm exploration time and increased both the expression and activity of protein phosphatase 2A. Furthermore, treatment reduced the number of AT8 positive neurons and reduced the expression of phosphorylated tau (Ser202/Thr205). S-adenosylmethionine contributes to multiple pathways in neuronal homeostasis and neurodegeneration. Conclusion: This study shows that supplementation with S-adenosylmethionine stabilizes the heterotrimeric form of PP2A resulting in an increase the enzymatic activity, a reduced level of pathological tau, and improved cognition.
Collapse
Affiliation(s)
- Leah C. Beauchamp
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
| | - Xiang M. Liu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Amelia Sedjahtera
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Mirjana Bogeski
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Laura J. Vella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Paul A. Adlard
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Kevin J. Barnham
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| |
Collapse
|
27
|
Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D'Hooge R, Balschun D. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci 2020; 13:570223. [PMID: 33132838 PMCID: PMC7578417 DOI: 10.3389/fnmol.2020.570223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer’s disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-β load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 μg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.
Collapse
Affiliation(s)
- Tariq Ahmed
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Ann Van der Jeugd
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Rudi D'Hooge
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
28
|
Jiang Y, Liu Y, Gao M, Xue M, Wang Z, Liang H. Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct 2020; 11:378-391. [PMID: 31820774 DOI: 10.1039/c9fo01780a] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiota play an important role in many central nervous system diseases through the gut microbiota-brain axis. Recent studies suggest that nicotinamide riboside (NR) has neuroprotective properties. However, it is unknown whether NR can prevent or protect against alcohol-induced depression. Furthermore, it is unclear whether its therapeutic action involves changes in the composition of the gut microbiome. Here, we investigated the effects of NR in the mouse model of alcohol-induced depression. Treatment with NR improved the alcohol-induced depressive behaviour in mice. In addition, NR decreased the number of activated microglia in the hippocampus, and it reduced the levels of pro-inflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10 and TGF-β) cytokines in the brain of mice with alcohol-induced depression. Furthermore, NR significantly upregulated BDNF and diminished the inhibition of the AKT/GSK3β/β-catenin signalling pathway in the hippocampus of these mice. 16S rRNA sequencing revealed that, compared with control and NR-treated mice, the gut microbiome richness and composition were significantly altered in the depressed mice. Spearman's correlation analysis showed that differential gut bacterial genera correlated with the levels of inflammation-related cytokines and BDNF in the brain. After faecal microbiota transplantation, cognitive behaviours, microglial activity, levels of cytokines and BDNF, and activation state of the AKT/GSK3β/β-catenin signalling pathway (which is downstream of the BDNF receptor, TrkB) in recipient mice were similar to those in donor mice. Collectively, our findings show that NR dietary supplementation protects against alcohol-induced depression-like behaviours, possibly by altering the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | | | | | | | | | | |
Collapse
|
29
|
Holton CM, Hanley N, Shanks E, Oxley P, McCarthy A, Eastwood BJ, Murray TK, Nickerson A, Wafford KA. Longitudinal changes in EEG power, sleep cycles and behaviour in a tau model of neurodegeneration. ALZHEIMERS RESEARCH & THERAPY 2020; 12:84. [PMID: 32669112 PMCID: PMC7364634 DOI: 10.1186/s13195-020-00651-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/03/2020] [Indexed: 01/13/2023]
Abstract
Background Disturbed sleep is associated with cognitive decline in neurodegenerative diseases such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD). The progressive sequence of how neurodegeneration affects aspects of sleep architecture in conjunction with behavioural changes is not well understood. Methods We investigated changes in sleep architecture, spectral power and circadian rhythmicity in the tet-off rTg4510 mouse overexpressing human P301L tau within the same subjects over time. Doxycycline-induced transgene-suppressed rTg4510 mice, tTa carriers and wild-type mice were used as comparators. Spectral power and sleep stages were measured from within the home cage environment using EEG electrodes. In addition, locomotor activity and performance during a T-maze task were measured. Results Spectral power in the delta and theta bands showed a time-dependent decrease in rTg4510 mice compared to all other groups. After the initial changes in spectral power, wake during the dark period increased whereas NREM and number of REM sleep bouts decreased in rTg4510 compared to wild-type mice. Home cage locomotor activity in the dark phase significantly increased in rTg4510 compared to wild-type mice by 40 weeks of age. Peak-to-peak circadian rhythm amplitude and performance in the T-maze was impaired throughout the experiment independent of time. At 46 weeks, rTG4510 mice had significant degeneration in the hippocampus and cortex whereas doxycycline-treated rTG4510 mice were protected. Pathology significantly correlated with sleep and EEG outcomes, in addition to locomotor and cognitive measures. Conclusions We show that reduced EEG spectral power precedes reductions in sleep and home cage locomotor activity in a mouse model of tauopathy. The data shows increasing mutant tau changes sleep architecture, EEG properties, behaviour and cognition, which suggest tau-related effects on sleep architecture in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- C M Holton
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - N Hanley
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - E Shanks
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - P Oxley
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A McCarthy
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - B J Eastwood
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - T K Murray
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - A Nickerson
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - K A Wafford
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK.
