1
|
Raphel S, Halami PM. Bioactive compounds from food-grade Bacillus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39373131 DOI: 10.1002/jsfa.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Bacillus species have attracted significant attention in recent years due to their potential for producing various bioactive compounds with diverse functional properties. This review highlights bioactive substances from food-grade Bacillus strains and their applications in functional foods and nutraceuticals. The metabolic capacities of Bacillus species have allowed them to generate a wide range of bioactive substances, including vitamins, enzymes, anti-microbial peptides, and other non-ribosomal peptides. These substances have a variety of positive effects, including potential cholesterol-lowering and immune-modulatory qualities in addition to anti-oxidant and anti-bacterial actions. The uses and mechanisms of action of these bioactive chemicals can be used to improve the functional qualities and nutritional profile of food products. Examples include the use of anti-microbial peptides to increase safety and shelf life, as well as the use of Bacillus-derived enzymes in food processing to improve digestibility and sensory qualities. The exploitation of bioactive compounds from food-grade Bacillus strains presents a promising frontier in the development of functional foods and nutraceuticals with enhanced health benefits. Due to their wide range of activity and applications, they are considered as important resources for the development of novel medications, agricultural biocontrol agents, and industrial enzymes. Ongoing research into the biosynthetic pathways, functional properties, and applications of these compounds is essential to fully realize their potential in the food industry. This review underscores the significance of various bioactive compounds generated from Bacillus in tackling global issues like environmental sustainability, sustainable agriculture, and antibiotic resistance. Future developments in microbiology and biotechnology will enable us to fully utilize the potential of these amazing microbes, resulting in novel approaches to industry, agriculture, and health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Steji Raphel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Prakash Motiram Halami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
2
|
Shin Yee C, Ilham Z, Cheng A, Abd Rahim MH, Hajar-Azhari S, Yuswan MH, Mohd Zaini NA, Reale A, Di Renzo T, Wan-Mohtar WAAQI. Optimisation of fermentation conditions for the production of gamma-aminobutyric acid (GABA)-rich soy sauce. Heliyon 2024; 10:e33147. [PMID: 39040394 PMCID: PMC11261068 DOI: 10.1016/j.heliyon.2024.e33147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
This study addresses the challenge of enhancing gamma-aminobutyric acid (GABA) content in soy sauce through optimized fermentation condition. Using a multiple starter culture, consisting of Aspergillus oryzae strain NSK, Bacillus cereus strain KBC and Tetragenococcus halophilus strain KBC, the incubation conditions including the percentage of bacterial inoculum (10, 15 and 20 %), pH (3, 5 and 7) and agitation speed (100, 150 and 200 rpm) were optimized through Response Surface Methodology (RSM). Under the optimal conditions (20 % inoculum, pH 7 and stirring at 100 rpm), the multiple starter culture generated 128.69 mg/L of GABA after 7 days and produced 239.08 mg/L of GABA after 4 weeks of fermentation, which is 36 % higher than under non-optimized conditions (153.48 mg/L). Furthermore, sensory analysis revealed high consumer acceptance of the fermented soy sauce than the control (soy sauce without any treatment and additional bacteria) and commercial soy sauce. Consumers indicated that the starter culture offered an improved umami taste and reduced bitter, sour and salty flavours compared to the commercial product. Under optimal fermentation conditions determined by RSM statistical analysis, the multiple starter culture is able to produce high levels of GABA and is more likely to be accepted by consumers. The findings of this research have the potential to impact the food sector by offering a functional soy sauce with added health benefits and also being well-received by consumers.
