1
|
Arefnezhad R, Jahandideh A, Rezaei M, Khatouni MS, Zarei H, Jahani S, Molavi A, Hefzosseheh M, Ghasempour P, Movahedi HM, Jahandideh R, Rezaei-Tazangi F. Synergistic effects of curcumin and stem cells on spinal cord injury: a comprehensive review. Mol Biol Rep 2024; 51:1113. [PMID: 39485550 DOI: 10.1007/s11033-024-10057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord that permanently or temporarily disrupts its function, causing considerable autonomic, sensory, and motor disorders, and involves between 10 and 83 cases per million yearly. Traumatic SCI happens following primary acute mechanical damage, leading to injury to the spinal cord tissue and worsening clinical outcomes. The present therapeutic strategies for this complex disease fundamentally rely on surgical approaches and conservative remedies. However, these modalities are not effective enough for neurological recovery. Therefore, it is necessary to discover more efficient methods to treat patients with SCI. Today, considerable attention has been drawn to bioactive compounds-based remedies and stem cell therapy for curing various ailments and disorders, such as neurological diseases. Some researchers have recommended that harnessing curcumin, a polyphenol obtained from turmeric, in combination with stem cells, like mesenchymal stem cells, neural stem cells, and ependymal stem cells, can remarkably improve neurological recovery-related parameters more effective than the treatment with these two methods separately in experimental models. Hereby, this literature review delves into the functionality of curcumin combined with stem cells in treating SCI with a focus on cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Coenzyme R Research Institute, Tehran, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Arian Jahandideh
- Faculty of medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleheh Jahani
- Department of pathology, University of California, San Diego, USA
| | - Ali Molavi
- Student Research Committee, Faculty of medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Parisa Ghasempour
- Department of Medical Science and Health Services, Islamic Azad University, Yazd, Iran
| | - Hadis Moazen Movahedi
- Department of Biotechnology Sciences, Cellular and Molecular Biology Branch, Islamic Azad University, Khuzestan, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Mostaar A, Behroozi Z, MotamedNezhad A, Taherkhani S, Mojarad N, Ramezani F, Janzadeh A, Hajimirzaie P. The effect of intra spinal administration of cerium oxide nanoparticles on central pain mechanism: An experimental study. J Bioenerg Biomembr 2024; 56:505-515. [PMID: 39102102 DOI: 10.1007/s10863-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
This study investigated Cerium oxide nanoparticles (CeONPs) effect on central neuropathic pain (CNP). The compressive method of spinal cord injury (SCI) model was used for pain induction. Three groups were formed by a random allocation of 24 rats. In the treatment group, CeONPs were injected above and below the lesion site immediately after inducing SCI. pain symptoms were evaluated using acetone, Radian Heat, and Von Frey tests weekly for six weeks. Finally, we counted fibroblasts using H&E staining. We evaluated the expression of Cx43, GAD65 and HDAC2 proteins using the western blot method. The analysis of results was done by PRISM software. At the end of the study, we found that CeONPs reduced pain symptoms to levels similar to those observed in normal animals. CeONPs also increased the expression of GAD65 and Cx43 proteins but did not affect HDAC2 inhibition. CeONPs probably have a pain-relieving effect on chronic pain by potentially preserving GAD65 and Cx43 protein expression and hindering fibroblast infiltration.
Collapse
Affiliation(s)
- Ahmad Mostaar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali MotamedNezhad
- College of Veterinary Medicine, Islamic Azad University, Karaj, Alborz, Iran
| | - Sourosh Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negin Mojarad
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - Fatemeh Ramezani
- Physiology Research Center, , Iran University of Medical Sciences, Tehran, Iran.
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Pooya Hajimirzaie
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu Y, Zhao C, Zhang R, Pang Y, Li L, Feng S. Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury. Stem Cell Res Ther 2024; 15:343. [PMID: 39354635 PMCID: PMC11446099 DOI: 10.1186/s13287-024-03914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbalanced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive perspective is provided for the clinical translation of MSC transplantation for SCI.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Chenxi Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Yilin Pang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Linquan Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Lixia District, Jinan, 250012, Shandong, China.
- Institute of Medical Sciences, The Second Hospital of Shandong University, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China.
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
4
|
Ren R, Ren W, Zhang Y, Zhang H, Su W, Hu R, Zhao J, He L, Mu Y, Cheng Y. Breaking the chain in organ failure: Role of umbilical cord and bone marrow derived mesenchymal stem cells in treatment of severe acute pancreatitis. Heliyon 2024; 10:e35785. [PMID: 39220979 PMCID: PMC11365331 DOI: 10.1016/j.heliyon.2024.e35785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background Previous studies showed that MSCs could mitigate damage in the pancreas during acute pancreatitis (AP). However, acute mortality associated with AP was more often a result of persistent failure of remote organs, rather than local damage, especially in severe acute pancreatitis (SAP), and the effect of MSCs may vary depending on their origin. Methods An SAP model was induced in 8-week C57BL/6 J male mice by retrograde injection of 5 % sodium taurocholate solution through the bile duct. SAP mice were divided into the SAP group, UC-MSCs group, and BMSCs group, which were treated with saline, 1 × 106 UC-MSCs, and 1 × 106 BMSCs respectively, through the tail vein. After treatment, serum markers, inflammation, and morphology were assessed in the pancreas, kidneys, lungs, and hearts. Results MSCs infusion ameliorated the systemic inflammatory response in SAP mice. In the MSCs-treated SAP mice, local tissue injury and inflammation response in the pancreas were alleviated. But more importantly, the renal and lung injury were all significantly and drastically mitigated, and the levels of pro-inflammatory factors such as IL-6, MCP-1, IL-1β, and TNF-α in the kidney, lung and heart were sharply decreased. In terms of origin, UC-MSCs exhibited superior efficacy compared with BMSCs. Furthermore, compared to the normal control mice, UC-MSCs showed an earlier appearance, higher distribution densities, and longer duration of presence in the injured tissue. Conclusions This study provides compelling evidence supporting the therapeutic potential of MSCs in SAP treatment and particularly their ability to mitigate multi-organ failure. Our results also suggested that UC-MSCs may offer greater advantages over BMSCs in SAP therapy.
Collapse
Affiliation(s)
- Rui Ren
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Weizheng Ren
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yue Zhang
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Haixia Zhang
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Wanlu Su
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruofan Hu
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Jian Zhao
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
- Medical School of Chinese People's Liberation Army, Beijing, 100853, China
| | - Lei He
- Department of Hepatopancreatobiliary Surgery, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yiming Mu
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Yu Cheng
- Department of Endocrinology, The First Clinical Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
5
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Zhang J, Wu P, Wen Q. Optimization strategies for mesenchymal stem cell-based analgesia therapy: a promising therapy for pain management. Stem Cell Res Ther 2024; 15:211. [PMID: 39020426 PMCID: PMC11256674 DOI: 10.1186/s13287-024-03828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Pain is a very common and complex medical problem that has a serious impact on individuals' physical and mental health as well as society. Non-steroidal anti-inflammatory drugs and opioids are currently the main drugs used for pain management, but they are not effective in controlling all types of pain, and their long-term use can cause adverse effects that significantly impair patients' quality of life. Mesenchymal stem cells (MSCs) have shown great potential in pain treatment. However, limitations such as the low proliferation rate of MSCs in vitro and low survival rate in vivo restrict their analgesic efficacy and clinical translation. In recent years, researchers have explored various innovative approaches to improve the therapeutic effectiveness of MSCs in pain treatment. This article reviews the latest research progress of MSCs in pain treatment, with a focus on methods to enhance the analgesic efficacy of MSCs, including engineering strategies to optimize the in vitro culture environment of MSCs and to improve the in vivo delivery efficiency of MSCs. We also discuss the unresolved issues to be explored in future MSCs and pain research and the challenges faced by the clinical translation of MSC therapy, aiming to promote the optimization and clinical translation of MSC-based analgesia therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
7
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
8
|
Xu X, Chen H, Qiu Y, Chen Y, Liu J, Zeng B, Lin L, Lin X, Zhang L, Zhang L. Intravenous application of human umbilical cord mesenchymal stem cells alleviate neuropathic pain by suppressing microglia activation in rats. Heliyon 2024; 10:e32689. [PMID: 38994051 PMCID: PMC11237945 DOI: 10.1016/j.heliyon.2024.e32689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Neuropathic pain has been considered as one of the most serious chronic pain subtypes and causes intolerable suffering to patients physically and mentally. This study aimed to verify the analgesic effect of intravenous administration of human umbilical cord mesenchymal stem cells (HUC-MSCs) upon rats with chronic constriction injury (CCI)-induced neuropathic pain and the concomitant mechanism via modulating microglia. Methods 30 male SD rats were randomized divided into three groups (n = 10 per group): Sham + Saline group (S&S group), CCI + Saline group (C&S group) and CCI + HUC-MSCs group (C&U group). Rats were injected with either saline or HUC-MSCs via the caudal vein on the 7th day after modelling. The paw mechanical withdrawal threshold (PMWT) and thermal withdrawal latency (TWL) of the ligation side were measured before (day 0) and after (day 1, 3, 5, 7, 9, 11, 13, and 15) modelling. On day 15 after modelling, western-blotting and immunofluorescent staining were used to assess the expressive abundance of Iba-1 (a typical biomarker of activated microglia) in the ligation side of the spinal cord dorsal horn, and ultrastructural changes of the ligation of sciatic nerve were evaluated by transmission electron microscope (TEM). Results Compared with the S&S group, PMWT and TWL in the C&S group were significantly decreased on day 5 and then persisted to day 15 after modelling (C&S vs S&S, P < 0.05), while a significant amelioration of mechanical hyperalgesia (day 13, day 15) and thermal allodynia (day 9, day 11, day 15) was observed in the C&U group (C&U vs C&S, P < 0.05). Meanwhile, the expression of Iba-1 was significantly suppressed by systemic infusion of HUC-MSCs in the C&U group according to western-blotting and immunofluorescent staining analyses (P < 0.05). With the aid of TEM detection, we intuitively noticed the efficacious reconstruction of the laminate structure of the sciatic nerve ligation, elimination of mitochondrial swelling, and formation of new myelination were noted on day 15 after modelling in the C&U group. Conclusions Overall, intravenous administration of HUC-MSCs systemically revealed an ameliorative effect upon CCI-induced neuropathic pain in SD rats by inhibiting microglia activation in the dorsal horn of the impaired spinal cord and alleviating sciatic nerve injury. Our findings supply new references for the further development of HUC-MSCs-based cytotherapy for neuropathic pain administration.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
