1
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
2
|
Delvenne A, Gobom J, Schindler SE, Kate MT, Reus LM, Dobricic V, Tijms BM, Benzinger TLS, Cruchaga C, Teunissen CE, Ramakers I, Martinez‐Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, Roeck ED, Popp J, Peyratout G, Tsolaki M, Freund‐Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. CSF proteomic profiles of neurodegeneration biomarkers in Alzheimer's disease. Alzheimers Dement 2024; 20:6205-6220. [PMID: 38970402 PMCID: PMC11497678 DOI: 10.1002/alz.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS Individuals without dementia were classified as A+ (CSF amyloid beta [Aβ]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.
Collapse
|
3
|
Vagiakis I, Bakirtzis C, Andravizou A, Pirounides D. Unlocking the Potential of Vessel Density and the Foveal Avascular Zone in Optical Coherence Tomography Angiography as Biomarkers in Alzheimer's Disease. Healthcare (Basel) 2024; 12:1589. [PMID: 39201148 PMCID: PMC11353459 DOI: 10.3390/healthcare12161589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease is the most prevalent form of dementia. Apart from its traditional clinical diagnostic methods, novel ocular imaging biomarkers have the potential to significantly enhance the diagnosis of Alzheimer's disease. Ophthalmologists might be able to play a crucial role in this multidisciplinary approach, aiding in the early detection and diagnosis of Alzheimer's disease through the use of advanced retinal imaging techniques. This systematic literature review the utilization of optical coherence tomography angiography biomarkers, specifically vessel density and the foveal avascular zone, for the diagnosis of Alzheimer's disease. A comprehensive search was performed across multiple academic journal databases, including 11 relevant studies. The selected studies underwent thorough analysis to assess the potential of these optical coherence tomography angiography biomarkers as diagnostic tools for Alzheimer's disease. The assessment of vessel density and the foveal avascular zone have emerged as a promising avenue for identifying and diagnosing Alzheimer's disease. However, it is imperative to acknowledge that further targeted investigations are warranted to address the inherent limitations of the existing body of literature. These limitations encompass various factors such as modest sample sizes, heterogeneity among study populations, disparities in optical coherence tomography angiography imaging protocols, and inconsistencies in the reported findings. In order to establish the clinical utility and robustness of these biomarkers in Alzheimer's disease diagnosis, future research endeavors should strive to overcome these limitations by implementing larger-scale studies characterized by standardized protocols and comprehensive assessments.
Collapse
Affiliation(s)
- Iordanis Vagiakis
- Department of Ophthalmology, AHEPA University Hospital, 54626 Thessaloniki, Greece;
| | - Christos Bakirtzis
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Athina Andravizou
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Demetrios Pirounides
- Department of Ophthalmology, AHEPA University Hospital, 54626 Thessaloniki, Greece;
| |
Collapse
|
4
|
Alexandersen CG, Goriely A, Bick C. Neuronal activity induces symmetry breaking in neurodegenerative disease spreading. J Math Biol 2024; 89:3. [PMID: 38740613 DOI: 10.1007/s00285-024-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Dynamical systems on networks typically involve several dynamical processes evolving at different timescales. For instance, in Alzheimer's disease, the spread of toxic protein throughout the brain not only disrupts neuronal activity but is also influenced by neuronal activity itself, establishing a feedback loop between the fast neuronal activity and the slow protein spreading. Motivated by the case of Alzheimer's disease, we study the multiple-timescale dynamics of a heterodimer spreading process on an adaptive network of Kuramoto oscillators. Using a minimal two-node model, we establish that heterogeneous oscillatory activity facilitates toxic outbreaks and induces symmetry breaking in the spreading patterns. We then extend the model formulation to larger networks and perform numerical simulations of the slow-fast dynamics on common network motifs and on the brain connectome. The simulations corroborate the findings from the minimal model, underscoring the significance of multiple-timescale dynamics in the modeling of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK.
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience - Systems and Network Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Gonzalez-Ortiz F, Kirsebom BE, Contador J, Tanley JE, Selnes P, Gísladóttir B, Pålhaugen L, Suhr Hemminghyth M, Jarholm J, Skogseth R, Bråthen G, Grøndtvedt G, Bjørnerud A, Tecelao S, Waterloo K, Aarsland D, Fernández-Lebrero A, García-Escobar G, Navalpotro-Gómez I, Turton M, Hesthamar A, Kac PR, Nilsson J, Luchsinger J, Hayden KM, Harrison P, Puig-Pijoan A, Zetterberg H, Hughes TM, Suárez-Calvet M, Karikari TK, Fladby T, Blennow K. Plasma brain-derived tau is an amyloid-associated neurodegeneration biomarker in Alzheimer's disease. Nat Commun 2024; 15:2908. [PMID: 38575616 PMCID: PMC10995141 DOI: 10.1038/s41467-024-47286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Staging amyloid-beta (Aβ) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aβ pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aβ ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aβ-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aβ therapies.