Collapse
Affiliation(s)
- Chong Shin Yee
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zul Ilham
- Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Acga Cheng
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhamad Hafiz Abd Rahim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Siti Hajar-Azhari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute, Universiti Putra Malaysia 43400 UPM Serdang, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Anna Reale
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100, Avellino, Italy
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Pinontoan R, Purnomo JS, Avissa EB, Tanojo JP, Djuan M, Vidian V, Samantha A, Jo J, Steven E. In-vitro and in-silico analyses of the thrombolytic potential of green kiwifruit. Sci Rep 2024; 14:13799. [PMID: 38877048 PMCID: PMC11178772 DOI: 10.1038/s41598-024-64160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Cardiovascular diseases (CVDs), mainly caused by thrombosis complications, are the leading cause of mortality worldwide, making the development of alternative treatments highly desirable. In this study, the thrombolytic potential of green kiwifruit (Actinidia deliciosa cultivar Hayward) was assessed using in-vitro and in-silico approaches. The crude green kiwifruit extract demonstrated the ability to reduce blood clots significantly by 73.0 ± 1.12% (P < 0.01) within 6 h, with rapid degradation of Aα and Bβ fibrin chains followed by the γ chain in fibrinolytic assays. Molecular docking revealed six favorable conformations for the kiwifruit enzyme actinidin (ADHact) and fibrin chains, supported by spontaneous binding energies and distances. Moreover, molecular dynamics simulation confirmed the binding stability of the complexes of these conformations, as indicated by the stable binding affinity, high number of hydrogen bonds, and consistent distances between the catalytic residue Cys25 of ADHact and the peptide bond. The better overall binding affinity of ADHact to fibrin chains Aα and Bβ may contribute to their faster degradation, supporting the fibrinolytic results. In conclusion, this study demonstrated the thrombolytic potential of the green kiwifruit-derived enzyme and highlighted its potential role as a natural plant-based prophylactic and therapeutic agent for CVDs.
Collapse
Affiliation(s)
- Reinhard Pinontoan
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia.
| | | | - Elvina Bella Avissa
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Jessica Pricilla Tanojo
- Center of Excellence Applied Science Academy, Sekolah Pelita Harapan Lippo Village, Tangerang, 15810, Indonesia
| | - Moses Djuan
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Valerie Vidian
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Ariela Samantha
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
| | - Juandy Jo
- Department of Biology, Universitas Pelita Harapan, Tangerang, 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Lippo Karawaci, Tangerang, 15810, Indonesia
| | - Eden Steven
- Center of Excellence Applied Science Academy, Sekolah Pelita Harapan Lippo Village, Tangerang, 15810, Indonesia
- Emmerich Research Center, Jakarta, 14450, Indonesia
| |
Collapse
|
4
|
Chin XH, Elhalis H, Chow Y, Liu SQ. Enhancing food safety in soybean fermentation through strategic implementation of starter cultures. Heliyon 2024; 10:e25007. [PMID: 38312583 PMCID: PMC10835011 DOI: 10.1016/j.heliyon.2024.e25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented soybean products have played a significant role in Asian diets for a long time. Due to their diverse flavours, nutritional benefits, and potential health-promoting properties, they have gained a huge popularity globally in recent years. Traditionally, soybean fermentation is conducted spontaneously, using microorganisms naturally present in the environment, or inoculating with traditional starter cultures. However, many potential health risks are associated with consumption of these traditionally fermented soybean products due to the presence of food pathogens, high levels of biogenic amines and mycotoxins. The use of starter culture technology in fermentation has been well-studied in recent years and confers significant advantages over traditional fermentation methods due to strict control of the microorganisms inoculated. This review provides a comprehensive review of microbial safety and health risks associated with consumption of traditional fermented soybean products, and how adopting starter culture technology can help mitigate these risks to ensure the safety of these products.
