1
|
Shang Y, Zeng Y, Luo S, Wang Y, Yao J, Li M, Li X, Kui X, Wu H, Fan K, Li ZC, Zheng H, Li G, Liu J, Zhao W. Habitat Imaging With Tumoral and Peritumoral Radiomics for Prediction of Lung Adenocarcinoma Invasiveness on Preoperative Chest CT: A Multicenter Study. AJR Am J Roentgenol 2024; 223:e2431675. [PMID: 39140631 DOI: 10.2214/ajr.24.31675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND. Tumor growth processes result in spatial heterogeneity, with the development of tumor subregions (i.e., habitats) having unique biologic characteristics. OBJECTIVE. The purpose of our study was to develop and validate a habitat model combining tumor and peritumoral radiomic features on chest CT for predicting invasiveness of lung adenocarcinoma. METHODS. This retrospective study included 1156 patients (mean age, 57.5 years; 464 men, 692 women), from three centers and a public dataset, who underwent chest CT before lung adenocarcinoma resection (variable date ranges across datasets). Patients from one center formed training (n = 500) and validation (n = 215) sets; patients from the other sources formed three external test sets (n = 249, 113, 79). For each patient, a single nodule was manually segmented on chest CT. The nodule segmentation was combined with an automatically generated 4-mm peritumoral region into a whole-volume volume of interest (VOI). A gaussian mixture model (GMM) identified voxel clusters with similar first-order energy across patients. GMM results were used to divide each patient's whole-volume VOI into multiple habitats, which were defined consistently across patients. Radiomic features were extracted from each habitat. After feature selection, a habitat model was developed for predicting invasiveness, with the use of pathologic assessment as a reference. An integrated model was constructed, combining features extracted from habitats and whole-volume VOIs. Model performance was evaluated, including in subgroups based on nodule density (pure ground-glass, part-solid, and solid). The code for habitat imaging and model construction is publicly available (https://github.com/Shangyoulan/Habitat/). RESULTS. Invasive cancer was diagnosed in 626 of 1156 patients. GMM identified four as the optimal number of voxel clusters and thus of per-patient tumor habitats. The habitat model had an AUC of 0.932 in the validation set and 0.881, 0.880, and 0.764 in the three external test sets. The integrated model had an AUC of 0.947 in the validation set and 0.936, 0.908, and 0.800 in the three external test sets. In the three external test sets combined, across nodule densities, AUCs for the habitat model were 0.836-0.869 and for the integrated model were 0.846-0.917. CONCLUSION. Habitat imaging combining tumoral and peritumoral radiomic features could help predict lung adenocarcinoma invasiveness. Prediction is improved when combining information on tumor subregions and the tumor overall. CLINICAL IMPACT. The findings may aid personalized preoperative assessments to guide clinical decision-making in lung adenocarcinoma.
