1
|
Gora C, Dudas A, Vaugrente O, Drobecq L, Pecnard E, Lefort G, Pellissier LP. Deciphering autism heterogeneity: a molecular stratification approach in four mouse models. Transl Psychiatry 2024; 14:416. [PMID: 39366951 PMCID: PMC11452541 DOI: 10.1038/s41398-024-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
Collapse
Affiliation(s)
- Caroline Gora
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ana Dudas
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Lucile Drobecq
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Gaëlle Lefort
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | |
Collapse
|
2
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
3
|
González-Madrid E, Rangel-Ramírez MA, Opazo MC, Méndez L, Bohmwald K, Bueno SM, González PA, Kalergis AM, Riedel CA. Gestational hypothyroxinemia induces ASD-like phenotypes in behavior, proinflammatory markers, and glutamatergic protein expression in mouse offspring of both sexes. Front Endocrinol (Lausanne) 2024; 15:1381180. [PMID: 38752179 PMCID: PMC11094302 DOI: 10.3389/fendo.2024.1381180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1β, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.
Collapse
Affiliation(s)
- Enrique González-Madrid
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Luis Méndez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Wang Z, Qiao D, Chen H, Zhang S, Zhang B, Zhang J, Hu X, Wang C, Cui H, Wang X, Li S. Effects of Fmr1 Gene Mutations on Sex Differences in Autism-Like Behavior and Dendritic Spine Development in Mice and Transcriptomic Studies. Neuroscience 2023; 534:16-28. [PMID: 37852411 DOI: 10.1016/j.neuroscience.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder contributing to autism spectrum disorder (ASD). Although significant sex differences are observed in FXS, few studies have focused on the phenotypic characteristics as well as the differences in brain pathological changes and gene expression in FXS by sex. Therefore, we analyzed sex differences in autism-like behavior and dendritic spine development in two-month-old male and female Fmr1 KO and C57 mice and evaluated the mechanisms at transcriptome level. Results suggest that Fmr1 KO mice display sex differences in autism-like behavior and dendritic spine density. Compared to females, male had more severe effects on anxiety, repetitive stereotype-like behaviors, and socializing, with higher dendritic spine density. Furthermore, two male-biased and five female-biased expressed genes were screened based on KEGG pathway enrichment and protein-protein interaction (PPI) analyses. In conclusion, our findings show mutations in the Fmr1 gene lead to aberrant expression of related genes and affect the sex-differentiated behavioral phenotypes of Fmr1 KO mice by affecting brain development and functional architecture, and suggest future studies should focus on including female subjects to comprehensively reflect the differentiation of FXS in both sexes and develop more precise and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Shihua Zhang
- Grade 2018, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Xia Wang
- Child Health (Psychological Behavior) Department, Children's Hospital of Hebei Province, Shijiazhuang, China.
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
5
|
Luo L, Chen J, Wu Q, Yuan B, Hu C, Yang T, Wei H, Li T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104090. [PMID: 36870407 DOI: 10.1016/j.etap.2023.104090] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microglial dysfunction has been reported in the valproic acid (VPA)-induced autism spectrum disorder (ASD) rat models. However, how does prenatal VPA exposure affect microglia remains to be elucidated. The triggering receptor expressed on myeloid cells 2 (TREM2) is revealed to be implicated in a range of microglia functions. However, reports on the association between TREM2 and VPA-induced ASD rat models are scarce. Our results showed that prenatal VPA exposure induced autistic-like behaviors, downregulated the levels of TREM2, up-regulated microglial activation, dysregulated microglial polarization, and altered synapse in offspring. TREM2 overexpression partly ameliorated microglia dysfunction and autistic-like behaviors in prenatal VPA-exposed rats. Our findings demonstrated that prenatally VPA exposure is likely to cause autistic-like behavior in the rat offspring via TREM2 down-regulation to affect the microglial activation, microglial polarization and synaptic pruning of microglia for the first time.