Collapse
Affiliation(s)
- Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| | - Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| |
Collapse
|
5
|
Choi JW, Song NE, Hong SP, Rhee YK, Hong HD, Cho CW. Engineering Bacillus subtilis J46 for efficient utilization of galactose through adaptive laboratory evolution. AMB Express 2024; 14:14. [PMID: 38282124 PMCID: PMC10822834 DOI: 10.1186/s13568-024-01666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Efficient utilization of galactose by microorganisms can lead to the production of valuable bio-products and improved metabolic processes. While Bacillus subtilis has inherent pathways for galactose metabolism, there is potential for enhancement via evolutionary strategies. This study aimed to boost galactose utilization in B. subtilis using adaptive laboratory evolution (ALE) and to elucidate the genetic and metabolic changes underlying the observed enhancements. The strains of B. subtilis underwent multiple rounds of adaptive laboratory evolution (approximately 5000 generations) in an environment that favored the use of galactose. This process resulted in an enhanced specific growth rate of 0.319 ± 0.005 h-1, a significant increase from the 0.03 ± 0.008 h-1 observed in the wild-type strains. Upon selecting the evolved strain BSGA14, a comprehensive whole-genome sequencing revealed the presence of 63 single nucleotide polymorphisms (SNPs). Two of them, located in the coding sequences of the genes araR and glcR, were found to be the advantageous mutations after reverse engineering. The strain with these two accumulated mutations, BSGALE4, exhibited similar specific growth rate on galactose to the evolved strain BSGA14 (0.296 ± 0.01 h-1). Furthermore, evolved strain showed higher productivity of protease and β-galactosidase in mock soybean biomass medium. ALE proved to be a potent tool for enhancing galactose metabolism in B. subtilis. The findings offer valuable insights into the potential of evolutionary strategies in microbial engineering and pave the way for industrial applications harnessing enhanced galactose conversion.
Collapse
Affiliation(s)
- Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Nho-Eul Song
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Sang-Pil Hong
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
6
|
Luo H, Bao Y, Zhu P. Nutritional and functional insight into novel probiotic lycopene-soy milk by genome edited Bacillus subtilis. Food Chem 2023; 429:136973. [PMID: 37499509 DOI: 10.1016/j.foodchem.2023.136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Nutritional and functional soy-based milk gains growing attention globally in food industry. However, its poor sensorial attributes, single flavor, and limited substance variety become critical issues in displaying balanced nutrition and multifunction for health. Herein, a novel probiotic lycopene-soy milk was developed by genome edited Bacillus subtilis harboring lycopene biosynthesis cassette with efficient lycopene production of 25.73 ± 1.57 mg/g DCW. Further investigation displayed desirable pH, reducing sugar, protein, total phenolic content and isoflavone for achieved milk than conventional soy milk, implying it with well-balanced nutritional quality. Notably, achieved milk exhibited stronger antioxidant capacity and higher isoflavone bioavailability for functionality. Moreover, it possessed significantly high scores for taste, appearance, and overall acceptability, suggesting its excellent sensorial attributes. To our delight, it is the first time to fortify soy-milk with probiotic and lycopene by genome edited B. subtilis to explore additive effect on improving nutritional value and functionality for food application.
Collapse
Affiliation(s)
- Hao Luo
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
7
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
9
|
Zhang K, Zhang TT, Guo RR, Ye Q, Zhao HL, Huang XH. The regulation of key flavor of traditional fermented food by microbial metabolism: A review. Food Chem X 2023; 19:100871. [PMID: 37780239 PMCID: PMC10534219 DOI: 10.1016/j.fochx.2023.100871] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
The beneficial microorganisms in food are diverse and complex in structure. These beneficial microorganisms can produce different and unique flavors in the process of food fermentation. The unique flavor of these fermented foods is mainly produced by different raw and auxiliary materials, fermentation technology, and the accumulation of flavor substances by dominant microorganisms during fermentation. The succession and metabolic accumulation of microbial flora significantly impacts the distinctive flavor of fermented foods. The investigation of the role of microbial flora changes in the production of flavor substances during fermentation can reveal the potential connection between microbial flora succession and the formation of key flavor compounds. This paper reviewed the evolution of microbial flora structure as food fermented and the key volatile compounds that contribute to flavor in the food system and their potential relationship. Further, it was a certain guiding significance for food industrial production.