Collapse
Affiliation(s)
- Youlan Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Ying Zeng
- Department of Radiology, Xiangtan Central Hospital, Xiangtan City, China
| | - Shiwei Luo
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Yisong Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Jiaqi Yao
- Imaging Center, The Second Affiliated Hospital of Xinjiang Medical University, Urumuqi, China
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Hao Wu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Kangxu Fan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi-Cheng Li
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ge Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China
| |
Collapse
|
2
|
Bin J, Wu M, Huang M, Liao Y, Yang Y, Shi X, Tao S. Predicting invasion in early-stage ground-glass opacity pulmonary adenocarcinoma: a radiomics-based machine learning approach. BMC Med Imaging 2024; 24:240. [PMID: 39272029 PMCID: PMC11396739 DOI: 10.1186/s12880-024-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND To design a pulmonary ground-glass nodules (GGN) classification method based on computed tomography (CT) radiomics and machine learning for prediction of invasion in early-stage ground-glass opacity (GGO) pulmonary adenocarcinoma. METHODS This retrospective study included pulmonary GGN patients who were histologically confirmed to have adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma cancer (IAC) from 2020 to 2023. CT images of all patients were automatically segmented and 107 radiomic features were obtained for each patient. Classification models were developed using random forest (RF) and cross-validation, including three one-versus-others models and one three-class model. For each model, features were ranked by normalized Gini importance, and a minimal subset was selected with a cumulative importance exceeding 0.9. These selected features were then used to train the final models. The models' performance metrics, including area under the curve (AUC), accuracy, sensitivity, and specificity, were computed. AUC and accuracy were compared to determine the final optimal method. RESULTS The study comprised 193 patients (mean age 54 ± 11 years, 65 men), including 65 AIS, 54 MIA, and 74 IAC, divided into one training cohort (N = 154) and one test cohort (N = 39). The final three-class RF model outperformed three individual one-versus-others models in distinguishing each class from the other two. For the multiclass classification model, the AUC, accuracy, sensitivity, and specificity were 0.87, 0.79, 0.62, and 0.88 for AIS; 0.90, 0.79, 0.54, and 0.89 for MIA; and 0.87, 0.69, 0.73, and 0.67 for IAC, respectively. CONCLUSIONS A radiomics-based multiclass RF model could effectively differentiate three types of pulmonary GGN, which enabled early diagnosis of GGO pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Junjie Bin
- Department of Radiology, The Affilitated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong, China.
| | - Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meiyun Huang
- The First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuguang Liao
- Department of Radiology, The Affilitated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| | - Yuli Yang
- Department of Radiology, The Affilitated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| | - Xianqiong Shi
- Department of Radiology, The Affilitated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| | - Siqi Tao
- The First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Yang D, Yang Y, Zhao M, Ji H, Niu Z, Hong B, Shi H, He L, Shao M, Wang J. Evaluation of the invasiveness of pure ground-glass nodules based on dual-head ResNet technique. BMC Cancer 2024; 24:1080. [PMID: 39223592 PMCID: PMC11367849 DOI: 10.1186/s12885-024-12823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To intelligently evaluate the invasiveness of pure ground-glass nodules with multiple classifications using deep learning. METHODS pGGNs in 1136 patients were pathologically confirmed as lung precursor lesions [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)], minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC). Four different models [EfficientNet-b0 2D, dual-head ResNet_3D, a 3D model combining three features (3D_3F), and a 3D model combining 19 features (3D_19F)] were constructed to evaluate the invasiveness of pGGNs using the EfficientNet and ResNet networks. The Obuchowski index was used to evaluate the differences in diagnostic efficiency among the four models. RESULTS The patients with pGGNs (360 men, 776 women; mean age, 54.63 ± 12.36 years) included 235 cases of AAH + AIS, 332 cases of MIA, and 569 cases of IAC. In the validation group, the areas under the curve in detecting the invasiveness of pGGNs as a three-category classification (AAH + AIS, MIA, IAC) were 0.8008, 0.8090, 0.8165, and 0.8158 for EfficientNet-b0 2D, dual-head ResNet_3D, 3D_3F, and 3D_19F, respectively, whereas the accuracies were 0.6422, 0.6158, 0.651, and 0.6364, respectively. The Obuchowski index revealed no significant differences in the diagnostic performance of the four models. CONCLUSIONS The dual-head ResNet_3D_3F model had the highest diagnostic efficiency for evaluating the invasiveness of pGGNs in the four models.