| |
Collapse
|
30
|
Wan YW, Al-Ouran R, Mangleburg CG, Perumal TM, Lee TV, Allison K, Swarup V, Funk CC, Gaiteri C, Allen M, Wang M, Neuner SM, Kaczorowski CC, Philip VM, Howell GR, Martini-Stoica H, Zheng H, Mei H, Zhong X, Kim JW, Dawson VL, Dawson TM, Pao PC, Tsai LH, Haure-Mirande JV, Ehrlich ME, Chakrabarty P, Levites Y, Wang X, Dammer EB, Srivastava G, Mukherjee S, Sieberts SK, Omberg L, Dang KD, Eddy JA, Snyder P, Chae Y, Amberkar S, Wei W, Hide W, Preuss C, Ergun A, Ebert PJ, Airey DC, Mostafavi S, Yu L, Klein HU, Carter GW, Collier DA, Golde TE, Levey AI, Bennett DA, Estrada K, Townsend TM, Zhang B, Schadt E, De Jager PL, Price ND, Ertekin-Taner N, Liu Z, Shulman JM, Mangravite LM, Logsdon BA. Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Rep 2020; 32:107908. [PMID: 32668255 PMCID: PMC7428328 DOI: 10.1016/j.celrep.2020.107908] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
We present a consensus atlas of the human brain transcriptome in Alzheimer's disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington's disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies.
Collapse
Affiliation(s)
- Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rami Al-Ouran
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl G Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Tom V Lee
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine Allison
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Mariet Allen
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | - Hui Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongkang Mei
- Neuroscience DPU, Shanghai R&D, GlaxoSmithKline, Shanghai, China
| | - Xiaoyan Zhong
- Neuroscience DPU, Shanghai R&D, GlaxoSmithKline, Shanghai, China
| | - Jungwoo Wren Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin & Diana Helis Henry Medical Research Foundations, New Orleans, LA 70130, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin & Diana Helis Henry Medical Research Foundations, New Orleans, LA 70130, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ping-Chieh Pao
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jean-Vianney Haure-Mirande
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E Ehrlich
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Paramita Chakrabarty
- Evelyn F. and William L. McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Yona Levites
- Evelyn F. and William L. McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Xue Wang
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; Mayo Clinic, Department of Health Sciences Research, Jacksonville, FL 32224, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | - Sandeep Amberkar
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK; Molecular Oncology Lab, Cancer Research UK - Manchester Institute, The University of Manchester, Manchester, SK10 4TG, UK
| | - Wenbin Wei
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK; Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Winston Hide
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Ayla Ergun
- Translational Genome Sciences, Biogen, Cambridge, MA, USA
| | - Phillip J Ebert
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - David C Airey
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - David A Collier
- Eli Lilly & Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, UK
| | - Todd E Golde
- Evelyn F. and William L. McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Karol Estrada
- Translational Genome Sciences, Biogen, Cambridge, MA, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Nilüfer Ertekin-Taner
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; Mayo Clinic, Department of Neurology, Jacksonville, FL 32224, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
31
|
Jiao H, Downie LE, Huang X, Wu M, Oberrauch S, Keenan RJ, Jacobson LH, Chinnery HR. Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy. J Neuroinflammation 2020; 17:136. [PMID: 32345316 PMCID: PMC7189727 DOI: 10.1186/s12974-020-01803-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Xin Huang
- Innate Phagocytosis Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Sara Oberrauch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia. .,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
32
|
Castanho I, Murray TK, Hannon E, Jeffries A, Walker E, Laing E, Baulf H, Harvey J, Bradshaw L, Randall A, Moore K, O'Neill P, Lunnon K, Collier DA, Ahmed Z, O'Neill MJ, Mill J. Transcriptional Signatures of Tau and Amyloid Neuropathology. Cell Rep 2020; 30:2040-2054.e5. [PMID: 32049030 PMCID: PMC7016505 DOI: 10.1016/j.celrep.2020.01.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/21/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of β-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions. Differentially expressed transcripts overlap with genes identified in genetic studies of familial and sporadic AD. Systems-level analyses identify discrete co-expression networks associated with the progressive accumulation of tau that are enriched for genes and pathways previously implicated in AD pathology and overlap with co-expression networks identified in human AD cortex. Our data provide further evidence for an immune-response component in the accumulation of tau and reveal molecular pathways associated with the progression of AD neuropathology.