Collapse
Affiliation(s)
- Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - José Contador
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
| | - Jordan E Tanley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | | | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Mathilde Suhr Hemminghyth
- Research Group for Age-Related Medicine, Haugesund Hospital, Haugesund, Norway
- Department of Neuropsychology, Haugesund Hospital, Haugesund, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Ragnhild Skogseth
- Department of Geriatric Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gøril Grøndtvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle Bjørnerud
- Department of Physics, University of Oslo, Oslo, Norway
- Unit for Computational Radiology and Artificial Intelligence, Oslo University hospital, Oslo, Norway
- Department of Psychology, Faculty for Social Sciences, University of Oslo, Oslo, Norway
| | - Sandra Tecelao
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry. Institute of psychiatry, Psychology and Neuroscience King's College London, London, UK
- Centre for Age-Related Diseases, University Hospital Stavanger, Stavanger, Norway
| | - Aida Fernández-Lebrero
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Greta García-Escobar
- Hospital del Mar Research Institute, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Irene Navalpotro-Gómez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
| | - Michael Turton
- Bioventix Plc, 7 Romans Business Park, East Street, Farnham, Surrey, GU9 7SX, UK
| | - Agnes Hesthamar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Przemyslaw R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jose Luchsinger
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kathleen M Hayden
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Peter Harrison
- Bioventix Plc, 7 Romans Business Park, East Street, Farnham, Surrey, GU9 7SX, UK
| | - Albert Puig-Pijoan
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- ERA-Net on Cardiovascular Diseases (ERA-CVD) consortium, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tormod Fladby
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
6
|
Venuto CS, Smith G, Herbst K, Zielinski R, Yung NC, Grosset DG, Dorsey ER, Kieburtz K. Predicting Ambulatory Capacity in Parkinson's Disease to Analyze Progression, Biomarkers, and Trial Design. Mov Disord 2023; 38:1774-1785. [PMID: 37363815 PMCID: PMC10615710 DOI: 10.1002/mds.29519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND In Parkinson's disease (PD), gait and balance is impaired, relatively resistant to available treatment and associated with falls and disability. Predictive models of ambulatory progression could enhance understanding of gait/balance disturbances and aid in trial design. OBJECTIVES To predict trajectories of ambulatory abilities from baseline clinical data in early PD, relate trajectories to clinical milestones, compare biomarkers, and evaluate trajectories for enrichment of clinical trials. METHODS Data from two multicenter, longitudinal, observational studies were used for model training (Tracking Parkinson's, n = 1598) and external testing (Parkinson's Progression Markers Initiative, n = 407). Models were trained and validated to predict individuals as having a "Progressive" or "Stable" trajectory based on changes of ambulatory capacity scores from the Movement Disorders Society Unified Parkinson's Disease Rating Scale parts II and III. Survival analyses compared time-to-clinical milestones and trial outcomes between predicted trajectories. RESULTS On external evaluation, a support vector machine model predicted Progressive trajectories using baseline clinical data with an accuracy, weighted-F1 (proportionally weighted harmonic mean of precision and sensitivity), and sensitivity/specificity of 0.735, 0.799, and 0.688/0.739, respectively. Over 4 years, the predicted Progressive trajectory was more likely to experience impaired balance, loss of independence, impaired function and cognition. Baseline dopamine transporter imaging and select biomarkers of neurodegeneration were significantly different between predicted trajectory groups. For an 18-month, randomized (1:1) clinical trial, sample size savings up to 30% were possible when enrollment was enriched for the Progressive trajectory versus no enrichment. CONCLUSIONS It is possible to predict ambulatory abilities from clinical data that are associated with meaningful outcomes in people with early PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Charles S. Venuto
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Greta Smith
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Konnor Herbst
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Robert Zielinski
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Norman C.W. Yung
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Donald G. Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - E. Ray Dorsey
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Karl Kieburtz
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
7
|
Abed SS, Hamdan FB, Hussein MM, Al-Mayah QS. Plasma tau and neurofilament light chain as biomarkers of Alzheimer's disease and their relation to cognitive functions. J Med Life 2023; 16:284-289. [PMID: 36937471 PMCID: PMC10015560 DOI: 10.25122/jml-2022-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) dementia is the most frequent cause of neurodegenerative dementia. The cognitive and behavioral symptoms associated with this disorder often have overlapping characteristics, potentially resulting in delayed diagnosis or misdiagnosis. This study aimed to assess the level of peripheral blood neurofilament light chain (NfL) and total tau (t-tau) protein in AD patients and investigate their relationship with cognitive impairment. The study included 80 participants of both sexes between the ages of 60 to 85 years. The participants were divided into two groups, consisting of 40 individuals in the control group (mean age 75±6.6 years) who had no cognitive or functional impairments and 40 AD patients (mean age 74.98±5.03 years). This study utilized the DSM-5 diagnostic criteria for major or mild neurocognitive disorder attributed to Alzheimer's disease (AD). The clinical and biochemical features of all participants were documented, and the Alzheimer's disease Assessment Scale cognitive subscale (ADAS-cog) scores were evaluated. Sandwich ELISA was employed to determine serum NfL and t-tau protein levels. The median serum NfL and t-tau protein levels in AD patients were significantly higher than those of the controls (47.84 pg/ml versus 17.66 pg/ml and 12.05 pg/ml versus 11.13 pg/ml, respectively). Age was positively correlated with NfL, t-tau levels, and ADAS-cog. Although elevated NfL and t-tau protein levels may play a role in disease progression, their diagnostic value for AD was limited.