Collapse
Affiliation(s)
- Lijuan Luo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Binlin Yuan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chaoqun Hu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hua Wei
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Drzewiecki CM, Brinks AS, Sellinger EP, Doshi AD, Koh JY, Juraska JM. Brief postnatal exposure to bisphenol A affects apoptosis and gene expression in the medial prefrontal cortex and social behavior in rats with sex specificity. Neurotoxicology 2023; 94:126-134. [PMID: 36442689 PMCID: PMC9839503 DOI: 10.1016/j.neuro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor found in polycarbonate plastics and exposure in humans is nearly ubiquitous and it has widespread effects on cognitive, emotional, and reproductive behaviors in both humans and animal models. In our laboratory we previously found that perinatal BPA exposure results in a higher number of neurons in the adult male rat prefrontal cortex (PFC) and less play in adolescents of both sexes. Here we examine changes in the rate of postnatal apoptosis in the rat prefrontal cortex and its timing with brief BPA exposure. Because an increased number of neurons in the PFC is a characteristic of a subtype of autism spectrum disorder, we tested social preference following brief BPA exposure and also expression of a small group of genes. Males and females were exposed to BPA from postnatal days (P) 6 through 8 or from P10 through 12. Both exposures significantly decreased indicators of cell death in the developing medial prefrontal cortex in male subjects only. Additionally, males exposed to BPA from P6 - 8 showed decreased social preference and decreased cortical expression of Shank3 and Homer1, two synaptic scaffolding genes that have been implicated in social deficits. There were no significant effects of BPA in the female subjects. These results draw attention to the negative consequences following brief exposure to BPA during early development.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Currently at California National Primate Research Center, University of California-Davis, Davis, CA, 95616, USA
| | - Amara S Brinks
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Elli P Sellinger
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Aditi D Doshi
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA; Currently at Department of Psychology, University of Illinois at Chicago, 1007W Harrison St, Chicago, IL 60607, USA
| | - Jessie Y Koh
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA.
| |
Collapse
|
7
|
Zhang W, Huang J, Gao F, You Q, Ding L, Gong J, Zhang M, Ma R, Zheng S, Sun X, Zhang Y. Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice. EBioMedicine 2022; 86:104323. [PMID: 36395738 PMCID: PMC9672961 DOI: 10.1016/j.ebiom.2022.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a common neurodevelopmental disease, characterized by deficits in social communication, restricted and repetitive behaviours, and impaired fear memory processing. Severe gastrointestinal dysfunction and altered gut microbiome have been reported in ASD patients and animal models. Contactin associated protein-like 4 (CNTNAP4) has been suggested to be a novel risk gene, though its role in ASD remains unelucidated. METHODS Cntnap4-/- mice were generated to explore its role in ASD-related behavioural abnormalities. Electrophysiological recording was employed to examine GABAergic transmission in the basolateral amygdala (BLA) and prefrontal cortex. RNA-sequencing was performed to assess underlying mechanisms. 16S rDNA analysis was performed to explore changes in faecal microbial composition. Male Cntnap4-/- mice were fed with Lactobacillus reuteri (L. reuteri) or faecal microbiota to evaluate the effects of microbiota supplementation on the impaired fear conditioning mediated by Cntnap4 deficiency. FINDINGS Male Cntnap4-/- mice manifested deficiency in social behaviours and tone-cue fear conditioning. Notably, reduced GABAergic transmission and GABA receptor expression were found in the BLA but not the prefrontal cortex. In addition, gut Lactobacillus were less abundant in male Cntnap4-/- mice, and L. reuteri treatment or faecal microbiota transplantation rescued abnormal tone-cued fear memory and improved local GABAergic transmission in the BLA of male Cntnap4-/- mice. INTERPRETATION Cntnap4 shapes GABAergic transmission of amygdala and fear conditioning, and microbial intervention represents a promising therapy in ASD intervention. FUNDING National Natural Science Foundation of China, Science and Technology Planning Project of Guangzhou, Guangzhou Medical University, and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jie Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Feng Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qianglong You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Junwei Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mengran Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Runfang Ma