Collapse
Affiliation(s)
- Isabel Castanho
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Tracey K Murray
- Eli Lilly & Co., Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Eilis Hannon
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Aaron Jeffries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Emma Walker
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Emma Laing
- Eli Lilly & Co., Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Hedley Baulf
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Joshua Harvey
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Lauren Bradshaw
- Eli Lilly & Co., Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Andrew Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Karen Moore
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Paul O'Neill
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Katie Lunnon
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - David A Collier
- Eli Lilly & Co., Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Zeshan Ahmed
- Eli Lilly & Co., Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Michael J O'Neill
- Eli Lilly & Co., Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Jonathan Mill
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK.
| |
Collapse
|
33
|
Pickett EK, Herrmann AG, McQueen J, Abt K, Dando O, Tulloch J, Jain P, Dunnett S, Sohrabi S, Fjeldstad MP, Calkin W, Murison L, Jackson RJ, Tzioras M, Stevenson A, d'Orange M, Hooley M, Davies C, Colom-Cadena M, Anton-Fernandez A, King D, Oren I, Rose J, McKenzie CA, Allison E, Smith C, Hardt O, Henstridge CM, Hardingham GE, Spires-Jones TL. Amyloid Beta and Tau Cooperate to Cause Reversible Behavioral and Transcriptional Deficits in a Model of Alzheimer's Disease. Cell Rep 2019; 29:3592-3604.e5. [PMID: 31825838 PMCID: PMC6915767 DOI: 10.1016/j.celrep.2019.11.044] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023] Open
Abstract
A key knowledge gap blocking development of effective therapeutics for Alzheimer's disease (AD) is the lack of understanding of how amyloid beta (Aβ) peptide and pathological forms of the tau protein cooperate in causing disease phenotypes. Within a mouse tau-deficient background, we probed the molecular, cellular, and behavioral disruption triggered by the influence of wild-type human tau on human Aβ-induced pathology. We find that Aβ and tau work cooperatively to cause a hyperactivity behavioral phenotype and to cause downregulation of transcription of genes involved in synaptic function. In both our mouse model and human postmortem tissue, we observe accumulation of pathological tau in synapses, supporting the potential importance of synaptic tau. Importantly, tau reduction in the mice initiated after behavioral deficits emerge corrects behavioral deficits, reduces synaptic tau levels, and substantially reverses transcriptional perturbations, suggesting that lowering synaptic tau levels may be beneficial in AD.
Collapse
Affiliation(s)
- Eleanor K Pickett
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Abigail G Herrmann
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Jamie McQueen
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Kimberly Abt
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Owen Dando
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Jane Tulloch
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Pooja Jain
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Sophie Dunnett
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Sadaf Sohrabi
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Maria P Fjeldstad
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Will Calkin
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Leo Murison
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Rosemary J Jackson
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Makis Tzioras
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Anna Stevenson
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Marie d'Orange
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Monique Hooley
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Caitlin Davies
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Marti Colom-Cadena
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Alejandro Anton-Fernandez
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Declan King
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Iris Oren
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Jamie Rose
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Chris-Anne McKenzie
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Elizabeth Allison
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Oliver Hardt
- McGill University Department of Psychology, Montreal QC H3A 1B1, Canada; The University of Edinburgh Simons Initiative for the Developing Brain, George Square, Edinburgh EH8 9JZ, UK
| | - Christopher M Henstridge
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Giles E Hardingham
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
34
|
Van Dam D, De Deyn PP. How does a researcher choose the best rodent model for their Alzheimer's disease drug discovery study? Expert Opin Drug Discov 2019; 15:269-271. [PMID: 31592694 DOI: 10.1080/17460441.2020.1676719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium.,Department of Neurology and Alzheimer Center Groningen, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
35
|