Collapse
Affiliation(s)
- Sadiruldeen Sami Abed
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
- Corresponding Author: Sadiruldeen Sami Abed, Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq. E-mail:
| | - Farqad Bader Hamdan
- Department of Physiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | | | |
Collapse
|
8
|
Michopoulou S, Prosser A, Dickson J, Guy M, Teeling JL, Kipps C. Perfusion Imaging and Inflammation Biomarkers Provide Complementary Information in Alzheimer's Disease. J Alzheimers Dis 2023; 96:1317-1327. [PMID: 38009439 PMCID: PMC10741328 DOI: 10.3233/jad-230726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Single photon emission tomography (SPECT) can detect early changes in brain perfusion to support the diagnosis of dementia. Inflammation is a driver for dementia progression and measures of inflammation may further support dementia diagnosis. OBJECTIVE In this study, we assessed whether combining imaging with markers of inflammation improves prediction of the likelihood of Alzheimer's disease (AD). METHODS We analyzed 91 participants datasets (Institutional Ethics Approval 20/NW/0222). AD biomarkers and markers of inflammation were measured in cerebrospinal fluid. Statistical parametric mapping was used to quantify brain perfusion differences in perfusion SPECT images. Logistic regression models were trained to evaluate the ability of imaging and inflammation markers, both individually and combined, to predict AD. RESULTS Regional perfusion reduction in the precuneus and medial temporal regions predicted Aβ42 status. Increase in inflammation markers predicted tau and neurodegeneration. Matrix metalloproteneinase-10, a marker of blood-brain barrier regulation, was associated with perfusion reduction in the right temporal lobe. Adenosine deaminase, an enzyme involved in sleep homeostasis and inflammation, was the strongest predictor of neurodegeneration with an odds ratio of 10.3. The area under the receiver operator characteristic curve for the logistic regression model was 0.76 for imaging and 0.76 for inflammation. Combining inflammation and imaging markers yielded an area under the curve of 0.85. CONCLUSIONS Study results showed that markers of brain perfusion imaging and markers of inflammation provide complementary information in AD evaluation. Inflammation markers better predict tau status while perfusion imaging measures represent amyloid status. Combining imaging and inflammation improves AD prediction.
Collapse
Affiliation(s)
- Sofia Michopoulou
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angus Prosser
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - John Dickson
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Matthew Guy
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Christopher Kipps
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Wesenhagen KEJ, Tijms BM, Boonkamp L, Hoede PL, Goossens J, Dewit N, Scheltens P, Vanmechelen E, Visser PJ, Teunissen CE. P-tau subgroups in AD relate to distinct amyloid production and synaptic integrity profiles. Alzheimers Res Ther 2022; 14:95. [PMID: 35841015 PMCID: PMC9288016 DOI: 10.1186/s13195-022-01038-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Background We previously identified four Alzheimer’s disease (AD) subgroups with increasingly higher cerebrospinal fluid (CSF) levels of tau phosphorylated at threonine 181 (p-tau). These subgroups included individuals across the cognitive spectrum, suggesting p-tau subgroups could reflect distinct biological changes in AD, rather than disease severity. Therefore, in the current study, we further investigated which potential processes may be related with p-tau subgroups, by comparing individuals on CSF markers for presynaptic structure [vesicle-associated membrane protein 2 (VAMP2)], postsynaptic structure [neurogranin (NRGN)], axonal damage [neurofilament light (NfL)], and amyloid production [beta-secretase 1 (BACE1) and amyloid-beta 1–40 (Aβ40)]. Methods We selected 348 amyloid-positive (A+) individuals (53 preclinical, 102 prodromal, 193 AD dementia) and 112 amyloid-negative (A−) cognitively normal (CN) individuals from the Amsterdam Dementia Cohort (ADC). Individuals were labeled according to their p-tau subgroup (subgroup 1: p-tau ≤ 56 pg/ml; subgroup 2: 57–96 pg/ml; subgroup 3: 97–159 pg/ml; subgroup 4: > 159 pg/ml). CSF protein levels were measured with ELISA (NRGN, BACE1, Aβ40, NfL) or single-molecule array (Simoa) (VAMP2). We tested whether protein levels differed between the p-tau subgroups within A+ individuals with linear models corrected for age and sex and whether disease stage influenced these relationships. Results Among A+ individuals, higher p-tau subgroups showed a higher percentage of AD dementia [subgroup 1: n = 41/94 (44%); subgroup 2: n = 81/147 (55%); subgroup 3: n = 59/89 (66%); subgroup 4: n = 7/11 (64%)]. Relative to controls, subgroup 1 showed reduced CSF levels of BACE1, Aβ40, and VAMP2 and higher levels of NfL. Subgroups 2 to 4 showed gradually increased CSF levels of all measured proteins, either across the first three (NfL and Aβ40) or across all subgroups (VAMP2, NRGN, BACE1). The associations did not depend on the clinical stage (interaction p-values ranging between 0.19 and 0.87). Conclusions The results suggest that biological heterogeneity in p-tau levels in AD is related to amyloid metabolism and synaptic integrity independent of clinical stage. Biomarkers reflecting amyloid metabolism and synaptic integrity may be useful outcome measures in clinical trials targeting tau pathology.