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shaohui Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiangdong Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
8
|
Du Y, Brennan FH, Popovich PG, Zhou M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 2022; 70:1359-1379. [PMID: 35394085 PMCID: PMC9324808 DOI: 10.1002/glia.24179] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022]
Abstract
Microglial control of activity‐dependent plasticity and synaptic remodeling in neuronal networks has been the subject of intense research in the past several years. Although microglia–neuron interactions have been extensively studied, less is known about how microglia influence astrocyte‐dependent control over neuronal structure and function. Here, we explored a role for microglia in regulating the structure and function of the astrocyte syncytium in mouse hippocampus. After depleting microglia using a CSF1R antagonist (PLX5622, Plexxikon), we observed severe disruption of astrocyte syncytial isopotentiality and dye coupling. A decrease in astrocyte‐specific gap junction connexin (Cx) 30 and 43 expression, at least partially accounts for these microglia‐dependent changes in astrocytes. Because neuronal function requires intact astrocyte coupling, we also evaluated the effects of microglia depletion on synaptic transmission in the hippocampus. Without microglia, the strength of synaptic transmission was reduced at baseline and after long‐term potentiation (LTP). Conversely, priming microglia with systemic injections of lipopolysaccharide enhanced CA3‐CA1 synaptic transmission. This microglia‐induced scaling of synaptic transmission was associated with increased expression of post‐synaptic scaffold proteins (Homer1) in CA1. However, astrocyte network function was not affected by microglia priming, indicating that microglia‐dependent effects on astrocytes and neurons vary across functional states. Through manipulation of microglia in the brain, our results reveal the importance of microglia in homeostatic regulation of the astrocyte syncytium and scaling of synaptic transmission. These novel mechanisms uncover a new direction for future studies interrogating microglia function in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
9
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
10
|
Developmental Shifts in Amygdala Activity during a High Social Drive State. J Neurosci 2021; 41:9308-9325. [PMID: 34611026 DOI: 10.1523/jneurosci.1414-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Amygdala abnormalities characterize several psychiatric disorders with prominent social deficits and often emerge during adolescence. The basolateral amygdala (BLA) bidirectionally modulates social behavior and has increased sensitivity during adolescence. We tested how an environmentally-driven social state is regulated by the BLA in adults and adolescent male rats. We found that a high social drive state caused by brief social isolation increases age-specific social behaviors and increased BLA neuronal activity. Chemogenetic inactivation of BLA decreased the effect of high social drive on social engagement. High social drive preferentially enhanced BLA activity during social engagement; however, the effect of social opportunity on BLA activity was greater during adolescence. While this identifies a substrate underlying age differences in social drive, we then determined that high social drive increased BLA NMDA GluN2B expression and sensitivity to antagonism increased with age. Further, the effect of a high social drive state on BLA activity during social engagement was diminished by GluN2B blockade in an age-dependent manner. These results demonstrate the necessity of the BLA for environmentally driven social behavior, its sensitivity to social opportunity, and uncover a maturing role for BLA and its GluN2B receptors in social engagement.SIGNIFICANCE STATEMENT Social engagement during adolescence is a key component of healthy development. Social drive provides the impetus for social engagement and abnormalities underlie social symptoms of depression and anxiety. While adolescence is characterized by transitions in social drive and social environment sensitivity, little is known about the neural basis for these changes. We found that amygdala activity is uniquely sensitive to social environment during adolescence compared with adulthood, and is required for expression of heightened social drive. In addition, the neural substrates shift toward NMDA dependence in adulthood. These results are the first to demonstrate a unique neural signature of higher social drive and begin to uncover the underlying factors that heighten social engagement during adolescence.