- The Graduate School of Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ye Chen
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
- The Graduate School of Fujian Medical University, Fuzhou, 350000, China
| | - Junle Liu
- Department of Anesthesiology, Xiamen Third Hospital, Xiamen, 361100, China
| | - Bangwei Zeng
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Lei Lin
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Xinyan Lin
- Xiamen Public Security Bureau, Xiamen, 361104, China
| | - Leisheng Zhang
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
- Ji'nan Key Laboratory of Medical Cell Bioengineering, Science and Technology Innovation Center, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, Jinan, 250031, China
| | - Liangcheng Zhang
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, 350000, China
| |
Collapse
|
9
|
Nazemi S, Helmi M, Kafami M, Amin B, Mojadadi MS. Preemptive administration of mesenchymal stem cells-derived conditioned medium can attenuate the development of neuropathic pain in rats via downregulation of proinflammatory cytokines. Behav Brain Res 2024; 461:114858. [PMID: 38211775 DOI: 10.1016/j.bbr.2024.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Neuropathic pain (NP) is a chronic condition characterized by persistent pain following nerve injury. It is a challenging clinical problem to manage due to limited treatment options. Mesenchymal stem cells (MSCs)-derived conditioned medium (CM) is a cell-free product that contains the secretome of MSCs and has been shown to have therapeutic potential in various inflammatory and degenerative disorders. Several animal studies have examined the antinociceptive effects of MSCs-CM on established neuropathic pain, but none have investigated the early prevention of neuropathic pain using MSCs-CM. Therefore, in this study, we tested whether preemptive administration of MSCs-CM could attenuate the development of NP in rats. To this end, NP was induced in Wistar rats using a chronic constriction injury (CCI) model (day 0), and then the animals were divided into four groups: Sham, CCI, CCI-Dulbecco's Modified Eagle Medium (DMEM), and CCI-CM. The CCI-CM group received 1 ml intraperitoneal administration of MSCs-CM on days - 1, 1, and 2, while the Sham, CCI, and CCI-DMEM groups received vehicle only (normal saline or DMEM). Mechanical withdrawal threshold and thermal withdrawal latency were assessed to evaluate pain sensitivities. In addition, the expression levels of proinflammatory cytokines (TNF-α and IL-1β) in the spinal cord tissues were measured using quantitative real-time PCR (qRT-PCR). The results demonstrated that preemptive treatment with MSCs-CM can significantly attenuate the development of NP, as evidenced by improved mechanical withdrawal threshold and thermal withdrawal latency in the CCI-CM group compared to the CCI and CCI-DMEM groups. Furthermore, the relative gene expression of proinflammatory cytokines TNF-α and IL-1β were significantly decreased in the spinal cord tissues of the CCI-CM group compared to the control groups. These findings suggest that preemptive administration of MSCs-CM can attenuate the development of NP in rats, partly due to the downregulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Samad Nazemi
- Department of Physiology and Pharmacology, School of Medical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahtab Helmi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Marzieh Kafami
- Department of Physiology and Pharmacology, School of Medical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Department of Physiology and Pharmacology, School of Medical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Department of Immunology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
10
|
Shang WY, Ren YF, Li B, Huang XM, Zhang ZL, Huang J. Efficacy of growth factor gene-modified stem cells for motor function after spinal cord injury in rodents: a systematic review and meta‑analysis. Neurosurg Rev 2024; 47:87. [PMID: 38369598 DOI: 10.1007/s10143-024-02314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
The efficacy of growth factor gene-modified stem cells in treating spinal cord injury (SCI) remains unclear. This study aims to evaluate the effectiveness of growth factor gene-modified stem cells in restoring motor function after SCI. Two reviewers searched four databases, including PubMed, Embase, Web of Science, and Scopus, to identify relevant records. Studies on rodents assessing the efficacy of transplanting growth factor gene-modified stem cells in restoring motor function after SCI were included. The results were reported using the standardized mean difference (SMD) with a 95% confidence interval (95% CI). Analyses showed that growth factor gene-modified stem cell transplantation improved motor function recovery in rodents with SCI compared to the untreated (SMD = 3.98, 95% CI 3.26-4.70, I2 = 86.8%, P < 0.0001) and stem cell (SMD = 2.53, 95% CI 1.93-3.13, I2 = 86.9%, P < 0.0001) groups. Using growth factor gene-modified neural stem/histone cells enhanced treatment efficacy. In addition, the effectiveness increased when viral vectors were employed for gene modification and high transplantation doses were administered during the subacute phase. Stem cells derived from the human umbilical cord exhibited an advantage in motor function recovery. However, the transplantation of growth factor gene-modified stem cells did not significantly improve motor function in male rodents (P = 0.136). Transplantation of growth factor gene-modified stem cells improved motor function in rodents after SCI, but claims of enhanced efficacy should be approached with caution. The safety of gene modification remains a significant concern, requiring additional efforts to enhance its clinical translatability.
Collapse
Affiliation(s)
- Wen-Ya Shang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya-Feng Ren
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China.
| | - Bing Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | | | - Zhi-Lan Zhang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Huang
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Faria J, Calcat-I-Cervera S, Skovronova R, Broeksma BC, Berends AJ, Zaal EA, Bussolati B, O'Brien T, Mihăilă SM, Masereeuw R. Mesenchymal stromal cells secretome restores bioenergetic and redox homeostasis in human proximal tubule cells after ischemic injury. Stem Cell Res Ther 2023; 14:353. [PMID: 38072933 PMCID: PMC10712181 DOI: 10.1186/s13287-023-03563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ischemia/reperfusion injury is the leading cause of acute kidney injury (AKI). The current standard of care focuses on supporting kidney function, stating the need for more efficient and targeted therapies to enhance repair. Mesenchymal stromal cells (MSCs) and their secretome, either as conditioned medium (CM) or extracellular vesicles (EVs), have emerged as promising options for regenerative therapy; however, their full potential in treating AKI remains unknown. METHODS In this study, we employed an in vitro model of chemically induced ischemia using antimycin A combined with 2-deoxy-D-glucose to induce ischemic injury in proximal tubule epithelial cells. Afterwards we evaluated the effects of MSC secretome, CM or EVs obtained from adipose tissue, bone marrow, and umbilical cord, on ameliorating the detrimental effects of ischemia. To assess the damage and treatment outcomes, we analyzed cell morphology, mitochondrial health parameters (mitochondrial activity, ATP production, mass and membrane potential), and overall cell metabolism by metabolomics. RESULTS Our findings show that ischemic injury caused cytoskeletal changes confirmed by disruption of the F-actin network, energetic imbalance as revealed by a 50% decrease in the oxygen consumption rate, increased oxidative stress, mitochondrial dysfunction, and reduced cell metabolism. Upon treatment with MSC secretome, the morphological derangements were partly restored and ATP production increased by 40-50%, with umbilical cord-derived EVs being most effective. Furthermore, MSC treatment led to phenotype restoration as indicated by an increase in cell bioenergetics, including increased levels of glycolysis intermediates, as well as an accumulation of antioxidant metabolites. CONCLUSION Our in vitro model effectively replicated the in vivo-like morphological and molecular changes observed during ischemic injury. Additionally, treatment with MSC secretome ameliorated proximal tubule damage, highlighting its potential as a viable therapeutic option for targeting AKI.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sandra Calcat-I-Cervera
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Renata Skovronova
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Alinda J Berends
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism and Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Silvia M Mihăilă
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Ren K, Vickers R, Murillo J, Ruparel NB. Revolutionizing orofacial pain management: the promising potential of stem cell therapy. FRONTIERS IN PAIN RESEARCH 2023; 4:1239633. [PMID: 38028430 PMCID: PMC10679438 DOI: 10.3389/fpain.2023.1239633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Orofacial pain remains a significant health issue in the United States. Pain originating from the orofacial region can be composed of a complex array of unique target tissue that contributes to the varying success of pain management. Long-term use of analgesic drugs includes adverse effects such as physical dependence, gastrointestinal bleeding, and incomplete efficacy. The use of mesenchymal stem cells for their pain relieving properties has garnered increased attention. In addition to the preclinical and clinical results showing stem cell analgesia in non-orofacial pain, studies have also shown promising results for orofacial pain treatment. Here we discuss the outcomes of mesenchymal stem cell treatment for pain and compare the properties of stem cells from different tissues of origin. We also discuss the mechanism underlying these analgesic/anti-nociceptive properties, including the role of immune cells and the endogenous opioid system. Lastly, advancements in the methods and procedures to treat patients experiencing orofacial pain with mesenchymal stem cells are also discussed.