Collapse
|
10
|
Neuroprotective Effect of Artichoke-Based Nanoformulation in Sporadic Alzheimer’s Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways. Pharmaceuticals (Basel) 2022; 15:ph15101202. [PMID: 36297313 PMCID: PMC9610800 DOI: 10.3390/ph15101202] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The vast socio-economic impact of Alzheimer’s disease (AD) has prompted the search for new neuroprotective agents with good tolerability and safety profile. With its outstanding role as antioxidant and anti-inflammatory, alongside its anti-acetylcholinesterase activity, the artichoke can be implemented in a multi-targeted approach in AD therapy. Moreover, artichoke agricultural wastes can represent according to the current United Nations Sustainable Development goals an opportunity to produce medicinally valuable phenolic-rich extracts. In this context, the UPLC-ESI-MS/MS phytochemical characterization of artichoke bracts extract revealed the presence of mono- and di-caffeoylquinic acids and apigenin, luteolin, and kaempferol O-glycosides with remarkable total phenolics and flavonoids contents. A broad antioxidant spectrum was established in vitro. Artichoke-loaded, chitosan-coated, solid lipid nanoparticles (SLNs) were prepared and characterized for their size, zeta potential, morphology, entrapment efficiency, release, and ex vivo permeation and showed suitable colloidal characteristics, a controlled release profile, and promising ex vivo permeation, indicating possibly better physicochemical and biopharmaceutical parameters than free artichoke extract. The anti-Alzheimer potential of the extract and prepared SLNs was assessed in vivo in streptozotocin-induced sporadic Alzheimer mice. A great improvement in cognitive functions and spatial memory recovery, in addition to a marked reduction of the inflammatory biomarker TNF-α, β-amyloid, and tau protein levels, were observed. Significant neuroprotective efficacy in dentate Gyrus sub-regions was achieved in mice treated with free artichoke extract and to a significantly higher extent with artichoke-loaded SLNs. The results clarify the strong potential of artichoke bracts extract as a botanical anti-AD drug and will contribute to altering the future medicinal outlook of artichoke bracts previously regarded as agro-industrial waste.
Collapse
|
11
|
Michopoulou S, Prosser A, Kipps C, Dickson J, Guy M, Teeling J. Biomarkers of Inflammation Increase with Tau and Neurodegeneration but not with Amyloid-β in a Heterogenous Clinical Cohort. J Alzheimers Dis 2022; 89:1303-1314. [DOI: 10.3233/jad-220523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Neuroinflammation is an integral part of Alzheimer’s disease (AD) pathology. Inflammatory mediators can exacerbate the production of amyloid-β (Aβ), the propagation of tau pathology and neuronal loss. Objective: To evaluate the relationship between inflammation markers and established markers of AD in a mixed memory clinic cohort. Methods: 105 cerebrospinal fluid (CSF) samples from a clinical cohort under investigation for cognitive complaints were analyzed. Levels of Aβ 42, total tau, and phosphorylated tau were measured as part of the clinical pathway. Analysis of inflammation markers in CSF samples was performed using multiplex immune assays. Participants were grouped according to their Aβ, tau, and neurodegeneration status and the Paris-Lille-Montpellier (PLM) scale was used to assess the likelihood of AD. Results: From 102 inflammatory markers analyzed, 19 and 23 markers were significantly associated with CSF total tau and phosphorylated tau levels respectively (p < 0.001), while none were associated with Aβ 42. The CSF concentrations of 4 inflammation markers were markedly elevated with increasing PLM class indicating increased likelihood of AD (p < 0.001). Adenosine deaminase, an enzyme involved in sleep homeostasis, was the single best predictor of high likelihood of AD (AUROC 0.788). Functional pathway analysis demonstrated a widespread role for inflammation in neurodegeneration, with certain pathways explaining over 30% of the variability in tau values. Conclusion: CSF inflammation markers increase significantly with tau and neurodegeneration, but not with Aβ in this mixed memory clinic cohort. Thus, such markers could become useful for the clinical diagnosis of neurodegenerative disorders alongside the established Aβ and tau measures.