Collapse
|
11
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Lin Y, Yerukala Sathipati S, Ho SY. Predicting the Risk Genes of Autism Spectrum Disorders. Front Genet 2021; 12:665469. [PMID: 34194469 PMCID: PMC8236850 DOI: 10.3389/fgene.2021.665469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a wide spectrum of neurodevelopmental disorders that emerge during infancy and continue throughout a lifespan. Although substantial efforts have been made to develop therapeutic approaches, core symptoms persist lifelong in ASD patients. Identifying the brain temporospatial regions where the risk genes are expressed in ASD patients may help to improve the therapeutic strategies. Accordingly, this work aims to predict the risk genes of ASD and identify the temporospatial regions of the brain structures at different developmental time points for exploring the specificity of ASD gene expression in the brain that would help in possible ASD detection in the future. A dataset consisting of 13 developmental stages ranging from 8 weeks post-conception to 8 years from 26 brain structures was retrieved from the BrainSpan atlas. This work proposes a support vector machine–based risk gene prediction method ASD-Risk to distinguish the risk genes of ASD and non-ASD genes. ASD-Risk used an optimal feature selection algorithm called inheritable bi-objective combinatorial genetic algorithm to identify the brain temporospatial regions for prediction of the risk genes of ASD. ASD-Risk achieved a 10-fold cross-validation accuracy, sensitivity, specificity, area under a receiver operating characteristic curve, and a test accuracy of 81.83%, 0.84, 0.79, 0.84, and 72.27%, respectively. We prioritized the temporospatial features according to their contribution to the prediction accuracy. The top identified temporospatial regions of the brain for risk gene prediction included the posteroventral parietal cortex at 13 post-conception weeks feature. The identified temporospatial features would help to explore the risk genes that are specifically expressed in different brain regions of ASD patients.
Collapse
Affiliation(s)
- Yenching Lin
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan
| | - Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shinn-Ying Ho
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Rep 2021; 31:107521. [PMID: 32320667 DOI: 10.1016/j.celrep.2020.03.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed an essential role for embryonic cortical development in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, the genetic basis and underlying mechanisms remain unclear. Here, we generate mutant human embryonic stem cell lines (Mut hESCs) carrying an NR2F1-R112K mutation that has been identified in a patient with ASD features and investigate their neurodevelopmental alterations. Mut hESCs overproduce ventral telencephalic neuron progenitors (ventral NPCs) and underproduce dorsal NPCs, causing the imbalance of excitatory/inhibitory neurons. These alterations can be mainly attributed to the aberrantly activated Hedgehog signaling pathway. Moreover, the corresponding Nr2f1 point-mutant mice display a similar excitatory/inhibitory neuron imbalance and abnormal behaviors. Antagonizing the increased inhibitory synaptic transmission partially alleviates their behavioral deficits. Together, our results suggest that the NR2F1-dependent imbalance of excitatory/inhibitory neuron differentiation caused by the activated Hedgehog pathway is one precursor of neurodevelopmental disorders and may enlighten the therapeutic approaches.
Collapse
|
14
|
Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. J Affect Disord 2021; 279:501-509. [PMID: 33128940 DOI: 10.1016/j.jad.2020.10.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Understanding the neurobiology of depression and the mechanism of action of therapeutic measures is currently a research priority. We have shown that the expression of the synaptic protein Homer1a correlates with depression-like behavior and its induction is a common mechanism of action of different antidepressant treatments. However, the mechanism of Homer1a regulation is still unknown. METHODS We combined the chronic despair mouse model (CDM) of chronic depression with different antidepressant treatments. Depression-like behavior was characterized by forced swim and tail suspension tests, and via automatic measurement of sucrose preference in IntelliCage. The Homer1 mRNA expression and promoter DNA methylation were analyzed in cortex and peripheral blood by qRT-PCR and pyrosequencing. RESULTS CDM mice show decreased Homer1a and Homer1b/c mRNA expression in cortex and blood samples, while chronic treatment with imipramine and fluoxetine or acute ketamine application increases their level only in the cortex. The quantitative analyses of the methylation of 7 CpG sites, located on the Homer1 promoter region containing several CRE binding sites, show a significant increase in DNA methylation in the cortex of CDM mice. In contrast, antidepressant treatments reduce the methylation level. LIMITATIONS Homer1 expression and promotor methylation were not analyzed in different blood cell types. Other CpG sites of Homer1 promoter should be investigated in future studies. Our experimental approach does not distinguish between methylation and hydroxymethylation. CONCLUSIONS We demonstrate that stress-induced depression-like behavior and antidepressant treatments are associated with epigenetic alterations of Homer1 promoter, providing new insights into the mechanism of antidepressant treatment.