Collapse
Affiliation(s)
- Ke Ren
- Department of Pain and Neural Sciences, University of Maryland, Baltimore, MD, United States
| | - Russel Vickers
- Clinical Stem Cells Pty Ltd., Sydney, NSW, Australia
- Oral Health Center, School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Glycomics, Griffith University Queensland, Southport, QLD, Australia
| | - Josue Murillo
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
13
|
Motamed Nezhad A, Behroozi Z, Kookli K, Ghadaksaz A, Fazeli SM, Moshiri A, Ramezani F, Shooshtari MG, Janzadeh A. Evaluation of photobiomodulation therapy (117 and 90s) on pain, regeneration, and epigenetic factors (HDAC 2, DNMT3a) expression following spinal cord injury in a rat model. Photochem Photobiol Sci 2023; 22:2527-2540. [PMID: 37787959 DOI: 10.1007/s43630-023-00467-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/05/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Photobiomodulation therapy (PBMT), due to its anti-inflammatory, analgesic effects, and most importantly as a non-invasive procedure, has currently gained a special setting in pain relief and the treatment of Spinal cord injuries (SCI). However, the mechanism of action of the PBM is not yet completely understood. METHODS In this study, SCI is induced by an aneurysm clip, and PBM therapy was applied by a continuous-wave (CW) laser with a wavelength of 660 nm. Adult male rats were divided into four groups: Control, SCI, SCI + PBMT 90s, and SCI + PBMT 117s. After 7 weeks, hyperalgesia, allodynia, and functional recovery were assessed. Fibroblasts infiltrating the spinal cord were counted after H&E staining. The expression of epigenetic factors (HDAC2, DNMT3a), protein relevant for pain (GAD65), and astrocytes marker (GFAP) after 4 weeks of daily PBMT (90 and 117s) was probed by western blotting. RESULTS Both PBMTs (90 and 117s) significantly improved the pain and ability to move and fibroblast invasion was reduced. SCI + PBMT 90s, increased GAD65, HDAC2, and DNMT3a expression. However, PBMT 117s decreased GFAP, HDAC2, and DNMT3a. CONCLUSION PBMT 90 and 117s improved the pain, and functional recovery equally. The regulation of epigenetic mechanisms appears to be a significant effect of PBMT117s, which emphasizes on impact of radiation duration and accumulative energy.
Collapse
Affiliation(s)
- Ali Motamed Nezhad
- College of Veterinary Medicine, Islamic Azad University, Karaj, Alborz, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghaddas Fazeli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center (RBRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | | | - Atousa Janzadeh
- Radiation Biology Research Center (RBRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
14
|
Dong X, Hong H, Cui Z. Function of GSK‑3 signaling in spinal cord injury (Review). Exp Ther Med 2023; 26:541. [PMID: 37869638 PMCID: PMC10587879 DOI: 10.3892/etm.2023.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
Spinal cord injury (SCI) is a major social problem with a heavy burden on patient physiology and psychology. Glial scar formation and irreversible neuron loss are the two key points during SCI progression. During the acute phase of spinal cord injury, glial scars form, limiting the progression of inflammation. However, in the subacute or chronic phase, glial scarring inhibits axon regeneration. Following spinal cord injury, irreversible loss of neurons leads to further aggravation of spinal cord injury. Several therapies have been developed to improve either glial scar or neuron loss; however, few therapies reach the stage of clinical trials and there are no mainstream therapies for SCI. Exploring the key mechanism of SCI is crucial for finding further treatments. Glycogen synthase kinase-3 (GSK-3) is a widely expressed kinase with important physiological and pathophysiological functions in vivo. Dysfunction of the GSK-3 signaling pathway during SCI has been widely discussed for controlling neurite growth in vitro and in vivo, improving the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery from spinal cord injury. SCI can decrease the phosphorylated (p)/total (t)-GSK-3β ratio, which leads to an increase in apoptosis, whereas treatment with GSK-3 inhibitors can promote neurogenesis. In addition, several therapies for the treatment of SCI involve signaling pathways associated with GSK-3. Furthermore, signaling pathways associated with GSK-3 also participate in the pathological process of neuropathic pain that remains following SCI. The present review summarized the roles of GSK-3 signaling in SCI to aid in the understanding of GSK-3 signaling during the pathological processes of SCI and to provide evidence for the development of comprehensive treatments.
Collapse
Affiliation(s)
- Xiong Dong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongxiang Hong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
15
|
Deng Y, Yuan D, Deng Z, Liang J, Zhang Z, Hei Z, Li X. Bone marrow-derived mesenchymal stem cells attenuate complete Freund's adjuvant-induced inflammatory pain by inhibiting the expression of P2X3. Cell Prolif 2023; 56:e13461. [PMID: 36974350 PMCID: PMC10542618 DOI: 10.1111/cpr.13461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) show a good property for pain treatment by modulating inflammatory response. However, the underlying therapeutic effect and related mechanism of BMSCs on inflammatory pain remain unclear. Therefore, we explored the function and potential mechanism of BMSCs performing in a complete Freund's adjuvant (CFA)-induced inflammatory pain model in this study. Here, BMSCs were injected into the CFA-treated rats, and we used behavioural tests to evaluate the changes in hypersensitivity. High-throughput sequencing was used to screen out the hub genes. Molecular biology experiments were performed to detect the level of P2X3 or inflammatory mediators in rats and observed the distribution of P2X3 in neural cells. Furthermore, the function of the P2X3 was explored via inhibitor and activator experiments. Finally, we found that BMSCs alleviated hyperalgesia and spinal levels of pro-inflammatory factors in CFA-treated rats. High-throughput sequencing showed that P2X3 and P2X7 were identified as hub genes, and only the expression level of P2X3 was significantly down-regulated after BMSCs treatment. Immunohistochemistry showed that P2X3 mainly colocalized with microglia and astrocytes. The levels of P2X3 and pro-inflammatory factors were all significantly reduced after BMSC injection. Moreover, similar attenuation was found in the CFA-treated rats after injecting the P2X3 inhibitor, and a P2X3 antagonist reversed the attenuation induced by the BMSCs. These findings suggest that BMSCs exerted a therapeutic effect on inflammatory pain by inhibiting the expression of P2X3 and the excessive production of inflammatory mediators was associated with an increased P2X3 level and BMSC therapy reverse these effects.
Collapse
Affiliation(s)
- Yifan Deng
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Dongdong Yuan
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Zhizhao Deng
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Jianfen Liang
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Zhenye Zhang
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Ziqing Hei
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| | - Xiang Li
- Department of Anesthesiologythe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
| |
Collapse
|
16
|
Zhiguo F, Ji W, Shenyuan C, Guoyou Z, Chen K, Hui Q, Wenrong X, Zhai X. A swift expanding trend of extracellular vesicles in spinal cord injury research: a bibliometric analysis. J Nanobiotechnology 2023; 21:289. [PMID: 37612689 PMCID: PMC10463993 DOI: 10.1186/s12951-023-02051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Extracellular vesicles (EVs) in the field of spinal cord injury (SCI) have garnered significant attention for their potential applications in diagnosis and therapy. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. A search of articles in Web of Science (WoS) from January 1, 1991, to May 1, 2023, yielded 359 papers that were analyzed using various online analysis tools. These articles have been cited 10,842 times with 30.2 times per paper. The number of publications experienced explosive growth starting in 2015. China and the United States led this research initiative. Keywords were divided into 3 clusters, including "Pathophysiology of SCI", "Bioactive components of EVs", and "Therapeutic effects of EVs in SCI". By integrating the average appearing year (AAY) of keywords in VoSviewer with the time zone map of the Citation Explosion in CiteSpace, the focal point of research has undergone a transformative shift. The emphasis has moved away from pathophysiological factors such as "axon", "vesicle", and "glial cell" to more mechanistic and applied domains such as "activation", "pathways", "hydrogels" and "therapy". In conclusions, institutions are expected to allocate more resources towards EVs-loaded hydrogel therapy and the utilization of innovative materials for injury mitigation.