Collapse
Affiliation(s)
- Ke Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei 230601, Anhui, China
| | - Ting-Ting Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ren-Rong Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Quan Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui-Lin Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Comprehensive bacterial-metabolite profiles of Hawaijar, Bekang, and Akhone: a comparative study on traditional fermented soybeans of north-east India. World J Microbiol Biotechnol 2023; 39:315. [PMID: 37736853 DOI: 10.1007/s11274-023-03773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Preparation of traditionally fermented soybeans varies across ethnicities with distinct tastes, flavour, and nutritional values. The fermented soybean varieties Hawaijar, Bekang, and Akhone of north-east India are associated with diverse ethnic groups from Manipur, Mizoram, and Nagaland, respectively. These varieties differ in substrate and traditional practice that exerts differential bacterial-metabolite profile, which needs an in-depth analysis i. Culture-dependent and independent techniques investigated the bacterial diversity of the fermented soybean varieties. Gas chromatography and mass spectroscopy (GC-MS) studied these varieties' metabolite profiles. The common dominant bacterial genera detected in Hawaijar, Bekang, and Akhone were Bacillus, Ignatzschinaria, and Corynebacterium, with the presence of Brevibacillus and Staphylococcus exclusively in Hawaijar and Oceanobacillus in Bekang and Akhone. The metabolite analysis identified a higher abundance of essential amino acids, amino and nucleotide sugars, and vitamins in Hawaijar, short-chain fatty acids in Bekang, polyunsaturated fatty acids in Akhone and Hawaijar, and prebiotics in Akhone. The bacteria-metabolite correlation analysis predicted four distinct bacterial clusters associated with the differential synthesis of the functional metabolites. While B. subtilis is ubiquitous, cluster-1 comprised B. thermoamylovorans/B. amyloliquefaciens, cluster-2 comprised B. tropicus, cluster-3 comprised B. megaterium/B. borstelensis, and cluster-4 comprised B. rugosus. To the best of our knowledge, this is the first comparative study on traditional fermented soybean varieties of north-east India linking bacterial-metabolite profiles which may help in designing starters for desired functionalities in the future.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Maloyjo Joyraj Bhattacharjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
11
|
Chouhan U, Gamad U, Choudhari JK. Metagenomic analysis of soybean endosphere microbiome to reveal signatures of microbes for health and disease. J Genet Eng Biotechnol 2023; 21:84. [PMID: 37584775 PMCID: PMC10429481 DOI: 10.1186/s43141-023-00535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Soil metagenomics is a cultivation-independent molecular strategy for investigating and exploiting the diversity of soil microbial communities. Soil microbial diversity is essential because it is critical to sustaining soil health for agricultural productivity and protection against harmful organisms. This study aimed to perform a metagenomic analysis of the soybean endosphere (all microbial communities found in plant leaves) to reveal signatures of microbes for health and disease. RESULTS The dataset is based on the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) release "microbial diversity in soybean". The quality control process rejected 21 of the evaluated sequences (0.03% of the total sequences). Dereplication determined that 68,994 sequences were artificial duplicate readings, and removed them from consideration. Ribosomal Ribonucleic acid (RNA) genes were present in 72,747 sequences that successfully passed quality control (QC). Finally, we found that hierarchical classification for taxonomic assignment was conducted using MG-RAST, and the considered dataset of the metagenome domain of bacteria (99.68%) dominated the other groups. In Eukaryotes (0.31%) and unclassified sequence 2 (0.00%) in the taxonomic classification of bacteria in the genus group, Streptomyces, Chryseobacterium, Ppaenibacillus, Bacillus, and Mitsuaria were found. We also found some biological pathways, such as CMP-KDO biosynthesis II (from D-arabinose 5-phosphate), tricarboxylic acid cycle (TCA) cycle (plant), citrate cycle (TCA cycle), fatty acid biosynthesis, and glyoxylate and dicarboxylate metabolism. Gene prediction uncovered 1,180 sequences, 15,172 of which included gene products, with the shortest sequence being 131 bases and maximum length 3829 base pairs. The gene list was additionally annotated using Integrated Microbial Genomes and Microbiomes. The annotation process yielded a total of 240 genes found in 177 bacterial strains. These gene products were found in the genome of strain 7598. Large volumes of data are generated using modern sequencing technology to sample all genes in all species present in a given complex sample. CONCLUSIONS These data revealed that it is a rich source of potential biomarkers for soybean plants. The results of this study will help us to understand the role of the endosphere microbiome in plant health and identify the microbial signatures of health and disease. The MG-RAST is a public resource for the automated phylogenetic and functional study of metagenomes. This is a powerful tool for investigating the diversity and function of microbial communities.