Collapse
|
15
|
Ferri SL, Dow HC, Schoch H, Lee JY, Brodkin ES, Abel T. Age- and sex-specific fear conditioning deficits in mice lacking Pcdh10, an Autism Associated Gene. Neurobiol Learn Mem 2020; 178:107364. [PMID: 33340671 DOI: 10.1016/j.nlm.2020.107364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
PCDH10 is a gene associated with Autism Spectrum Disorder. It is involved in the growth of thalamocortical projections and dendritic spine elimination. Previously, we characterized Pcdh10 haploinsufficient mice (Pcdh10+/- mice) and found male-specific social deficits and dark phase hypoactivity. Pcdh10+/- males exhibit increased dendritic spine density of immature morphology, decreased NMDAR expression, and decreased gamma synchronization in the basolateral amygdala (BLA). Here, we further characterize Pcdh10+/- mice by testing for fear memory, which relies on BLA function. We used both male and female Pcdh10+/- mice and their wild-type littermates at two ages, juvenile and adult, and in two learning paradigms, cued and contextual fear conditioning. We found that males at both ages and in both assays exhibited fear conditioning deficits, but females were only impaired as adults in the cued condition. These data are further evidence for male-specific alterations in BLA-related behaviors in Pcdh10+/- mice and suggest that these mice may be a useful model for dissecting male specific brain and behavioral phenotypes relevant to social and emotional behaviors.
Collapse
Affiliation(s)
- Sarah L Ferri
- Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
| | - Holly C Dow
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31(st) Street, Room 2202, Philadelphia, PA 19104-3403, USA
| | - Hannah Schoch
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA, 99202, USA
| | - Ji Youn Lee
- Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31(st) Street, Room 2202, Philadelphia, PA 19104-3403, USA
| | - Ted Abel
- Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Troudet R, Ali WBH, Bacq-Daian D, Rossum IWV, Boland-Auge A, Battail C, Barau C, Rujescu D, McGuire P, Kahn RS, Deleuze JF, Leboyer M, Jamain S. Gene expression and response prediction to amisulpride in the OPTiMiSE first episode psychoses. Neuropsychopharmacology 2020; 45:1637-1644. [PMID: 32450569 PMCID: PMC7421408 DOI: 10.1038/s41386-020-0703-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 04/29/2020] [Indexed: 01/22/2023]
Abstract
A fundamental shortcoming in the current treatment of schizophrenia is the lack of valid criteria to predict who will respond to antipsychotic treatment. The identification of blood-based biological markers of the therapeutic response would enable clinicians to identify the subgroup of patients in whom conventional antipsychotic treatment is ineffective and offer alternative treatments. As part of the Optimisation of Treatment and Management of Schizophrenia in Europe (OPTiMiSE) programme, we conducted an RNA-Seq analysis on 188 subjects with first episode psychosis, all of whom were subsequently treated with amisulpride for 4 weeks. We compared gene expression on total RNA from patients' blood before and after treatment and identified 32 genes for which the expression changed after treatment in good responders only. These findings were replicated in an independent sample of 24 patients with first episode psychosis. Six genes showed a significant difference in expression level between good and poor responders before starting treatment, allowing to predict treatment outcome with a predictive value of 93.8% when combined with clinical features. Collectively, these findings identified new mechanisms to explain symptom improvement after amisulpride medication and highlight the potential of combining gene expression profiling with clinical data to predict treatment response in first episode psychoses.
Collapse
Affiliation(s)
- Réjane Troudet
- Inserm U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Wafa Bel Haj Ali
- Inserm U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Anne Boland-Auge
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Christophe Battail
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Caroline Barau
- AP-HP, Hôpital H. Mondor-A. Chenevier, Plateforme de Ressources Biologiques, Créteil, France
| | - Dan Rujescu
- Department of Psychiatry, University Hospital Halle, Halle, Germany
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht, Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Marion Leboyer
- Inserm U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Fondation FondaMental, Créteil, France
- AP-HP, DHU Pe-PSY, Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Stéphane Jamain
- Inserm U955, Psychiatrie Translationnelle, Créteil, France.