Collapse
Affiliation(s)
- Fan Zhiguo
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Wu Ji
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Chen Shenyuan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhang Guoyou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| | - Qian Hui
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xu Wenrong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
17
|
Negah SS, Hajinejad M, Nemati S, Roudbary SMJM, Forouzanfar F. Stem cell therapy combined with luteolin alleviates experimental neuropathy. Metab Brain Dis 2023; 38:1895-1903. [PMID: 37014525 DOI: 10.1007/s11011-023-01206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Neuropathic pain is a chronic condition that causes long-term burning sensations. Despite significant efforts, current treatments for neuropathic pain are ineffective in curing the condition, which means new therapeutic options must be developed. One such option is the use of stem cell therapy in combination with anti-inflammatory herbal components, which has shown promise in treating neuropathic pain. The study aimed to investigate the effects of bone marrow mesenchymal stem cells (BM-MSCs) with luteolin on sensory deficits and pathological changes in a neuropathic model. The results showed that luteolin, either alone or in combination with BM-MSCs, effectively reduced sensory deficits related to mechanical and thermal hypersensitivity. In addition, luteolin alone and combined with BM-MSCs reduced oxidative stress in neuropathic rats and inhibited cellular responses, particularly reactive astrocytes. The study concluded that combining luteolin and BM-MSCs may offer an effective therapeutic strategy for patients with neuropathic pain, although further research is needed.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Nemati
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Neishaboori AM, Tavallaei MJ, Toloui A, Ahmadzadeh K, Alavi SNR, Lauran M, Hosseini M, Yousefifard M. Effects of Epothilone Administration on Locomotion Recovery after Spinal Cord Injury: A Systematic Review of Animal Studies. Asian Spine J 2023; 17:761-769. [PMID: 37062538 PMCID: PMC10460658 DOI: 10.31616/asj.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 04/18/2023] Open
Abstract
This is a systematic review and meta-analysis of existing evidence regarding the possible effects of epothilones on spinal cord injury (SCI). This study aimed to investigate the possible effects of epothilone administration on locomotion recovery in animal models of SCI. Despite increasing rates of SCI and its burden on populations, no consensus has been reached about the possible treatment modality for SCI. Meanwhile, low-dose epothilones have been reported to have positive effects on SCI outcomes. Electronic databases of Web of Science, Scopus, Embase, and Medline were searched using keywords related to epothilones and SCI until the end of 2020. Two researchers screened the articles, and extracted data were analyzed using STATA ver. 14.0. Final results are reported as a standardized mean difference (SMD) with a 95% confidence interval (CI). After the screening, five studies were included in the analysis. Rats were used in all the studies. Two types of epothilones were used via intraperitoneal injection and were shown to have positive effects on the motor outcomes of samples with SCI (SMD, 0.87; 95% CI, 0.51 to 1.23; p =0.71). Although a slightly better effect was observed when using epothilone B, the difference was not significant (coefficient, -0.50; 95% CI, -1.52 to 0.52; p =0.246). The results of this study suggest that epothilones have positive effects on the improvement of motor function in rats, when administered intraperitoneally until a maximum of 1 day after SCI. However, current evidence regarding the matter is still scarce.
Collapse
Affiliation(s)
| | | | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Koohyar Ahmadzadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Martin Lauran
- GKT School of Medical Education, King’s College London, London, UK
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ribeiro BF, da Cruz BC, de Sousa BM, Correia PD, David N, Rocha C, Almeida RD, Ribeiro da Cunha M, Marques Baptista AA, Vieira SI. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146:2672-2693. [PMID: 36848323 DOI: 10.1093/brain/awad047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/23/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
Spinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies. Schwann cells, olfactory ensheathing cells (OECs), macrophages and various types of stem cells have been tested, as well as combinations of these and other cells. A comparative analysis between the reported outcomes of each cell type was performed, according to gold-standard efficacy outcome measures like the ASIA impairment scale, motor and sensory scores. Most of the trials were in the early phases of clinical development (phase I/II), involved patients with complete chronic injuries of traumatic aetiology and did not display a randomized comparative control arm. Bone marrow stem cells and OECs were the most commonly tested cells, while open surgery and injection were the main methods of delivering cells into the spinal cord or submeningeal spaces. Transplantation of support cells, such as OECs and Schwann cells, resulted in the highest ASIA Impairment Scale (AIS) grade conversion rates (improvements in ∼40% of transplanted patients), which surpassed the spontaneous improvement rate expected for complete chronic SCI patients within 1 year post-injury (5-20%). Some stem cells, such as peripheral blood-isolated and neural stem cells, offer potential for improving patient recovery. Complementary treatments, particularly post-transplantation rehabilitation regimes, may contribute highly to neurological and functional recovery. However, unbiased comparisons between the tested therapies are difficult to draw, given the great heterogeneity of the design and outcome measures used in the SCI cell-based clinical trials and how these are reported. It is therefore crucial to standardize these trials when aiming for higher value clinical evidence-based conclusions.
Collapse
Affiliation(s)
- Beatriz F Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna C da Cruz
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia D Correia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno David
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Camila Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Ribeiro da Cunha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Spinal Cord Injury Rehabilitation Unit, Centro de Reabilitação do Norte (CRN), Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - António A Marques Baptista
- Department of Neurosurgery, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Slovinska L, Harvanova D. The Role of Mesenchymal Stromal Cells and Their Products in the Treatment of Injured Spinal Cords. Curr Issues Mol Biol 2023; 45:5180-5197. [PMID: 37367078 DOI: 10.3390/cimb45060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Spinal cord injury (SCI) is a destructive condition that results in lasting neurological damage resulting in disruption of the connection between the central nervous system and the rest of the body. Currently, there are several approaches in the treatment of a damaged spinal cord; however, none of the methods allow the patient to return to the original full-featured state of life before the injury. Cell transplantation therapies show great potential in the treatment of damaged spinal cords. The most examined type of cells used in SCI research are mesenchymal stromal cells (MSCs). These cells are at the center of interest of scientists because of their unique properties. MSCs regenerate the injured tissue in two ways: (i) they are able to differentiate into some types of cells and so can replace the cells of injured tissue and (ii) they regenerate tissue through their powerful known paracrine effect. This review presents information about SCI and the treatments usually used, aiming at cell therapy using MSCs and their products, among which active biomolecules and extracellular vesicles predominate.
Collapse
Affiliation(s)
- Lucia Slovinska
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
| |
Collapse
|
21
|
Hu H, Long H, Ren Z, Liu T, Xu J, Xiao F. Partially brain effects of injection of human umbilical cord mesenchymal stem cells at injury sites in a mouse model of thoracic spinal cord contusion. Front Mol Neurosci 2023; 16:1179175. [PMID: 37342099 PMCID: PMC10278944 DOI: 10.3389/fnmol.2023.1179175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Purpose The pain caused by spinal cord injury (SCI) poses a major burden on patients, and pain management is becoming a focus of treatment. Few reports have described changes in the brain after SCI. Particularly, the exact mechanism through which brain regions affect post-injury pain remains unclear. In this study, we aimed to determine the potential therapeutic mechanisms of pain. A mouse model of spinal cord contusion was established, and molecular expression in the anterior cingulate cortex (ACC) and periaqueductal gray (PAG) in the brain and animal behavior was observed after local injection of human umbilical cord mesenchymal stem cells (HU-MSCs) at the site of SCI. Method Sixty-three female C57BL/6J mice were divided into four groups: a sham operation group (n = 15); a spinal injury group (SCI, n = 16); an SCI + HU-MSCs group (n = 16) and an SCI + PBS group (n = 16), in which the SCI site was injected with HU-MSCs/phosphate buffer. The BMS score was determined, and the von Frey test and Hargreaves test were used to assess behavior every week after surgery. Mice were sacrificed in the fourth week after operation, and samples were collected. The expression of CGRP, Substance P, C-Fos and KCC2 in the ACC and PAG were observed with immunohistochemistry. Chromic cyanine staining was used to observe transverse sections of the injured spinal cord. Result In the ACC and PAG after SCI, the expression of CGRP, SP and C-Fos increased, and the expression of KCC2 decreased, whereas after HU-MSC injection, the expression of CGRP, SP and C-Fos decreased, and the expression of KCC2 increased. The SCI + HU-MSC group showed better exercise ability from 2 to 4 weeks after surgery than the SCI/SCI + PBS groups (P < 0.001). Local injection of HU-MSCs significantly improved the mechanical hyperalgesia caused by SCI in the fourth week after surgery (P < 0.0001), and sensation was significantly recovered 2 weeks after surgery (P < 0.0001); no improvement in thermal hypersensitivity was observed (P > 0.05). The HU-MSC group retained more white matter than the SCI/SCI + PBS groups (P < 0.0001). Conclusion Local transplantation of HU-MSCs at the site of SCI partially relieves the neuropathic pain and promotes recovery of motor function. These findings suggest a feasible direction for the future treatment of SCI.