Collapse
Affiliation(s)
- Usha Chouhan
- Department of Mathematics, Bioinformatics & Computer Applications, Maulana Azad National Institute of Technology, Bhopal, 462051, MP, India
| | - Umesh Gamad
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Indore, MP, 452001, India
| | - Jyoti Kant Choudhari
- Department of Mathematics, Bioinformatics & Computer Applications, Maulana Azad National Institute of Technology, Bhopal, 462051, MP, India.
| |
Collapse
|
12
|
Uesugi T, Mori S, Miyanaga K, Yamamoto N. GroEL Secreted from Bacillus subtilis Natto Exerted a Crucial Role for Anti-Inflammatory IL-10 Induction in THP-1 Cells. Microorganisms 2023; 11:1281. [PMID: 37317255 DOI: 10.3390/microorganisms11051281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Although diverse immunomodulatory reactions of probiotic bacteria have been reported, this effect via Bacillus subtilis natto remains unclear, despite its long consumption history in Japan and usage in Natto production. Hence, we performed a comparative analysis of the immunomodulatory activities of 23 types of B. subtilis natto isolated from Natto products to elucidate the key active components. Among the isolated 23 strains, the supernatant from B. subtilis strain 1 fermented medium showed the highest induction of anti-inflammatory IL-10 and pro-inflammatory IL-12 in THP-1 dendritic cells (THP-1 DC) after co-incubation. We isolated the active component from strain 1 cultured medium and employed DEAE-Sepharose chromatography with 0.5 M NaCl elution for fractionation. IL-10-inducing activity was specific to an approximately 60 kDa protein, GroEL, which was identified as a chaperone protein and was significantly reduced with anti-GroEL antibody. Differential expression analysis of strains 1 and 15, which had the lowest cytokine-producing activity, showed a higher expression of various genes involved in chaperones and sporulation in strain 1. Furthermore, GroEL production was induced in spore-forming medium. The present study is the first to show that the chaperone protein GroEL, secreted by B. subtilis natto during sporulation, plays a crucial role in IL-10 and IL-12 production in THP-1 DC.
Collapse
Affiliation(s)
- Taisuke Uesugi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Osaka, Japan
| | - Suguru Mori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi 329-0498, Tochigi, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Kanagawa, Japan
| |
Collapse
|
13
|
Kumari R, Sharma N, Sharma S, Samurailatpam S, Padhi S, Singh SP, Kumar Rai A. Production and characterization of bioactive peptides in fermented soybean meal produced using proteolytic Bacillus species isolated from kinema. Food Chem 2023; 421:136130. [PMID: 37116444 DOI: 10.1016/j.foodchem.2023.136130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023]
Abstract
The study aims to enhance the functional properties of soybean meal (SBM) using potent proteolytic Bacillus strains isolated from kinema, a traditional fermented soybean product of Sikkim Himalaya. Selected Bacillus species; Bacillus licheniformis KN1G, B. amyloliquifaciens KN2G, B. subtilis KN36D, B. subtilis KN2B, and B. subtilis KN36D were employed for solid state fermentation (SSF) of SBM samples. The water and methanol extracts of SBM hydrolysates presented a significant increase in antioxidant activity. The water-soluble extracts of B. subtilis KN2B fermented SBM exhibited the best DPPH radical scavenging activity of 2.30 mg/mL. In contrast, the methanol-soluble extract of B. licheniformis KN1G fermented SBM showed scavenging activity of 0.51 mg/mL. Proteomic analysis of fermented soybean meal revealed several common and unique peptides produced by applying different starter cultures. Unique antioxidant peptides (HFDSEVVFF and VVDMNEGALFLPH) were identified from FSBM via LC/MS. B. subtilis KN36D showed the highest diversity of peptides produced during fermentation. The results indicate the importance of specific strains for fermentation to upgrade the nutritional value of raw fermented biomass.