- Université Paris Est, Faculté de Médecine, Créteil, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
17
|
Maternal Separation Early in Life Alters the Expression of Genes Npas4 and Nr1d1 in Adult Female Mice: Correlation with Social Behavior. Behav Neurol 2020; 2020:7830469. [PMID: 32190129 PMCID: PMC7072106 DOI: 10.1155/2020/7830469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.
Collapse
|
18
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
19
|
Kinjo T, Ito M, Seki T, Fukuhara T, Bolati K, Arai H, Suzuki T. Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res 2019; 1723:146403. [PMID: 31446017 DOI: 10.1016/j.brainres.2019.146403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
In pregnant women with epilepsy, it is imperative to balance the safety of the mother and the potential teratogenicity of anticonvulsants, which could cause impairments such as intellectual disability and cleft lip. In this study, we examined behavioral and hippocampal neurogenesis alterations in male offspring of rats exposed to valproic acid (VPA) during pregnancy. Pregnant Wistar rats received daily intraperitoneal injections of VPA (100 mg/kg/day or 200 mg/kg/day) from embryonic day 12.5 until birth. At postnatal day 29, animals received an injection of bromodeoxyuridine (BrdU). At postnatal day 30, animals underwent the open field (OF), elevated plus-maze, and Y-maze tests. After behavioral testing, animals were decapitated, and their brains were dissected for immunohistochemistry. Of the offspring of the VPA200 mothers, 66.6% showed a malformation. In the OF test, these animals showed locomotor hyperactivity. In the elevated plus-maze, offspring of VPA-treated mothers spent significantly more time in the open arms, irrespective of the treatment dose. The number of BrdU-positive cells in the dentate gyrus of the offspring of VPA-treated mothers increased significantly in a dose-dependent manner compared with the control. A significant positive correlation between spontaneous locomotor activity in the OF and BrdU-positive cell counts was observed across groups. In conclusion, VPA administration during pregnancy results in malformations and attention-deficit/hyperactivity disorder-like behavioral abnormalities in the offspring. An increase in cell proliferation in the hippocampus may underlie the behavioral changes observed. Repeated use of high doses of VPA during pregnancy may increase the risk of neurodevelopmental abnormalities dose dependently and should be carefully considered.
Collapse
Affiliation(s)
- Tomoya Kinjo
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Masanobu Ito
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 1608421, Japan.
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Kuerban Bolati
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Heii Arai
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Toshihito Suzuki
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| |
Collapse
|
20
|
Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. MOLECULAR NEUROPSYCHIATRY 2019; 5:147-161. [PMID: 31312636 DOI: 10.1159/000500267] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019; 101:1070-1088. [PMID: 30897358 PMCID: PMC9628679 DOI: 10.1016/j.neuron.2019.02.041] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.