Collapse
Affiliation(s)
- Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Houqing Long
- Department of Spine Surgery, Orthopaedic, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University/The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhenxiao Ren
- Department of Spine Surgery, Orthopaedic, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University/The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianhua Liu
- Department of Oncology, Guangzhou Modern Hospital, Guangzhou, Guangdong, China
| | - Jinghui Xu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Zhai ZH, Li J, You Z, Cai Y, Yang J, An J, Zhao DP, Wang HJ, Dou MM, Du R, Qin J. Feline umbilical cord-derived mesenchymal stem cells: isolation, identification, and antioxidative stress role through NF-κB signaling pathway. Front Vet Sci 2023; 10:1203012. [PMID: 37303730 PMCID: PMC10249476 DOI: 10.3389/fvets.2023.1203012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
At present, the differentiation potential and antioxidant activity of feline umbilical cord-derived mesenchymal stem cells (UC-MSCs) have not been clearly studied. In this study, feline UC-MSCs were isolated by tissue adhesion method, identified by flow cytometry detection of cell surface markers (CD44, CD90, CD34, and CD45), and induced differentiation toward osteogenesis and adipogenesis in vitro. Furthermore, the oxidative stress model was established with hydrogen peroxide (H2O2) (100 μM, 300 μM, 500 μM, 700 μM, and 900 μM). The antioxidant properties of feline UC-MSCs and feline fibroblasts were compared by morphological observation, ROS detection, cell viability via CCK-8 assay, as well as oxidative and antioxidative parameters via ELISA. The mRNA expression of genes related to NF-κB pathway was detected via quantitative real-time polymerase chain reaction, while the levels of NF-κB signaling cascade-related proteins were determined via Western Blot. The results showed that feline UC-MSCs highly expressed CD44 and CD90, while negative for CD34 and CD45 expression. Feline UC-MSCs cultured under osteogenic and adipogenic conditions showed good differentiation capacity. After being exposed to different concentrations of H2O2 for eight hours, feline UC-MSCs exhibited the significantly higher survival rate than feline fibroblasts. A certain concentration of H2O2 could up-regulate the activities of SOD2 and GSH-Px in feline UC-MSCs. The expression levels of p50, MnSOD, and FHC mRNA in feline UC-MSCs stimulated by 300 μM and 500 μM H2O2 significantly increased compared with the control group. Furthermore, it was observed that 500 μM H2O2 significantly enhanced the protein levels of p-IκB, IκB, p-p50, p50, MnSOD, and FHC, which could be reversed by BAY 11-7,082, a NF-κB signaling pathway inhibitor. In conclusion, it was confirmed that feline UC-MSCs, with good osteogenesis and adipogenesis abilities, had better antioxidant property which might be related to NF-κB signaling pathway. This study lays a foundation for the further application of feline UC-MSCs in treating the various inflammatory and oxidative injury diseases of pets.
Collapse
Affiliation(s)
- Zhu-Hui Zhai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhao You
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yang Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Yang
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Di-Peng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - He-Jie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min-Min Dou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
23
|
Venkatesan M, Zhang N, Marteau B, Yajima Y, De Zarate Garcia NO, Fang Z, Hu T, Cai S, Ford A, Olszewski H, Borst A, Coskun AF. Spatial subcellular organelle networks in single cells. Sci Rep 2023; 13:5374. [PMID: 37005468 PMCID: PMC10067843 DOI: 10.1038/s41598-023-32474-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Organelles play important roles in human health and disease, such as maintaining homeostasis, regulating growth and aging, and generating energy. Organelle diversity in cells not only exists between cell types but also between individual cells. Therefore, studying the distribution of organelles at the single-cell level is important to understand cellular function. Mesenchymal stem cells are multipotent cells that have been explored as a therapeutic method for treating a variety of diseases. Studying how organelles are structured in these cells can answer questions about their characteristics and potential. Herein, rapid multiplexed immunofluorescence (RapMIF) was performed to understand the spatial organization of 10 organelle proteins and the interactions between them in the bone marrow (BM) and umbilical cord (UC) mesenchymal stem cells (MSCs). Spatial correlations, colocalization, clustering, statistical tests, texture, and morphological analyses were conducted at the single cell level, shedding light onto the interrelations between the organelles and comparisons of the two MSC subtypes. Such analytics toolsets indicated that UC MSCs exhibited higher organelle expression and spatially spread distribution of mitochondria accompanied by several other organelles compared to BM MSCs. This data-driven single-cell approach provided by rapid subcellular proteomic imaging enables personalized stem cell therapeutics.
Collapse
Affiliation(s)
- Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benoit Marteau
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yukina Yajima
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nerea Ortiz De Zarate Garcia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Departamento de Bioingenieria e Ingenieria Aeroespacial, Universidad Carlos III de Madrid, Getafe, Spain
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam Ford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Harrison Olszewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew Borst
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
24
|
Zhang K, Li P, Jia Y, Liu M, Jiang J. Concise review: Current understanding of extracellular vesicles to treat neuropathic pain. Front Aging Neurosci 2023; 15:1131536. [PMID: 36936505 PMCID: PMC10020214 DOI: 10.3389/fnagi.2023.1131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Extracellular vesicles (EVs) including exosomes are vesicular vesicles with phospholipid bilayer implicated in many cellular interactions and have the ability to transfer multiple types of cargo to cells. It has been found that EVs can package various molecules including proteins and nucleic acids (DNA, mRNA, and noncoding RNA). The discovery of EVs as carriers of proteins and various forms of RNA, such as microRNAs (miRNA) and long noncoding RNAs (lncRNA), has raised great interest in the field of drug delivery. Despite the underlying mechanisms of neuropathic pain being unclear, it has been shown that uncontrolled glial cell activation and the neuroinflammation response to noxious stimulation are important in the emergence and maintenance of neuropathic pain. Many studies have demonstrated a role for noncoding RNAs in the pathogenesis of neuropathic pain and EVs may offer possibilities as carriers of noncoding RNAs for potential in neuropathic pain treatment. In this article, the origins and clinical application of EVs and the mechanism of neuropathic pain development are briefly introduced. Furthermore, we demonstrate the therapeutic roles of EVs in neuropathic pain and that this involve vesicular regulation of glial cell activation and neuroinflammation.
Collapse
|
25
|
Yin Q, Zou T, Sun S, Yang D. Cell therapy for neuropathic pain. Front Mol Neurosci 2023; 16:1119223. [PMID: 36923653 PMCID: PMC10008860 DOI: 10.3389/fnmol.2023.1119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or a condition that affects the somatosensory system. Pathophysiologically, NP can be ascribed to peripheral and central sensitization, implicating a wide range of molecular pathways. Current pharmacological and non-pharmacological approaches are not very efficacious, with over half of NP patients failing to attain adequate pain relief. So far, pharmacological and surgical treatments have focused primarily on symptomatic relief by modulating pain transduction and transmission, without treating the underlying pathophysiology. Currently, researchers are trying to use cell therapy as a therapeutic alternative for the treatment of NP. In fact, mounting pre-clinical and clinical studies showed that the cell transplantation-based therapy for NP yielded some encouraging results. In this review, we summarized the use of cell grafts for the treatment of NP caused by nerve injury, synthesized the latest advances and adverse effects, discussed the possible mechanisms to inform pain physicians and neurologists who are endeavoring to develop cell transplant-based therapies for NP and put them into clinical practice.
Collapse
Affiliation(s)
- QingHua Yin
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - TianHao Zou
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuJun Sun
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Yousefifard M, Sarveazad A, Janzadeh A, Behroozi Z, Nasirinezhad F. Pain Alleviating Effect of Adipose-Derived Stem Cells Transplantation on the Injured Spinal Cord: A Behavioral and Electrophysiological Evaluation. J Stem Cells Regen Med 2022; 18:53-63. [PMID: 36713791 PMCID: PMC9837693 DOI: 10.46582/jsrm.1802010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Few studies are conducted on the efficacy of human adipose-derived stem cells (ADSCs) in spinal cord injury (SCI) management and electrophysiological changes in the spinal cord. Therefore, the present study aimed to determine the effect of ADSCs on neuropathic pain, motor function recovery, and electrophysiology assessment. For the purpose of this study, adult male Wistar rats (weight: 140-160 gr, n = 42) were randomly allocated into five groups namely intact animals, sham-operated, SCI non-treated animals, vehicle-treated (culture media), and ADSCs treated groups. One week after clips compression SCI induction, about 1×106 cells were transplanted into the spinal cord. As well, both neuropathic pain (allodynia and hyperalgesia) and motor function were measured weekly. Cavity size, ADSCs survival, and electrophysiology assessments were measured at the end of the eighth week. The transplantation of ADSCs resulted in a significant improvement in the locomotion of SCI animals (p<0.0001), mechanical allodynia (p<0.0001), cold allodynia (p<0.0001), mechanical hyperalgesia (p<0.0001), and thermal hyperalgesia (p<0.0001). The cavity size was significantly smaller among the ADSCs-treated animals (p <0.0001). The single-unit recording showed that the transplantation of ADSCs decreased wide dynamic range (WDR) in neurons and it evoked potential in response to receiving signals from Aβ (p<0.0001) and Aδ (p=0.003) C-fiber (p<0.0001) neurons. Post-discharge recorded from WDR neurons decreased after the transplantation of ADSCs (p<0.0001) and wind up in the ADSCs-treated group was lower than that of the SCI group (p=0.003). Our results showed that the transplantation of ADSCs could significantly alleviate neuropathic pain, enhance motor function recovery, and improve electrophysiology findings after SCI.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran,Nursing care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Cellular and molecular research center, Iran University of Medical Sciences, Tehran, Iran,Centre for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Farinaz Nasirinezhad, Cellular, and molecular research center, Iran University of Medical Sciences, Tehran, Iran., Tel/Fax: +982188622709.
| |
Collapse
|
27
|
Li S, Huang C, Tu C, Chen R, Ren X, Qi L, Li Z. Bone marrow mesenchymal stem cell-derived exosomes shuttling miR-150-5p alleviates mechanical allodynia in rats by targeting NOTCH2 in microglia. Mol Med 2022; 28:133. [DOI: 10.1186/s10020-022-00561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study probes into the function and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes loaded with miR-150-5p in mechanical allodynia.