Collapse
Affiliation(s)
- Sofia Michopoulou
- Imaging Physics, University Hospital Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| | - Angus Prosser
- Faculty of Medicine, University of Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| | - Christopher Kipps
- Faculty of Medicine, University of Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Matthew Guy
- Imaging Physics, University Hospital Southampton, Southampton, UK
| | - Jessica Teeling
- School of Biological Sciences, University of Southampton, Southampton, UK
- Interdisciplinary Dementia and Imaging Centre (iDeAC), Southampton, UK
| |
Collapse
|
12
|
Vromen EM, de Boer SCM, Teunissen CE, Rozemuller A, Sieben A, Bjerke M, Visser PJ, Bouwman FH, Engelborghs S, Tijms BM. Biomarker A+T-: is this Alzheimer's disease or not? A combined CSF and pathology study. Brain 2022; 146:1166-1174. [PMID: 35511164 PMCID: PMC9976983 DOI: 10.1093/brain/awac158] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
The biological definition of Alzheimer's disease using CSF biomarkers requires abnormal levels of both amyloid (A) and tau (T). However, biomarkers and corresponding cutoffs may not always reflect the presence or absence of pathology. Previous studies suggest that up to 32% of individuals with autopsy-confirmed Alzheimer's disease show normal CSF p-tau levels in vivo, but these studies are sparse and had small sample sizes. Therefore, in three independent autopsy cohorts, we studied whether or not CSF A+T- excluded Alzheimer's disease based on autopsy. We included 215 individuals, for whom ante-mortem CSF collection and autopsy had been performed, from three cohorts: (i) the Amsterdam Dementia Cohort (ADC) [n = 80, 37 (46%) Alzheimer's disease at autopsy, time between CSF collection and death 4.5 ± 2.9 years]; (ii) the Antwerp Dementia Cohort (DEM) [n = 92, 84 (91%) Alzheimer's disease at autopsy, time CSF collection to death 1.7 ± 2.3 years]; and (iii) the Alzheimer's Disease Neuroimaging Initiative (ADNI) [n = 43, 31 (72%) Alzheimer's disease at autopsy, time CSF collection to death 5.1 ± 2.5 years]. Biomarker profiles were based on dichotomized CSF Aβ1-42 and p-tau levels. The accuracy of CSF AT profiles to detect autopsy-confirmed Alzheimer's disease was assessed. Lastly, we investigated whether the concordance of AT profiles with autopsy diagnosis improved when CSF was collected closer to death in 9 (10%) DEM and 30 (70%) ADNI individuals with repeated CSF measurements available. In total, 50-73% of A+T- individuals and 100% of A+T+ individuals had Alzheimer's disease at autopsy. Amyloid status showed the highest accuracy to detect autopsy-confirmed Alzheimer's disease (accuracy, sensitivity and specificity in the ADC: 88%, 92% and 84%; in the DEM: 87%, 94% and 12%; and in the ADNI cohort: 86%, 90% and 75%, respectively). The addition of CSF p-tau did not further improve these estimates. We observed no differences in demographics or degree of Alzheimer's disease neuropathology between A+T- and A+T+ individuals with autopsy-confirmed Alzheimer's disease. All individuals with repeated CSF measurements remained stable in Aβ1-42 status during follow-up. None of the Alzheimer's disease individuals with a normal p-tau status changed to abnormal; however, four (44%) DEM individuals and two (7%) ADNI individuals changed from abnormal to normal p-tau status over time, and all had Alzheimer's disease at autopsy. In summary, we found that up to 73% of A+T- individuals had Alzheimer's disease at autopsy. This should be taken into account in both research and clinical settings.