Collapse
Affiliation(s)
- Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
22
|
Gross C, Banerjee A, Tiwari D, Longo F, White AR, Allen AG, Schroeder-Carter LM, Krzeski JC, Elsayed NA, Puckett R, Klann E, Rivero RA, Gourley SL, Bassell GJ. Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model. Neuropsychopharmacology 2019; 44:324-333. [PMID: 30061744 PMCID: PMC6300538 DOI: 10.1038/s41386-018-0150-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/07/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
Defects in the phosphoinositide 3-kinase (PI3K) pathway are shared characteristics in several brain disorders, including the inherited intellectual disability and autism spectrum disorder, fragile X syndrome (FXS). PI3K signaling therefore could serve as a therapeutic target for FXS and other brain disorders. However, broad inhibition of such a central signal transduction pathway involved in essential cellular functions may produce deleterious side effects. Pharmacological strategies that selectively correct the overactive components of the PI3K pathway while leaving other parts of the pathway intact may overcome these challenges. Here, we provide the first evidence that disease mechanism-based PI3K isoform-specific inhibition may be a viable treatment option for FXS. FXS is caused by loss of the fragile X mental retardation protein (FMRP), which translationally represses specific messenger RNAs, including the PI3K catalytic isoform p110β. FMRP deficiency increases p110β protein levels and activity in FXS mouse models and in cells from subjects with FXS. Here, we show that a novel, brain-permeable p110β-specific inhibitor, GSK2702926A, ameliorates FXS-associated phenotypes on molecular, cellular, behavioral, and cognitive levels in two different FMRP-deficient mouse models. Rescued phenotypes included increased PI3K downstream signaling, protein synthesis rates, and dendritic spine density, as well as impaired social interaction and higher-order cognition. Several p110β-selective inhibitors, for example, a molecule from the same chemotype as GSK2702926A, are currently being evaluated in clinical trials to treat cancer. Our results suggest that repurposing p110β inhibitors to treat cognitive and behavioral defects may be a promising disease-modifying strategy for FXS and other brain disorders.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA.
| | - Anwesha Banerjee
- 0000 0001 0941 6502grid.189967.8Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Durgesh Tiwari
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Francesco Longo
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Angela R. White
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - A. G. Allen
- 0000 0001 0941 6502grid.189967.8Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Lindsay M. Schroeder-Carter
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Joseph C. Krzeski
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Nada A. Elsayed
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Rosemary Puckett
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Eric Klann
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Ralph A. Rivero
- 0000 0004 0393 4335grid.418019.5GlaxoSmithKline, Collegeville, PA 19426 USA
| | - Shannon L. Gourley
- 0000 0001 0941 6502grid.189967.8Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Gary J. Bassell
- 0000 0001 0941 6502grid.189967.8Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
23
|
Hennessey T, Andari E, Rainnie DG. RDoC-based categorization of amygdala functions and its implications in autism. Neurosci Biobehav Rev 2018; 90:115-129. [PMID: 29660417 PMCID: PMC6250055 DOI: 10.1016/j.neubiorev.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Confusion endures as to the exact role of the amygdala in relation to autism. To help resolve this we turned to the NIMH's Research Domain Criteria (RDoC) which provides a classification schema that identifies different categories of behaviors that can turn pathologic in mental health disorders, e.g. autism. While RDoC incorporates all the known neurobiological substrates for each domain, this review will focus primarily on the amygdala. We first consider the amygdala from an anatomical, historical, and developmental perspective. Next, we examine the different domains and constructs of RDoC that the amygdala is involved in: Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Social Processes, and Arousal and Regulatory Systems. Then the evidence for a dysfunctional amygdala in autism is presented with a focus on alterations in development, prenatal valproic acid exposure as a model for ASD, and changes in the oxytocin system therein. Finally, a synthesis of RDoC, the amygdala, and autism is offered, emphasizing the task of disambiguation and suggestions for future research.
Collapse
Affiliation(s)
- Thomas Hennessey
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Elissar Andari
- Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, United States
| | - Donald G Rainnie
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States.