Methods
BMSCs were infected with miR-150-5p inhibition lentiviruses to obtain exosomes with low miR-150-5p expression. A L5 spinal nerve ligation (SNL) model was established in rats where exosomes, NOTCH2 overexpression/inhibition plasmids, or microglial cells were intrathecally administered. Hind paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. TUNEL staining was used to measure the apoptotic rate in rat spinal dorsal horn (SDH), ELISA to evaluate pro-inflammatory factor levels, and RT-qPCR, western blotting, and immunohistochemistry to detect miR-150-5p and NOTCH2 expression. Immunofluorescence was used for localizing exosomes and NOTCH2 and detecting the expression of OX42, a maker for microglia. Dual luciferase reporter and RNA pull down assays were performed to validate the putative binding between miR-150-5p and NOTCH2.
Results
NOTCH2 expressed at a high level and miR-150-5p was downregulated in SDH of SNL rats. Exosomes injected were localized in rat SDH. BMSC-exosomes or NOTCH2 downregulation increased PWT and PWL of SNL rats and reduced apoptosis and inflammation in SDH. In contrast, NOTCH2 overexpression aggravated mechanical allodynia and SDH injury. Moreover, inhibiting miR-150-5p in BMSC-exosomes offset the therapeutic effects of BMSC-exosomes. Microglia activation induced mechanical allodynia in wild rats, while intrathecal injection of microglial cells incubated with BMSC-exosomes showed alleviated mechanical allodynia in SNL rats. NOTCH2 was targeted by miR-150-5p.
Conclusion
BMSC-derived exosomal miR-150-5p alleviates mechanical allodynia by targeting NOTCH2 in microglial cells.
Collapse
|
28
|
Yousefifard M, Askarian-Amiri S, Nasseri Maleki S, Rafiei Alavi SN, Madani Neishaboori A, Haghani L, Vaccaro AR, Harrop JS, Lu Y, Rahimi-Movaghar V, Hosseini M. Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:3469-3488. [DOI: 10.1007/s10143-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
|
29
|
Yousefifard M, Janzadeh A, Ali KM, Vazirizadeh-Mahabadi MH, Sarveazad A, Madani Neishaboori A, Hosseini M. Chondroitinase ABC Administration in Locomotion Recovery After Spinal Cord Injury: A Systematic Review and Meta-analysis. Basic Clin Neurosci 2022; 13:609-624. [PMID: 37313020 PMCID: PMC10258590 DOI: 10.32598/bcn.2021.1422.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 06/12/2021] [Indexed: 11/02/2023] Open
Abstract
Introduction The present systematic review and meta-analysis aims to conduct a comprehensive and complete search of electronic resources to investigate the role of administrating Chondroitinase ABC (ChABC) in improving complications following Spinal Cord Injuries (SCI). Methods MEDLINE, Embase, Scopus, and Web of Sciences databases were searched until the end of 2019. Two independent reviewers assessed the studies conducted on rats and mice and summarized the data. Using the STATA 14.0 software, the findings were reported as pooled standardized mean differences (SMD) with 95% confidence intervals (CI). Results A total of 34 preclinical studies were included. ChABC administration improves locomotion recovery after SCI (SMD=0.90; 95% CI: 0.61 to 1.20; P<0.001). The subgroup analysis showed that the differences in the SCI model (P=0.732), the severity of the injury (P=0.821), the number of ChABC administrations (P=0.092), the blinding status (P=0.294), the use of different locomotor score (P=0.567), and the follow-up duration (P=0.750) have no effect on the efficacy of ChABC treatment. Conclusion The findings of the present study showed that prescribing ChABC has a moderate effect in improving locomotion after SCI in mice and rats. However, this moderate effect introduces ChABC as adjuvant therapy and not as primary therapy.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Department of Physiology, Researcher at Physiology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kosar Mohamed Ali
- Department of Respiratory Medicine, School of Medicine, University of Sulaimani, Sulaimani, Iraq
| | | | - Arash Sarveazad
- Colorectal Research Center, Researcher at Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arian Madani Neishaboori
- Researcher at Physiology Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Bhagwani A, Chopra M, Kumar H. Spinal Cord Injury Provoked Neuropathic Pain and Spasticity, and Their GABAergic Connection. Neurospine 2022; 19:646-668. [PMID: 36203291 PMCID: PMC9537837 DOI: 10.14245/ns.2244368.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is the devastating neurological damage to the spinal cord that becomes more complicated in the secondary phase. The secondary injury comes with inevitable long-lasting complications, such as chronic neuropathic pain (CNP) and spasticity which interfere with day to day activities of SCI patients. Mechanisms underlying CNP post-SCI are complex and remain refractory to current medical treatment. Due to the damage, extensive inhibitory, excitatory tone dysregulation causes maladaptive synaptic transmissions, further altering the nociceptive and nonnociceptive pathways. Excitotoxicity mediated GABAergic cell loss, downregulation of glutamate acid decarboxylase enzyme, upregulation of gamma-aminobutyric acid (GABA) transporters, overactivation of glutamate receptors are some of the key evidence for hypoactive inhibitory tone contributing to CNP and spasticity post-SCI. Restoring the inhibitory GABAergic tone and preventing damage-induced excitotoxicity by employing various strategies provide neuroprotective and analgesic effects. The present article will discuss CNP and spasticity post-SCI, understanding their pathophysiological mechanisms, especially GABA-glutamate-related mechanisms, therapeutic interventions targeting them, and progress regarding how regulating the excitatory-inhibitory tone may lead to more targeted treatments for these distressing complications. Taking background knowledge of GABAergic analgesia and recent advancements, we aim to highlight how far we have reached in promoting inhibitory GABAergic tone for SCI-CNP and spasticity.
Collapse
Affiliation(s)
- Ankita Bhagwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India,Corresponding Author Hemant Kumar Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air force Station, Palaj, Gandhinagar-382355, Gujarat, India ,
| |
Collapse
|
31
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 351] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
32
|
Kan H, Fan L, Gui X, Li X, Yang S, Huang Y, Chen L, Shen W. Stem Cell Therapy for Neuropathic Pain: A Bibliometric and Visual Analysis. J Pain Res 2022; 15:1797-1811. [PMID: 35769691 PMCID: PMC9236174 DOI: 10.2147/jpr.s365524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neuropathic pain is intractable and current treatment modalities are ineffective to cure this intractable pain, which has become a global problem. In recent years, there have been an increasing number of studies on stem cell therapy for neuropathic pain that have shown enormous potential. Using a visual analysis approach of the existing literature on stem cell therapy for neuropathic pain, we hope to understand the current research status and hot issues in this field and to provide valuable predictions for future research in this field. Methods We used Citespace software to visually analyze 291 articles and reviews indexed by the Web of Science Core Collection Database exploring stem cell-based treatment of neuropathic pain from 1995 to 2021. The Gunnmap online world map evaluated the number of countries and regional articles separately. Microsoft Excel 2016 was used to generate a graph of trends in annual publications. Results Visualization analysis revealed that the number of publications has increased yearly. The top three countries in terms of number of articles published are United States, China, and Japan. Analysis of highly co-cited articles revealed that the contents of these articles primarily involved the expression of IL-1β, IL-10, NPY, TRPA1, p-p38, p-ERK1/2, TGF-β, PKCδ, CaMKIIɑ, P2X4, P2X7 and TNF-ɑ. Keywords and citation burst analysis demonstrated that activation, regeneration, chemotherapy, and expression are likely the research hotspots and future directions of stem cell research in neuropathic pain. Conclusion Stem cell therapy may be a potential means of future treatment of neuropathic pain. The study of the mechanisms underlying stem cell therapy for neuropathic pain is still a focus of future research.