Collapse
Affiliation(s)
- Eleonora M Vromen
- Correspondence to: E. M. Vromen de Boelelaan 1118, 1081HZ Amsterdam, The Netherlands E-mail:
| | - Sterre C M de Boer
- Alzheimer Center Amsterdam, Amsterdam Neuroscience, VUMC, Amsterdam, The Netherlands,Department of Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Lab and Biobank, Amsterdam Neuroscience, VUMC,Amsterdam, The Netherlands
| | - Annemieke Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anne Sieben
- Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Maria Bjerke
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, Universitair Ziekenhuis Brussel and Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Amsterdam Neuroscience, VUMC, Amsterdam, The Netherlands,Department of Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands,Department of Psychiatry, Maastricht University, Maastricht, The Netherlands,Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Femke H Bouwman
- Alzheimer Center Amsterdam, Amsterdam Neuroscience, VUMC, Amsterdam, The Netherlands,Department of Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium,Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Amsterdam Neuroscience, VUMC, Amsterdam, The Netherlands,Department of Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Hansen N, Juhl AL, Grenzer IM, Hirschel S, Teegen B, Fitzner D, Bartels C, Timäus C, Wiltfang J, Malchow B. Cerebrospinal Fluid Total Tau Protein Correlates With Longitudinal, Progressing Cognitive Dysfunction in Anti-Neural Autoantibody-Associated Dementia and Alzheimer's Dementia: A Case-Control Study. Front Immunol 2022; 13:837376. [PMID: 35309366 PMCID: PMC8927820 DOI: 10.3389/fimmu.2022.837376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Neural autoantibody-associated dementia (NABD) is an increasing phenomenon in memory clinics with a high impact on later therapy. Biomarkers are lacking that differentiate this type of dementia from neurodegenerative dementia such as Alzheimer’s dementia (AD). Our aim is to analyze neurodegeneration markers and their relationship to progressing cognitive dysfunction in NABD and AD to test for tools differentiating these two forms of dementia prior to neural autoantibody testing. Methods In our retrospective, observational study, we investigated 14 patients with dementia and serum and/or cerebrospinal fluid (CSF) neural autoantibodies as well as 14 patients with AD by relying on recent CSF and clinical criteria for AD. Patient files were checked for psychopathology, neuropsychological test performance, autoimmune indicators, CSF, and MRI results. Results Our patient groups did not differ in their psychopathology, autoimmune indicators, or MRI profile. The progression of cognitive dysfunction [as measured by the difference in Mini-Mental State Examination (MMSE) scores since disease onset, and the yearly progression rate (MMSE loss/per year)] did not vary significantly between groups. Total tau protein was significantly higher in AD patients than NABD patients revealing no signs of Alzheimer’s disease pathology in their CSF (p < 0.05). Total tau protein levels in CSF correlated with cognitive decline since disease onset (r = 0.38, p < 0.05) and yearly progression rates (r = 0.56, p < 0.005) in all patients. Discussion Our results suggest that the progression of cognitive dysfunction as defined by MMSE does not seem to be an appropriate biomarker for distinguishing NABD from AD. However, the total tau protein level in CSF might be a relevant molecular biomarker that can indicate disease pathology and/or progression in both known AD and NABD, which is often accompanied by axonal degeneration. Total tau protein may be an additional diagnostic tool with which to differentiate anti-neural-associated dementia from AD if further research confirms these proof-of-concept findings in larger patient cohorts.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Aaron Levin Juhl
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Insa Maria Grenzer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Sina Hirschel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | | | - Dirk Fitzner
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Charles Timäus
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Marshall CA, McBride JD, Changolkar L, Riddle DM, Trojanowski JQ, Lee VMY. Inhibition of CK2 mitigates Alzheimer's tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun 2022; 10:30. [PMID: 35246269 PMCID: PMC8895919 DOI: 10.1186/s40478-022-01331-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that exhibits pathological changes in both tau and synaptic function. AD patients display increases in hyperphosphorylated tau and synaptic activity. Previous studies have individually identified the role of NR2B subunit-containing NMDA receptors in AD related synaptic dysfunction and aggregated tau without reconciling the conflicting differences and implications of NR2B expression. Inhibition of extrasynaptically located NR2B mitigates tau pathology in AD models, whereas the inhibition of synaptic NR2B replicates tau-associated hyperactivity. This suggests that a simultaneous increase in extrasynaptic NR2B and decrease in synaptic NR2B may be responsible for tau pathology and synaptic dysfunction, respectively. The synaptic location of NR2B is regulated by casein kinase 2 (CK2), which is highly expressed in AD patients. Here, we used patient brains diagnosed with AD, corticobasal degeneration, progressive supranuclear palsy or Pick’s disease to characterize CK2 expression across these diverse tauopathies. Human derived material was also utilized in conjunction with cultured hippocampal neurons in order to investigate AD-induced changes in NR2B location. We further assessed the therapeutic effect of CK2 inhibition on NR2B synaptic distribution and tau pathology. We found that aberrant expression of CK2, and synaptically translocated NR2B, is unique to AD patients compared to other tauopathies. Increased CK2 was also observed in AD-tau treated neurons in addition to the mislocalization of NR2B receptors. Tau burden was alleviated in vitro by correcting synaptic:extrasynaptic NR2B function. Restoring NR2B physiological expression patterns with CK2 inhibition and inhibiting the function of excessive extrasynaptic NR2B with Memantine both mitigated tau accumulation in vitro. However, the combined pharmacological treatment promoted the aggregation of tau. Our data suggests that the synaptic:extrasynaptic balance of NR2B function regulates AD-tau pathogenesis, and that the inhibition of CK2, and concomitant prevention of NR2B mislocalization, may be a useful therapeutic tool for AD patients.