Collapse
Affiliation(s)
- Reena Kumari
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Sikkim, India
| | - Nitish Sharma
- Centre of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Sangita Sharma
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Sikkim, India
| | - Sanjukta Samurailatpam
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Sikkim, India
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Sikkim, India; National Agri-Food Biotechnology Institute (DBT-NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
14
|
Aoyagi R, Okita K, Uda K, Ikegawa K, Yuza Y, Horikoshi Y. Natto intake is a risk factor of Bacillus subtilis bacteremia among children undergoing chemotherapy for childhood cancer: A case-control study. J Infect Chemother 2023; 29:329-332. [PMID: 36585273 DOI: 10.1016/j.jiac.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Natto, a popular, daily food in Japan, is made from soybeans fermented by Bacillus subtilis. The aim of this retrospective case-control study (matched 1: 4) is to determine whether natto intake is a risk factor of B. subtilis bacteremia in this population. METHODS The retrospective, matched case-control study was conducted at Tokyo Metropolitan Children's Medical Center between April 2012 and June 2020 and included pediatric patients younger than 15 years who received chemotherapy for cancer. Patients who received hematopoietic stem cell transplantation were excluded. Patients with B. subtilis bacteremia were compared with controls matched for age and underlying diseases. Dietary information within seven days from the date of blood culture collection was extracted from medical records. Multivariate logistic regression was performed to define the risk factors of B. subtilis bacteremia. RESULTS In total, 23 patients with B. subtilis bacteremia were identified and matched to 92 controls. The percentage of patients and controls who ingested natto within seven days from the date of blood culture collection was 78% and 50%, respectively. On univariate analysis, the odds ratio of natto intake for B. subtilis bacteremia was 3.6 (95% confidence interval [CI]: 1.2-10.5). Multivariable logistic regression tests after controlling for neutropenia revealed that B. subtilis bacteremia was associated significantly with natto intake at odds ratio 3.3 (95% CI: 1.1-9.6). CONCLUSION Natto intake was associated with B. subtilis bacteremia during chemotherapy for childhood cancer.
Collapse
Affiliation(s)
- Rui Aoyagi
- Department of General Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
| | - Keiko Okita
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kazuhiro Uda
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Department of Pediatrics, Okayama University Hospital, Japan
| | - Kento Ikegawa
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yuki Yuza
- Division of Hematology/Oncology, Tokyo Metropolitan Children Medical Center, Tokyo, Japan
| | - Yuho Horikoshi
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan; Division of Immunology, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| |
Collapse
|
15
|
Łubkowska B, Jeżewska-Frąckowiak J, Sroczyński M, Dzitkowska-Zabielska M, Bojarczuk A, Skowron PM, Cięszczyk P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 2023; 11:488. [PMID: 36838453 PMCID: PMC9962517 DOI: 10.3390/microorganisms11020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as 'natural' probiotics and evaluate their microbiological characteristics. An industrially used microbiological concentrates and their components of mixed Bacillus species cultures were tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people.
Collapse
Affiliation(s)
- Beata Łubkowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Joanna Jeżewska-Frąckowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Michał Sroczyński
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Magdalena Dzitkowska-Zabielska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Aleksandra Bojarczuk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| | - Piotr M. Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (J.J.-F.); (M.S.); (P.M.S.)