Collapse
Affiliation(s)
- Houming Kan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu, People's Republic of China
| | - Lijun Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaodie Gui
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoqiang Li
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Sen Yang
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yuting Huang
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Liping Chen
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Wen Shen
- Department of Pain, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Rahimi B, Aliaghaei A, Ramezani F, Behroozi Z, Nasirinezhad F. Sertoli cell transplantation attenuates microglial activation and inhibits TRPC6 expression in neuropathic pain induced by spinal cord injury. Physiol Behav 2022; 251:113807. [PMID: 35427673 DOI: 10.1016/j.physbeh.2022.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cell therapy is a promising treatment method for relieving neuropathic pain caused by spinal cord injuries (SCI). Sertoli cells (SCs) are an attractive choice given their demonstrated secretion of growth factors and immunosuppressant effect. This study mechanistically characterizes the analgesic effect of SCs transplantation. METHODS The clip compression SCI model was carried out on the T12-T13 level in male Wistar rats. One-week post-SCI, SCs were transplanted into the site of injury. Animals underwent Basso, Beattie, and Bresnahan locomotor scoring, mechanical allodynia, and thermal hyperalgesia on a weekly basis for a duration of six weeks. Histological examination of the spinal cord and molecular evaluation of Iba-1, P2Y4, TRPC6, and P-mTOR were performed. SCs survival, measured by anti-Müllerian hormone expression in the spinal cord. RESULTS Animals that received SCs transplantation showed improvement in motor function recovery and pain relief. Furthermore, a cavity was significantly decreased in the transplanted animals (p = 0.0024), the expression level of TRPC6 and caspase3 and the number of activated microglia decreased compared to the SCI animals, and p-mTOR and P2Y4R expression remarkably increased compared to the SCI group. CONCLUSION SCs transplantation produces an analgesic effect which may represent a promising treatment for SCI-induced chronic pain.
Collapse
Affiliation(s)
- Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Center for experimental and comparative study, Iran university of medical sciences, Tehran, Iran.
| |
Collapse
|
34
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
36
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
37
|
Ray SK, Mukherjee S. Clinical Practice of Umbilical Cord Blood Stem Cells in Transplantation and Regenerative Medicine - Prodigious Promise for Imminent Times. Recent Pat Biotechnol 2021; 16:16-34. [PMID: 34702158 DOI: 10.2174/1872208315666211026103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
The umbilical cord blood is usually disposed of as an unwanted material after parturition; however, today, it is viewed as a regenerative medication so as to create the organ tissues. This cord blood gathered from the umbilical cord is made up of mesenchymal stem cells, hematopoietic stem cells, and multipotent non-hematopoietic stem cells having many therapeutic effects as these stem cells are utilized to treat malignancies, hematological ailments, inborn metabolic problem, and immune deficiencies. Presently, numerous clinical applications for human umbilical cord blood inferred stem cells, as stem cell treatment initiate new research. These cells are showing such a boon to stem cell treatment; it is nevertheless characteristic that the prospect of conservation of umbilical cord blood is gaining impetus. Current research works have demonstrated that about 80 diseases, including cancer, can be treated or relieved utilizing umbilical cord blood stem cells, and every year, many transplants have been effectively done around the world. However, in terms of factors, including patient selection, cell preparation, dosing, and delivery process, the treatment procedure for therapy with minimally manipulated stem cells can be patented. It is also worth thinking about how this patent could affect cord blood banks. Meanwhile, the utilization of cord blood cells is controversial and adult-derived cells may not be as successful, so numerous clinicians have begun working with stem cells that are acquired from umbilical cord blood. This review epitomizes a change in outlook from what has been completed with umbilical cord blood cell research and cord blood banking on the grounds that cord blood cells do not require much in the method of handling for cryopreservation or for transplantation in regenerative medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. 0
| |
Collapse
|
38
|
袁 欣, 丁 璐, 邓 宇. [Research progress of hydrogel combined with mesenchymal stem cells in the treatment of spinal cord injury]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:805-811. [PMID: 34459182 PMCID: PMC9927541 DOI: 10.7507/1001-5515.202005055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 04/27/2021] [Indexed: 11/03/2022]
Abstract
Spinal cord injury (SCI) is a complex pathological process. Based on the encouraging results of preclinical experiments, some stem cell therapies have been translated into clinical practice. Mesenchymal stem cells (MSCs) have become one of the most important seed cells in the treatment of SCI due to their abundant sources, strong proliferation ability and low immunogenicity. However, the survival rate of MSCs transplanted to spinal cord injury is rather low, which hinders its further clinical application. In recent years, hydrogel materials have been widely used in tissue engineering because of their good biocompatibility and biodegradability. The treatment strategy of hydrogel combined with MSCs has made some progress in SCI repair. This review discusses the significance and the existing problems of MSCs in the repair of SCI. It also describes the research progress of hydrogel combined with MSCs in repairing SCI, and prospects its application in clinical research, aiming at providing reference and new ideas for future SCI treatment.
Collapse
Affiliation(s)
- 欣 袁
- 中山大学附属第七医院 科研中心(广东深圳 518107)Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - 璐 丁
- 中山大学附属第七医院 科研中心(广东深圳 518107)Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R.China
| | - 宇斌 邓
- 中山大学附属第七医院 科研中心(广东深圳 518107)Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R.China
| |
Collapse
|
39
|
Huang F, Gao T, Wang W, Wang L, Xie Y, Tai C, Liu S, Cui Y, Wang B. Engineered basic fibroblast growth factor-overexpressing human umbilical cord-derived mesenchymal stem cells improve the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery of spinal cord injury by activating the PI3K-Akt-GSK-3β signaling pathway. Stem Cell Res Ther 2021; 12:468. [PMID: 34419172 PMCID: PMC8379754 DOI: 10.1186/s13287-021-02537-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives To investigate the safety for clinic use and therapeutic effects of basic fibroblast growth factor (bFGF)-overexpressing human umbilical cord-derived mesenchymal stem cells (HUCMSCs) in mice with completely transected spinal cord injury (SCI). Methods Stable bFGF-overexpressing HUCMSCs clones were established by electrotransfection and then subjected to systematic safety evaluations. Then, bFGF-overexpressing and control HUCMSCs were used to treat mice with completely transected SCI by tail intravenous injection. Therapeutic outcomes were then investigated, including functional recovery of locomotion, histological structures, nerve regeneration, and recovery mechanisms. Results Stable bFGF-overexpressing HUCMSCs met the standards and safety of MSCs for clinic use. In the mouse SCI model, stable bFGF-overexpressing HUCMSCs markedly improved therapeutic outcomes such as reducing glial scar formation, improving nerve regeneration and proliferation of endogenous neural stem cells (NSCs), and increasing locomotion functional recovery of posterior limbs compared with the control HUCMSCs group. Furthermore, bFGF-overexpressing HUCMSCs promoted the proliferation and neuronal differentiation of NSCs in vitro through the PI3K-Akt-GSK-3β pathway. Conclusion bFGF-overexpressing HUCMSCs meet the requirements of clinical MSCs and improve evident therapeutic outcomes of mouse SCI treatment, which firmly supports the safety and efficacy of gene-modified MSCs for clinical application.
Collapse
Affiliation(s)
- Feifei Huang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Wenqing Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxun Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
40
|
Rafiei Alavi SN, Madani Neishaboori A, Hossein H, Sarveazad A, Yousefifard M. Efficacy of adipose tissue-derived stem cells in locomotion recovery after spinal cord injury: a systematic review and meta-analysis on animal studies. Syst Rev 2021; 10:213. [PMID: 34330329 PMCID: PMC8325264 DOI: 10.1186/s13643-021-01771-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Considerable disparities exist on the use of adipose tissue-derived stem cells (ADSCs) for treatment of spinal cord injury (SCI). Hence, the current systematic review aimed to investigate the efficacy of ADSCs in locomotion recovery following SCI in animal models. METHODS A search was conducted in electronic databases of MEDLINE, Embase, Scopus, and Web of Science until the end of July 2019. Reference and citation tracking and searching Google and Google Scholar search engines were performed to achieve more studies. Animal studies conducted on rats having SCI which were treated with ADSCs were included in the study. Exclusion criteria were lacking a non-treated control group, not evaluating locomotion, non-rat studies, not reporting the number of transplanted cells, not reporting isolation and preparation methods of stem cells, review articles, combination therapy, use of genetically modified ADSCs, use of induced pluripotent ADSCs, and human trials. Risk of bias was assessed using Hasannejad et al.'s proposed method for quality control of SCI-animal studies. Data were analyzed in STATA 14.0 software, and based on a random effect model, pooled standardized mean difference with a 95% confidence interval was presented. RESULTS Of 588 non-duplicated papers, data from 18 articles were included. Overall risk of bias was high risk in 8 studies, some concern in 9 studies and low risk in 1 study. Current evidence demonstrated that ADSCs transplantation could improve locomotion following SCI (standardized mean difference = 1.71; 95%CI 1.29-2.13; p < 0.0001). A considerable heterogeneity was observed between the studies (I2 = 72.0%; p < 0.0001). Subgroup analysis and meta-regression revealed that most of the factors like injury model, the severity of SCI, treatment phase, injury location, and number of transplanted cells did not have a significant effect on the efficacy of ADSCs in improving locomotion following SCI (pfor odds ratios > 0.05). CONCLUSION We conclude that any number of ADSCs by any prescription routes can improve locomotion recovery in an SCI animal model, at any phase of SCI, with any severity. Given the remarkable bias about blinding, clinical translation of the present results is tough, because in addition to the complexity of the nervous system and the involvement of far more complex motor circuits in the human, blinding compliance and motor outcome assessment tests in animal studies and clinical trials are significantly different.