Collapse
|
15
|
Lee JI, Lim JS, Hong JH, Kim S, Lee SW, Ji HD, Won KS, Song BI, Kim HW. Selective neurodegeneration of the hippocampus caused by chronic cerebral hypoperfusion: F-18 FDG PET study in rats. PLoS One 2022; 17:e0262224. [PMID: 35143502 PMCID: PMC8830734 DOI: 10.1371/journal.pone.0262224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chronic cerebral hypoperfusion (CCH) is known to induce Alzheimer’s disease (AD) pathology, but its mechanism remains unclear. The purpose of this study was to identify the cerebral regions that are affected by CCH, and to evaluate the development of AD pathology in a rat model of CCH. Methods A rat model of CCH was established by bilaterally ligating the common carotid arteries in adult male rats (CCH group). The identical operations were performed on sham rats without arteries ligation (control group). Regional cerebral glucose metabolism was evaluated at 1 and 3 months after bilateral CCA ligation using positron emission tomography with F-18 fluorodeoxyglucose. The expression levels of amyloid β40 (Aβ40), amyloid β42 (Aβ42), and hyperphosphorylated tau were evaluated using western blots at 3 months after the ligation. Cognitive function was evaluated using the Y-maze test at 3 months after the ligation. Results At 1 month after the ligation, cerebral glucose metabolism in the entorhinal, frontal association, motor, and somatosensory cortices were significantly decreased in the CCH group compared with those in the control group. At 3 months after the ligation, cerebral glucose metabolism was normalized in all regions except for the anterodorsal hippocampus, which was significantly decreased compared with that of the control group. The expression of Aβ42 and the Aβ42/40 ratio were significantly higher in the CCH group than those in the control group. The phosphorylated-tau levels of the hippocampus in the CCH group were significantly lower than those in the control group. Cognitive function was more impaired in the CCH group than that in the control group. Conclusion Our findings suggest that CCH causes selective neurodegeneration of the anterodorsal hippocampus, which may be a trigger point for the development of AD pathology.
Collapse
Affiliation(s)
- Jung-In Lee
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Ji Sun Lim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jeong-Ho Hong
- Department of Neurology, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Dong Ji
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine & Institute for Medical Science, Keimyung University, Daegu, Korea
- * E-mail:
| |
Collapse
|
16
|
Laudanski K, Hajj J, Restrepo M, Siddiq K, Okeke T, Rader DJ. Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines 2021; 9:1791. [PMID: 34944606 PMCID: PMC8698659 DOI: 10.3390/biomedicines9121791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
The balance between neurodegeneration, neuroinflammation, neuroprotection, and COVID-19-directed therapy may underly the heterogeneity of SARS-CoV-2's neurological outcomes. A total of 105 patients hospitalized with a diagnosis of COVID-19 had serum collected over a 6 month period to assess neuroinflammatory (MIF, CCL23, MCP-1), neuro-injury (NFL, NCAM-1), neurodegenerative (KLK6, τ, phospho τ, amyloids, TDP43, YKL40), and neuroprotective (clusterin, fetuin, TREM-2) proteins. These were compared to markers of nonspecific inflammatory responses (IL-6, D-dimer, CRP) and of the overall viral burden (spike protein). Data regarding treatment (steroids, convalescent plasma, remdasavir), pre-existing conditions, and incidences of strokes were collected. Amyloid β42, TDP43, NF-L, and KLK6 serum levels declined 2-3 days post-admission, yet recovered to admission baseline levels by 7 days. YKL-40 and NCAM-1 levels remained elevated over time, with clusters of differential responses identified among TREM-2, TDP43, and YKL40. Fetuin was elevated after the onset of COVID-19 while TREM-2 initially declined before significantly increasing over time. MIF serum level was increased 3-7 days after admission. Ferritin correlated with TDP-43 and KLK6. No treatment with remdesivir coincided with elevations in Amyloid-β40. A lack of convalescent plasma resulted in increased NCAM-1 and total tau, and steroidal treatments did not significantly affect any markers. A total of 11 incidences of stroke were registered up to six months after initial admission for COVID-19. Elevated D-dimer, platelet counts, IL-6, and leukopenia were observed. Variable MIF serum levels differentiated patients with CVA from those who did not have a stroke during the acute phase of COVID-19. This study demonstrated concomitant and opposite changes in neurodegenerative and neuroprotective markers persisting well into recovery.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- The Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihane Hajj
- School of Nursing, Widener University, Philadelphia, PA 19013, USA;
| | - Mariana Restrepo
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kumal Siddiq
- College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA;
| | - Tony Okeke
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA;
| | - Daniel J. Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
17
|