Foster JB, Lashley R, Zhao F, Wang X, Kung N, Askwith CC, Lin L, Shultis MW, Hodgetts KJ, Lin CLG. Enhancement of tripartite synapses as a potential therapeutic strategy for Alzheimer's disease: a preclinical study in rTg4510 mice. Alzheimers Res Ther 2019; 11:75. [PMID: 31439023 PMCID: PMC6706914 DOI: 10.1186/s13195-019-0530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lack of effective treatment options for Alzheimer's disease (AD) is of momentous societal concern. Synaptic loss is the hallmark of AD that correlates best with impaired memory and occurs early in the disease process, before the onset of clinical symptoms. We have developed a small-molecule, pyridazine-based series that enhances the structure and function of both the glial processes and the synaptic boutons that form the tripartite synapse. Previously, we have shown that these pyridazine derivatives exhibit profound efficacy in an amyloid precursor protein AD model. Here, we evaluated the efficacy of an advanced compound, LDN/OSU-0215111, in rTg4510 mice-an aggressive tauopathy model. METHODS rTg4510 mice were treated orally with vehicle or LDN/OSU-0215111 (10 mg/kg) daily from the early symptomatic stage (2 months old) to moderate (4 months old) and severe (8 months old) disease stages. At each time point, mice were subjected to a battery of behavioral tests to assess the activity levels and cognition. Also, tissue collections were performed on a subset of mice to analyze the tripartite synaptic changes, neurodegeneration, gliosis, and tau phosphorylation as assessed by immunohistochemistry and Western blotting. At 8 months of age, a subset of rTg4510 mice treated with compound was switched to vehicle treatment and analyzed behaviorally and biochemically 30 days after treatment cessation. RESULTS At both the moderate and severe disease stages, compound treatment normalized cognition and behavior as well as reduced synaptic loss, neurodegeneration, tau hyperphosporylation, and neuroinflammation. Importantly, after 30 days of treatment cessation, the benefits of compound treatment were sustained, indicating disease modification. We also found that compound treatment rapidly and robustly reduced tau hyperphosphorylation/deposition possibly via the inhibition of GSK3β. CONCLUSIONS The results show that LDN/OSU-0215111 provides benefits for multiple aspects of tauopathy-dependent pathology found in Alzheimer's disease including tripartite synapse normalization and reduction of toxic tau burden, which, in turn, likely accounted for normalized cognition and activity levels in compound-treated rTg4510 mice. This study, in combination with our previous work regarding the benefit of pyridazine derivatives against amyloid-dependent pathology, strongly supports pyridazine derivatives as a viable, clinically relevant, and disease-modifying treatment for many of the facets of Alzheimer's disease.
Collapse
Affiliation(s)
- Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Rashelle Lashley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Nydia Kung
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Candice C. Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Lin Lin
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Michael W. Shultis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Kevin J. Hodgetts
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
36
|
DeVos SL, Corjuc BT, Commins C, Dujardin S, Bannon RN, Corjuc D, Moore BD, Bennett RE, Jorfi M, Gonzales JA, Dooley PM, Roe AD, Pitstick R, Irimia D, Frosch MP, Carlson GA, Hyman BT. Tau reduction in the presence of amyloid-β prevents tau pathology and neuronal death in vivo. Brain 2019; 141:2194-2212. [PMID: 29733334 DOI: 10.1093/brain/awy117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/05/2018] [Indexed: 11/14/2022] Open
Abstract
Several studies have now supported the use of a tau lowering agent as a possible therapy in the treatment of tauopathy disorders, including Alzheimer's disease. In human Alzheimer's disease, however, concurrent amyloid-β deposition appears to synergize and accelerate tau pathological changes. Thus far, tau reduction strategies that have been tested in vivo have been examined in the setting of tau pathology without confounding amyloid-β deposition. To determine whether reducing total human tau expression in a transgenic model where there is concurrent amyloid-β plaque formation can still reduce tau pathology and protect against neuronal loss, we have taken advantage of the regulatable tau transgene in APP/PS1 × rTg4510 mice. These mice develop both neurofibrillary tangles as well as amyloid-β plaques throughout the cortex and hippocampus. By suppressing human tau expression for 6 months in the APP/PS1 × rTg4510 mice using doxycycline, AT8 tau pathology, bioactivity, and astrogliosis were reduced, though importantly to a lesser extent than lowering tau in the rTg4510 alone mice. Based on non-denaturing gels and proteinase K digestions, the remaining tau aggregates in the presence of amyloid-β exhibit a longer-lived aggregate conformation. Nonetheless, lowering the expression of the human tau transgene was sufficient to equally ameliorate thioflavin-S positive tangles and prevent neuronal loss equally well in both the APP/PS1 × rTg4510 mice and the rTg4510 cohort. Together, these results suggest that, although amyloid-β stabilizes tau aggregates, lowering total tau levels is still an effective strategy for the treatment of tau pathology and neuronal loss even in the presence of amyloid-β deposition.