| |
Collapse
|
24
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
25
|
Lee KM, Coelho MA, Sern KR, Szumlinski KK. Homer2 within the central nucleus of the amygdala modulates withdrawal-induced anxiety in a mouse model of binge-drinking. Neuropharmacology 2017; 128:448-459. [PMID: 29109058 DOI: 10.1016/j.neuropharm.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
A history of binge-drinking decreases protein expression of the glutamate-related scaffolding protein Homer2 within the central nucleus of the amygdala (CEA), coinciding with behavioral signs of negative affect. To assess the functional relevance of this protein change for withdrawal-induced hyper-anxiety, adult (PND 56) and adolescent (PND 28) male C57BL/6J mice were administered an intra-CEA infusion of an adeno-associated viral vector (AAV) carrying either cDNA to express Homer2 (H2-cDNA) or GFP as control. Mice underwent 14 days of binge-drinking under multi-bottle, limited-access conditions and were assayed for behavioral signs of negative affect during withdrawal using the light-dark box, marble burying, and forced swim tests (FST). Following behavioral testing, all animals experienced 5 days of drinking to evaluate the effects of prior alcohol experience and Homer2 manipulation on subsequent alcohol consumption. During protracted (4 weeks) withdrawal, adolescent alcohol-experienced GFP controls showed increased signs of negative affect across all 3 assays, compared to water-drinking GFP animals, and also showed elevated alcohol consumption during the subsequent drinking period. Homer2-cDNA infusion in adolescent-onset alcohol-drinking animals was anxiolytic and reduced subsequent alcohol consumption. Conversely, Homer2-cDNA was anxiogenic and increased drinking in water-drinking adolescents. Unfortunately, the data from adult-onset alcohol-drinking animals were confounded by low alcohol consumption and negligible behavioral signs of anxiety. Nevertheless, the present results provide novel cause-effect evidence supporting a role for CEA Homer2 in the regulation of both basal anxiety and the time-dependent intensification of negative affective states in individuals with a history of binge-drinking during adolescence.
Collapse
Affiliation(s)
- K M Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA
| | - M A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA
| | - K R Sern
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA
| | - K K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106-9660 CA, USA; Department of Molecular, Cellular and Developmental Biology, The Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, 93106-9625 CA, USA.
| |
Collapse
|
26
|
Datko MC, Hu JH, Williams M, Reyes CM, Lominac KD, von Jonquieres G, Klugmann M, Worley PF, Szumlinski KK. Behavioral and Neurochemical Phenotyping of Mice Incapable of Homer1a Induction. Front Behav Neurosci 2017; 11:208. [PMID: 29163080 PMCID: PMC5672496 DOI: 10.3389/fnbeh.2017.00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/12/2017] [Indexed: 11/18/2022] Open
Abstract
Immediate early and constitutively expressed products of the Homer1 gene regulate the functional assembly of post-synaptic density proteins at glutamatergic synapses to influence excitatory neurotransmission and synaptic plasticity. Earlier studies of Homer1 gene knock-out (KO) mice indicated active, but distinct, roles for IEG and constitutively expressed Homer1 gene products in regulating cognitive, emotional, motivational and sensorimotor processing, as well as behavioral and neurochemical sensitivity to cocaine. More recent characterization of transgenic mice engineered to prevent generation of the IEG form (a.k.a Homer1a KO) pose a critical role for Homer1a in cocaine-induced behavioral and neurochemical sensitization of relevance to drug addiction and related neuropsychiatric disorders. Here, we extend our characterization of the Homer1a KO mouse and report a modest pro-depressant phenotype, but no deleterious effects of the KO upon spatial learning/memory, prepulse inhibition, or cocaine-induced place-conditioning. As we reported previously, Homer1a KO mice did not develop cocaine-induced behavioral or neurochemical sensitization within the nucleus accumbens; however, virus-mediated Homer1a over-expression within the nucleus accumbens reversed the sensitization phenotype of KO mice. We also report several neurochemical abnormalities within the nucleus accumbens of Homer1a KO mice that include: elevated basal dopamine and reduced basal glutamate content, Group1 mGluR agonist-induced glutamate release and high K+-stimulated release of dopamine and glutamate within this region. Many of the neurochemical anomalies exhibited by Homer1a KO mice are recapitulated upon deletion of the entire Homer1 gene; however, Homer1 deletion did not affect NAC dopamine or alter K+-stimulated neurotransmitter release within this region. These data show that the selective deletion of Homer1a produces a behavioral and neurochemical phenotype that is distinguishable from that produced by deletion of the entire Homer1 gene. Moreover, the data indicate a specific role for Homer1a in regulating cocaine-induced behavioral and neurochemical sensitization of potential relevance to the psychotogenic properties of this drug.
Collapse
Affiliation(s)
- Michael C Datko
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jia-Hua Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Melanie Williams
- Department of Molecular, Developmental and Cell Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Cindy M Reyes
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Molecular, Developmental and Cell Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|