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, K. Gorskiego 1, 80-336 Gdansk, Poland; (M.D.-Z.); (A.B.); (P.C.)
| |
Collapse
|
16
|
Bacillus species in food fermentations: an under-appreciated group of organisms for safe use in food fermentations. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Lee S, Seo S, Sul S, Jeong DW, Lee JH. Genomic insight into the salt tolerance and proteolytic activity of Bacillus subtilis. FEMS Microbiol Lett 2023; 370:fnad105. [PMID: 37816668 DOI: 10.1093/femsle/fnad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
We assessed the salt tolerance and proteolytic activity of 40 genome-published Bacillus subtilis strains isolated from fermented Korean foods to illuminate the genomic background behind the functionality of B. subtilis in high-salt fermentation. On the basis of the salt tolerance and phenotypic proteolytic activity of the 40 strains, we selected five strains exhibiting different phenotypic characteristics. Comparative genomic analyses of these five strains provided genomic insight into the salt tolerance and proteolytic activity of B. subtilis. Two-component system (TCS) genes annotated as ybdGJK and laterally acquired authentic ATP-binding cassette (ABC) transporter system genes of tandem repeat structure might contribute to increase salt tolerance. The additional possession of gene homologs for CAAX protease family proteins and components of Clp (caseinolytic protease) complex, ATP-dependent Clp proteolytic subunit ClpP and AAA+ (ATPases associated with diverse cellular Activities) family ATPases, might determine the proteolytic activity of B. subtilis. This study established the scientific foundation for the viability and functionality of B. subtilis in high-salt fermentation.
Collapse
Affiliation(s)
- Sugyeong Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sumin Seo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sooyoung Sul
- Division of Sports Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
18
|
Jee HJ, Ryu D, Kim S, Yeon SH, Son RH, Hwang SH, Jung YS. Fermented Perilla frutescens Ameliorates Depression-like Behavior in Sleep-Deprivation-Induced Stress Model. Int J Mol Sci 2022; 24:ijms24010622. [PMID: 36614066 PMCID: PMC9820360 DOI: 10.3390/ijms24010622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive stress plays a critical role in the pathogenesis of mood disorders such as depression. Fermented natural products have recently attracted attention because of their health benefits. We evaluated the antidepressant-like efficacy of fermented Perilla frutescens (FPF), and its underlying mechanisms, in sleep deprivation (SD)-induced stress mice. SD-stressed mice revealed a remarkable increase in the immobility time in both forced swimming test and tail suspension test; this increase was ameliorated by treatment with FPF at doses of 100 and 150 mg/kg. FPF treatment also reduced the level of stress hormones such as corticosterone and adrenocorticotropic hormone. Additionally, FPF increased the levels of serotonin and dopamine which were significantly decreased in the brain tissues of SD-stressed mice. The increased expression of proinflammatory cytokines, such as TNF-α and IL1β, and the decreased expression of brain-derived neurotrophic factor (BDNF) in the stressed mice were significantly reversed by FPF treatment. Furthermore, FPF also increased phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular regulated protein kinase (ERK), and cAMP response element binding protein (CREB). Among the six components isolated from FPF, protocatechuic acid and luteolin-7-O-glucuronide exhibited significant antidepressant-like effects, suggesting that they are major active components. These findings suggest that FPF has therapeutic potential for SD-induced stress, by correcting dysfunction of hypothalamic-pituitary-adrenal axis and modulating the BDNF/TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Hye Jin Jee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- AI-Super Convergence KIURI Translational Research Center, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Suyeon Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sung Hum Yeon
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Rak Ho Son
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Seung Hwan Hwang
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
19
|