Collapse
Affiliation(s)
- Sarah L DeVos
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bianca T Corjuc
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Caitlin Commins
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Simon Dujardin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Riley N Bannon
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Diana Corjuc
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Benjamin D Moore
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Rachel E Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mehdi Jorfi
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jose A Gonzales
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Patrick M Dooley
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Allyson D Roe
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Matthew P Frosch
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George A Carlson
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
37
|
Gilmour G, Porcelli S, Bertaina-Anglade V, Arce E, Dukart J, Hayen A, Lobo A, Lopez-Anton R, Merlo Pich E, Pemberton DJ, Havenith MN, Glennon JC, Harel BT, Dawson G, Marston H, Kozak R, Serretti A. Relating constructs of attention and working memory to social withdrawal in Alzheimer’s disease and schizophrenia: issues regarding paradigm selection. Neurosci Biobehav Rev 2019; 97:47-69. [DOI: 10.1016/j.neubiorev.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
|
38
|
Mendelsohn AR, Larrick JW. Cellular Senescence as the Key Intermediate in Tau-Mediated Neurodegeneration. Rejuvenation Res 2019; 21:572-579. [PMID: 30489222 DOI: 10.1089/rej.2018.2155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuroinflammation is thought to play a key role in the progression of neurodegenerative disease such as Alzheimer's disease (AD). Given the apparent nexus of inflammatory disease with the secretory-associated senescence phenotype (SASP) of cellular senescence, two reports found that tau-mediated neurodegeneration involves induction of senescence in astrocytes, microglia, and possibly even neurons. Elimination of senescent cells by pharmacologically induced genetic ablation or by senolytic drugs blocks progression of mutant human tau-mediated neurodegeneration in mice. This work suggests a working hypothesis through which tau activation leads to senescence and then tau propagation throughout the brain is supported by, and neurotoxicity is caused by, SASP, forming a pathological positive feedback loop. Although preliminary, these data suggest that the development of senolytics for AD and other tauopathies, especially early disease, and possibly senomodulatory drugs for later stage neurodegenerative disease may prove fruitful.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- 1 Panorama Research Institute, Sunnyvale, California.,2 Regenerative Sciences Institute, Sunnyvale, California
| | | |
Collapse
|
39
|
Yanagisawa D, Hamezah HS, Durani LW, Taguchi H, Tooyama I. Study of tau pathology in male rTg4510 mice fed with a curcumin derivative Shiga-Y5. PLoS One 2018; 13:e0208440. [PMID: 30521594 PMCID: PMC6283544 DOI: 10.1371/journal.pone.0208440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Intracellular inclusions of aggregated tau appear in neurons and glial cells in a range of neurodegenerative diseases known as tauopathies. Inhibition of pathological changes in tau is a therapeutic target for tauopathy. We recently synthesized a novel curcumin derivative, named Shiga-Y5, and showed that Shiga-Y5 inhibited cognitive impairment and amyloid deposition in a mouse model of Alzheimer’s disease. Here we investigated whether Shiga-Y5 inhibited cognitive impairment and tau accumulation in a mouse model of tauopathy, rTg4510. The rTg4510 mouse is a bitransgenic mouse model that uses a system of responder and activator transgenes to express human four-repeat tau with the P301L mutation. This strain is obtained by crossing tetO-MAPT*P301L mouse line (on a FVB/NJ background) with CaMKII-tTA mouse line (on a C57BL/6J background). Male rTg4510 mice and wild-type mice were fed with a standard chow diet with or without Shiga-Y5 (500 ppm) for 4 months. Behavioral tests were conducted from 5.5 months of age, and the mice were sacrificed at 6 months of age. There were no significant changes in behavioral performance in rTg4510 mice fed with SY5-containing chow diet compared with rTg4510 mice fed with control chow diet. Histological and biochemical analyses also showed no significant alterations in tau accumulation by the treatment with SY5. One of noticeable finding in this study was that rTg4510 mice on a F1 female FVB/NJ x male C57BL/6J background showed more severe tau accumulation than rTg4510 mice on a F1 female C57BL/6J x male FVB/NJ background. Further studies to clarify the mechanisms underlying tau aggregation may help to develop therapeutic approaches aimed at preventing this pathological feature.
Collapse
Affiliation(s)
- Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | | | - Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyasu Taguchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
- * E-mail:
| |
Collapse
|
40
|
Sahara N, Maeda J, Ishikawa A, Tokunaga M, Suhara T, Higuchi M. Microglial Activation During Pathogenesis of Tauopathy in rTg4510 Mice: Implications for the Early Diagnosis of Tauopathy. J Alzheimers Dis 2018; 64:S353-S359. [DOI: 10.3233/jad-179933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Naruhiko Sahara
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ai Ishikawa
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Tokunaga
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|