Abbas H, Refai H, El Sayed N, Rashed LA, Mousa MR, Zewail M. Superparamagnetic iron oxide loaded chitosan coated bilosomes for magnetic nose to brain targeting of resveratrol. Int J Pharm 2021; 610:121244. [PMID: 34737114 DOI: 10.1016/j.ijpharm.2021.121244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023]
Abstract
The objective of this study was to improve effectiveness of resveratrol (RES) through brain targeting by the intranasal olfactory mucosa for the treatment Alzheimer's disease (AD). To attain this, chitosan coated bilosomes (non ionic surfactant vesicles stabilized by bile salts, loaded with RES and superparamagnetic iron oxide nanoparticles (SPIONs) were prepared and incorporated into sodium alginate/PVP wafers. In vitro characterization of bilosomes including colloidal characteristics, entrapment efficiency and in vitro release was carried out. Hydration capacity, porosity percentage, morphology and in vitro release for selected wafer formulation were also investigated. Particle size of selected bilosomes, CS coated bilosome and SPION bilosomes was 208, 238 and 243 nm, respectively and they provided sustained RES release for 24 h. Both formulations were loaded in wafers and intra-nasally administered in mice with lipopolysaccharide induced AD model. Neurobehavioral tests, AD markers analysis, RT-PCR, western blotting and histopathological evaluation of the dissected brains were carried out. Results revealed the superiority of SPION bilosomes over conventional bilosomes and RES suspension in improving cognitive and memory functions, reduction of pro-inflammatory markers levels and down regulation of expression of NF-κB and P38. This may be attributed to enhanced RES therapeutic effects upon nanoencapsulation, loading into wafers, nasal administration and enhanced targeting the application of an external magnetic field.
Collapse
Affiliation(s)
- Haidy Abbas
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt.
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October City, Egypt.
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt
| |
Collapse
|
18
|
Rosenberg A, Solomon A, Soininen H, Visser PJ, Blennow K, Hartmann T, Kivipelto M. Research diagnostic criteria for Alzheimer's disease: findings from the LipiDiDiet randomized controlled trial. ALZHEIMERS RESEARCH & THERAPY 2021; 13:64. [PMID: 33766132 PMCID: PMC7995792 DOI: 10.1186/s13195-021-00799-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Background To explore the utility of the International Working Group (IWG)-1 criteria in recruitment for Alzheimer’s disease (AD) clinical trials, we applied the more recently proposed research diagnostic criteria to individuals enrolled in a randomized controlled prevention trial (RCT) and assessed their disease progression. Methods The multinational LipiDiDiet RCT targeted 311 individuals with IWG-1 defined prodromal AD. Based on centrally analyzed baseline biomarkers, participants were classified according to the IWG-2 and National Institute on Aging–Alzheimer’s Association (NIA-AA) 2011 and 2018 criteria. Linear mixed models were used to investigate the 2-year change in cognitive and functional performance (Neuropsychological Test Battery NTB Z scores, Clinical Dementia Rating-Sum of Boxes CDR-SB) (criteria × time interactions; baseline score, randomization group, sex, Mini-Mental State Examination (MMSE), and age also included in the models). Cox models adjusted for randomization group, MMSE, sex, age, and study site were used to investigate the risk of progression to dementia over 2 years. Results In total, 88%, 86%, and 69% of participants had abnormal cerebrospinal fluid (CSF) β-amyloid, total tau, and phosphorylated tau, respectively; 64% had an A+T+N+ profile (CSF available for N = 107). Cognitive-functional decline appeared to be more pronounced in the IWG-2 prodromal AD, NIA-AA 2011 high and intermediate AD likelihood, and NIA-AA 2018 AD groups, but few significant differences were observed between the groups within each set of criteria. Hazard ratio (95% CI) for dementia was 4.6 (1.6–13.7) for IWG-2 prodromal AD (reference group no prodromal AD), 7.4 (1.0–54.7) for NIA-AA 2011 high AD likelihood (reference group suspected non-AD pathology SNAP), and 9.4 (1.2–72.7) for NIA-AA 2018 AD (reference group non-Alzheimer’s pathologic change). Compared with the NIA-AA 2011 high AD likelihood group (abnormal β-amyloid and neuronal injury markers), disease progression was similar in the intermediate AD likelihood group (medial temporal lobe atrophy; no CSF available). Conclusions Despite being less restrictive than the other criteria, the IWG-1 criteria reliably identified individuals with AD pathology. More pragmatic and easily applicable selection criteria might be preferred due to feasibility in certain situations, e.g., in multidomain prevention trials that do not specifically target β-amyloid/tau pathologies. Trial registration Netherlands Trial Register, NL1620. Registered on 9 March 2009
Collapse
Affiliation(s)
- Anna Rosenberg
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Alina Solomon
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centre Limburg, University of Maastricht, Maastricht, Netherlands.,Department of Neurology, Alzheimer Centre, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Medical Faculty, and Department of Experimental Neurology, Saarland University, Homburg, Germany
| | - Miia Kivipelto
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|