Collapse
Affiliation(s)
- Dengfa Yang
- Department of Radiology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Yang Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - MinYi Zhao
- Department of Radiology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Hongli Ji
- Jianpei Technology, Hangzhou, 311202, China
| | - Zhongfeng Niu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bo Hong
- Jianpei Technology, Hangzhou, 311202, China
| | - Hengfeng Shi
- Department of Radiology, Anqing Municipal Hospital, Anqing, 246004, China
| | - Linyang He
- Jianpei Technology, Hangzhou, 311202, China
| | - Meihua Shao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Jian Wang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Sohn JH, Fields BKK. Radiomics and Deep Learning to Predict Pulmonary Nodule Metastasis at CT. Radiology 2024; 311:e233356. [PMID: 38591975 DOI: 10.1148/radiol.233356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Jae Ho Sohn
- From the Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging and Division of Cardiothoracic Imaging, University of California San Francisco (UCSF), 185 Berry St, Ste 350, San Francisco, CA 94107
| | - Brandon K K Fields
- From the Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging and Division of Cardiothoracic Imaging, University of California San Francisco (UCSF), 185 Berry St, Ste 350, San Francisco, CA 94107
| |
Collapse
|
5
|
Ren J, Yuan Y, Qi M, Tao X. MRI-based radiomics nomogram for distinguishing solitary fibrous tumor from schwannoma in the orbit: a two-center study. Eur Radiol 2024; 34:560-568. [PMID: 37532903 DOI: 10.1007/s00330-023-10031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To investigate the value of magnetic resonance imaging (MRI) radiomics for distinguishing solitary fibrous tumor (SFT) from schwannoma in the orbit. MATERIALS AND METHODS A total of 140 patients from two institutions were retrospectively included. All patients from institution 1 were randomized into a training cohort (n = 69) and a validation cohort (n = 35), and patients from institution 2 were used as an external testing cohort (n = 36). One hundred and six features were extracted from T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CET1WI). A radiomics model was built for each sequence using least absolute shrinkage and selection operator logistic regression, and radiomics scores were calculated. A combined model was constructed and displayed as a radiomics nomogram. Two radiologists jointly assessed tumor category based on MRI findings. The performances of the radiomics models and visual assessment were compared via area under the curve (AUC). RESULTS The performances of the radiomics nomogram combining T2WI and CET1WI radiomics scores were superior to those of the pooled readers in the training (AUC 0.986 vs. 0.807, p < 0.001), validation (AUC 0.989 vs. 0.788, p = 0.009), and the testing (AUC 0.903 vs. 0.792, p = 0.093), although significant difference was not found in the testing cohort. Decision curve analysis demonstrated that the radiomics nomogram had better clinical utility than visual assessment. CONCLUSION MRI radiomics nomogram can be used for distinguishing between orbital SFT and schwannoma, which may help tumor management by clinicians. CLINICAL RELEVANCE STATEMENT It is of great importance and challenging for distinguishing solitary fibrous tumor from schwannoma in the orbit. In the present study, an MRI-based radiomics nomogram were developed and independently validated, which could help the discrimination of the two entities. KEY POINTS • It is challenging to differentiate solitary fibrous tumor from schwannoma in the orbit due to similar clinical and image features. • A radiomics nomogram based on T2-weighted imaging and contrast-enhanced T1-weighted imaging has advantages over radiologists. • Radiomics can provide a non-invasive diagnostic tool for differentiating between the two entities.
Collapse
Affiliation(s)
- Jiliang Ren
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200010, China
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200010, China
| | - Meng Qi
- Department of Radiology, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Shanghai, 200030, China.
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200010, China.