Sun R, Niu H, Sun M, Miao X, Jin X, Xu X, Yanping C, Mei H, Wang J, Da L, Su Y. Effects of Bacillus subtilis natto JLCC513 on Gut Microbiota and Intestinal Barrier Function in obese Rats. J Appl Microbiol 2022; 133:3634-3644. [PMID: 36036228 DOI: 10.1111/jam.15797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to investigate the effects of Bacillus subtilis natto JLCC513(JLCC513)on gut microbiota, inflammation and intestinal barrier function in high-fat-diet (HFD) rats. METHODS AND RESULTS Sprague-Dawley (SD) rats were fed HFD for 16 weeks, and treated with JLCC513 in 9th weeks. The oral administration of JLCC513 decreased body weight, and reduced the inflammation level in HFD rats. Pathologically, JLCC513 prevented the detachment of ileal villus and increased the villus height in rat. Mechanistically, Western blot analysis showed that the protein levels of tight junction (TJ) proteins involved in intestinal barrier function, including zonula occludens-1 (ZO-1), occludin and claudin-1, were increased after JLCC513 treatment. Meanwhile, JLCC513 treatment also decreased the protein levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3), indicating inhibition of the TLR4/NF-κB/NLRP3 pathway. Furthermore, fecal analysis showed that JLCC513 increased the abundance of Lactobacillus and Oscillospira and the ratio of Firmicutes/Bacteroidetes (F/B), and decreased the levels of Blautia and C_Clostridium. CONCLUSIONS JLCC513 alleviated intestinal barrier dysfunction by inhibiting TLR4/NF-κB/NLRP3 pathway and regulating gut microbiota disorders. SIGNIFICANCE AND IMPACT OF STUDY Our study might provide new treatment strategies for the obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ruiyue Sun
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China.,Department of Food Science and Engineering, Agricultural College, Yanbian University, Yanji, 133000, Jilin, China
| | - Honghong Niu
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Mubai Sun
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Xinyu Miao
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Xin Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130033, Jilin, China
| | - Xifei Xu
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China.,Department of Food Science and Engineering, Agricultural College, Yanbian University, Yanji, 133000, Jilin, China
| | - Chi Yanping
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Hua Mei
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Jinghui Wang
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Li Da
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Ying Su
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| |
Collapse
|
20
|
Investigating the microbial terroir of fermented foods produced in a professional kitchen. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Kharnaior P, Tamang JP. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front Microbiol 2022; 13:868383. [PMID: 35572705 PMCID: PMC9106393 DOI: 10.3389/fmicb.2022.868383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Kinema is a popular sticky fermented soybean food of the Eastern Himalayan regions of North East India, east Nepal, and south Bhutan. We hypothesized that some dominant bacteria in kinema may contribute to the formation of targeted and non-targeted metabolites for health benefits; hence, we studied the microbiome-metabolite mining of kinema. A total of 1,394,094,912 bp with an average of 464,698,304 ± 120,720,392 bp was generated from kinema metagenome, which resulted in the identification of 47 phyla, 331 families, 709 genera, and 1,560 species. Bacteria (97.78%) were the most abundant domain with the remaining domains of viruses, eukaryote, and archaea. Firmicutes (93.36%) was the most abundant phylum with 280 species of Bacillus, among which Bacillus subtilis was the most dominant species in kinema followed by B. glycinifermentans, B. cereus, B. licheniformis, B. thermoamylovorans, B. coagulans, B. circulans, B. paralicheniformis, and Brevibacillus borstelensis. Predictive metabolic pathways revealed the abundance of genes associated with metabolism (60.66%), resulting in 216 sub-pathways. A total of 361 metabolites were identified by metabolomic analysis (liquid chromatography-mass spectrophotometry, LC-MS). The presence of metabolites, such as chrysin, swainsonine, and 3-hydroxy-L-kynurenine (anticancer activity) and benzimidazole (antimicrobial, anticancer, and anti-HIV activities), and compounds with immunomodulatory effects in kinema supports its therapeutic potential. The correlation between the abundant species of Bacillus and primary and secondary metabolites was constructed with a bivariate result. This study proves that Bacillus spp. contribute to the formation of many targeted and untargeted metabolites in kinema for health-promoting benefits.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
22
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
23
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
24
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|