| |
Collapse
|
6
|
Zhang M, Lyu S, Yang L, Wei H, Liu R, Wang X, Liu Y, Zhang B, Kwok JKS, Zhang Y. A nomogram based on ultrasound radiomics for predicting the invasiveness of cN0 single papillary thyroid microcarcinoma. Gland Surg 2023; 12:1735-1745. [PMID: 38229850 PMCID: PMC10788574 DOI: 10.21037/gs-23-473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Background Up to 15.3% of papillary thyroid microcarcinoma (PTMC) patients with negative clinical lymph node metastasis (cN0) were confirmed to have pathological lymph node metastasis in level VI. Conventional ultrasound (US) focuses on the characteristics of tumor capsule and the periphery to determine whether the tumor has invasive growth. However, due to its small size, the typical features of invasiveness shown by conventional 2-dimensional (2D) US are not well visualized. US-based radiomics makes use of artificial intelligence and big data to build a model that can help improving diagnostic accuracy and providing prognostic implication of the disease. We hope to establish and assess the value of a nomogram based on US radiomics combined with independent risk factors in predicting the invasiveness of a single PTMC without clinical lymph node metastasis (cN0). Methods A total of 317 patients with cN0 single PTMC who underwent US examination and operation were included in this retrospective cohort study. Patients were randomly divided into training and testing set in the ratio of 8:2. The US images of all patients were segmented, and the radiomics features were extracted. In the training dataset, the US with features of minimum redundancy maximum relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) were selected and radiomics signatures were then established according to their respective weighting coefficients. Univariate and multivariate logistic regression analyses were employed to generate the risk factors of possible invasive PTMC. The nomogram is then made by combining high risk factors and the radiomics signature. The efficiency of the nomogram was evaluated by the receiver operating characteristic (ROC) curve and calibration curve, and its clinical application value was assessed by decision curve analysis (DCA). The testing dataset was used to validate the model. Results In the model, seven radiomics features were selected to establish the radiomics signature. A nomogram was made by incorporating clinically independent risk factors and the radiomics signature. Both the ROC curve and calibration curve showed good prediction efficiency. The area under the curve (AUC), accuracy, sensitivity, and specificity of the nomogram in the training data were 0.76 [95% confidence interval (CI): 0.71-0.82], 0.811, 0.914, and 0.727, respectively whereas the results of the testing dataset were 0.71 (95% CI: 0.58-0.84), 0.841, 0.533, and 0.868. As such, the efficacy of the nomogram in predicting the invasiveness of PTMC was subsequently validated by the DCA. Conclusions Nomogram based on thyroid US radiomics has an excellent predictive value of the potential invasiveness of a single PTMC without clinical lymph node metastasis. With these promising results, it can potentially be the imaging marker used in daily clinical practice.
Collapse
Affiliation(s)
- Meiwu Zhang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Shuyi Lyu
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Liu Yang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Huilin Wei
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Rui Liu
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Xin Wang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Yi Liu
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | - Baisong Zhang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| | | | - Yan Zhang
- Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
7
|
Chang Y, Xing H, Shang Y, Liu Y, Yu L, Dai H. Preoperative predicting invasiveness of lung adenocarcinoma manifesting as ground-glass nodules based on multimodal images of dual-layer spectral detector CT radiomics models. J Cancer Res Clin Oncol 2023; 149:15425-15438. [PMID: 37642725 DOI: 10.1007/s00432-023-05311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE To construct and validate conventional and radiomics models based on dual-layer spectral CT radiomics for preoperative prediction of lung ground glass nodules (GGNs) invasiveness. MATERIALS AND METHODS A retrospective study was conducted on 176 GGNs patients who underwent chest non-contrast enhancement scan on dual-layer spectral detector CT at our hospital within 2 weeks before surgery. Patients were randomized into the training cohort and testing cohort. Clinical features, imaging features and spectral quantitative parameters were collected to establish a conventional model. Radiomics models were established by extracting 1781 radiomics features form regions of interest of each spectral image [120 kVp poly energetic images (PI), 60 keV images and electron density maps], respectively. After selecting the optimal radiomic features and integrating multiple machine learning models, the conventional model, PI model, 60 keV model, electron density (ED) model and combined model based on multimodal spectral images were finally established. The performance of these models was assessed through the evaluation of discrimination, calibration, and clinical application. RESULTS In the conventional model, age, vacuole sign, 60 keV and ED were independent risk factors of invasiveness. The combined model using logistic regression-least absolute shrinkage and selection operator classifiers was the optimal model with a higher area under the curve of the training (0.961, 95% confidence interval, CI: 0.932-0.991) and testing set (0.944, 0.890-0.999). CONCLUSION The combined models are helpful to predict the invasiveness of GGNs before surgery and guide the individualized treatment of patients.
Collapse
Affiliation(s)
- Yue Chang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Hanqi Xing
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Yi Shang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Lefan Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China.
- Institute of Medical Imaging, Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China.
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| |
Collapse
|