Collapse
Affiliation(s)
| | - Arian Madani Neishaboori
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran
| | - Hasti Hossein
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Niayesh St, Satarkhan Av, P.O Box: 14665-354, 1449614535, Tehran, Iran. .,Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran.
| |
Collapse
|
41
|
Alavi SNR, Neishaboori AM, Yousefifard M. Extracorporeal shockwave therapy in spinal cord injury, early to advance to clinical trials? A systematic review and meta-analysis on animal studies. Neuroradiol J 2021; 34:552-561. [PMID: 34224252 DOI: 10.1177/19714009211026899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND As there is no consensus over the efficacy of extracorporeal shockwave therapy in the management of spinal cord injury complications, the current meta-analysis aims to investigate preclinical evidence on the matter. METHODS The search strategy was developed based on keywords related to 'spinal cord injury' and 'extracorporeal shockwave therapy'. A primary search was conducted in Medline, Embase, Scopus and Web of Science until the end of 2020. Studies which administered extracorporeal shockwave therapy on spinal cord injury animal models and evaluated motor function and/or histological findings were included. The standardised mean difference with a 95% confidence interval (CI) were calculated. RESULTS Seven articles were included. Locomotion was significantly improved in the extracorporeal shockwave therapy treated group (standardised mean difference 1.68, 95% CI 1.05-2.31, P=0.032). It seems that the efficacy of extracorporeal shockwave therapy with an energy flux density of 0.1 mJ/mm2 is higher than 0.04 mJ/mm2 (P=0.044). Shockwave therapy was found to increase axonal sprouting (standardised mean difference 1.31, 95% CI 0.65, 1.96), vascular endothelial growth factor tissue levels (standardised mean difference 1.36, 95% CI 0.54, 2.18) and cell survival (standardised mean difference 2.49, 95% CI 0.93, 4.04). It also significantly prevents axonal degeneration (standardised mean difference 2.25, 95% CI 1.47, 3.02). CONCLUSION Extracorporeal shockwave therapy significantly improves locomotor recovery in spinal cord injury animal models through neural tissue regeneration. Nonetheless, in spite of the promising results and clinical application of extracorporeal shockwave therapy in various conditions, current evidence implies that designing clinical trials on extracorporeal shockwave therapy in the management of spinal cord injury may not be soon. Hence, further preclinical studies with the effort to reach the safest and the most efficient treatment protocol are needed.
Collapse
Affiliation(s)
| | | | - Mahmoud Yousefifard
- Physiology Research Center, 440827Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Bryk M, Karnas E, Mlost J, Zuba-Surma E, Starowicz K. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. Br J Pharmacol 2021; 179:4281-4299. [PMID: 34028798 DOI: 10.1111/bph.15569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells of mesodermal origin. Due to their capacity for self-renewal and differentiation into several cell types, MSCs have been extensively studied in experimental biology and regenerative medicine in recent years. Moreover, MSCs release extracellular vesicles (EVs), which might be partly responsible for their regenerative properties. MSCs regulate several processes in target cells via paracrine signalling, such as immunomodulation, anti-apoptotic signalling, tissue remodelling, angiogenesis and anti-fibrotic signalling. The aim of this review is to provide a detailed description of the functional properties of MSCs and EVs and their potential clinical applications, with a special focus on pain treatment. The analgesic, anti-inflammatory and regenerative properties of MSCs and EVs will be discussed for several diseases, such as neuropathic pain, osteoarthritis and spinal cord injury.
Collapse
Affiliation(s)
- Marta Bryk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jakub Mlost
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
43
|
Chen Y, Tian Z, He L, Liu C, Wang N, Rong L, Liu B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res Ther 2021; 12:224. [PMID: 33820561 PMCID: PMC8022427 DOI: 10.1186/s13287-021-02282-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background Exosomes derived from the bone marrow mesenchymal stem cell (MSC) have shown great potential in spinal cord injury (SCI) treatment. This research was designed to investigate the therapeutic effects of miR-26a-modified MSC-derived exosomes (Exos-26a) following SCI. Methods Bioinformatics and data mining were performed to explore the role of miR-26a in SCI. Exosomes were isolated from miR-26a-modified MSC culture medium by ultracentrifugation. A series of experiments, including assessment of Basso, Beattie and Bresnahan scale, histological evaluation, motor-evoked potential recording, diffusion tensor imaging, and western blotting, were performed to determine the therapeutic influence and the underlying molecular mechanisms of Exos-26a in SCI rats. Results Exos-26a was shown to promote axonal regeneration. Furthermore, we found that exosomes derived from miR-26a-modified MSC could improve neurogenesis and attenuate glial scarring through PTEN/AKT/mTOR signaling cascades. Conclusions Exosomes derived from miR-26a-modified MSC could activate the PTEN-AKT-mTOR pathway to promote axonal regeneration and neurogenesis and attenuate glia scarring in SCI and thus present great potential for SCI treatment. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02282-0.
Collapse
Affiliation(s)
- Yuyong Chen
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Zhenming Tian
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Lei He
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Can Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Nangxiang Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
44
|
Yang Q, Yao Y, Zhao D, Zou H, Lai C, Xiang G, Wang G, Luo L, Shi Y, Li Y, Yang M, Huang X. LncRNA H19 secreted by umbilical cord blood mesenchymal stem cells through microRNA-29a-3p/FOS axis for central sensitization of pain in advanced osteoarthritis. Am J Transl Res 2021; 13:1245-1256. [PMID: 33841653 PMCID: PMC8014348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the molecular mechanism of umbilical cord blood mesenchymal stem cells (UCBMSCs) in the treatment of advanced osteoarthritis pain. METHODS Normal healthy rats were selected to establish advanced osteoarthritis (OA) model, and the rats were randomly divided into control group, intravenous group, intracavitary group and intrathecal group. The intravenous group received intravenous injection of UCBMSCs, intracavitary group received intra-articular injection of UCBMSCs, and intrathecal group received subarachnoid injection of UCBMSCs. The pain behavior and serum pro-inflammatory factor levels were evaluated before and after treatment. microRNA-29a-3p and FOS mRNA in spinal dorsal horn was detected using qPCR, the phosphorylation of c-fos protein and NR1, NR2B, ERK and PKCg was detected using Western blot, and the level of LncRNA H19 was detected using qPCR. RESULTS LncRNA H19 was enriched in the exosomes of UCBMSCs. microRNA-29a-3p was the target gene of LncRNA H19, while FOS was the downstream target of microRNA-29a-3p. Pain and inflammation of rats in the intrathecal group improved best, and the phosphorylation levels of c-fos and NR1, NR2B, ERK and PKCg in the spinal dorsal horn of the intrathecal group decreased. LncRNA H19 regulated the central sensitization of astrocytes through microRNA-29a-3p/FOS axis. CONCLUSION Intrathecal injection of umbilical cord blood mesenchymal stem cells can improve the pain and central sensitization of advanced osteoarthritis through LncRNA H19/microRNA-29a-3p/FOS axis.
Collapse
Affiliation(s)
- Qinyan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Daqiang Zhao
- Department of Anesthesiology, Shanghai Jiahui International HospitalShanghai 200233, China
| | - Haibo Zou
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Guan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Le Luo
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610054, Sichuan, China
| | - Yan Li
- School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610054, Sichuan, China
| | - Maozhu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| | - Xiaolun Huang
- Department of Hepatobiliary and Pancreatic Surgery, Cell Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengdu 610072, China
| |
Collapse
|
45
|
Promoting motor functions in a spinal cord injury model of rats using transplantation of differentiated human olfactory stem cells: A step towards future therapy. Behav Brain Res 2021; 405:113205. [PMID: 33636233 DOI: 10.1016/j.bbr.2021.113205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022]
Abstract
Human olfactory ecto-mesenchymal stem cells (hOE-MSCs) derived from the human olfactory mucosa (OM) can be easily isolated and expanded in cultures while their immense plasticity is maintained. To mitigate ethical concerns, the hOE-MSCs can be also transplanted across allogeneic barriers, making them desirable cells for clinical applications. The main purpose of this study was to evaluate the effects of administering the hOE-MSCs on a spinal cord injury (SCI) model of rats. These cells were accordingly isolated and cultured, and then treated in the neurobasal medium containing serum-free Dulbecco's Modified Essential Medium (DMEM) and Ham's F-12 Medium (DMEM/F12) with 2% B27 for two days. Afterwards, the pre-induced cells were incubated in N2B27 with basic fibroblast growth factor (bFGF), fibroblast growth factor 8b (FGF8b), sonic hedgehog (SHH), and ascorbic acid (vitamin C) for six days. The efficacy of the induced cells was additionally evaluated using immunocytochemistry (ICC) and real-time polymerase chain reaction (RT-PCR). The differentiated cells were similarly transplanted into the SC contusions. Functional recovery was further conducted on a weekly basis for eight consecutive weeks. Moreover, cell integration was assessed via conventional histology and ICC, whose results revealed the expression of choline acetyltransferase (ChAT) marker at the induction stage. According to the RT-PCR findings, the highest expression level of insulin gene-enhancer protein (islet-1), oligodendrocyte transcription factor (Olig2), and homeobox protein HB9 was observed at the induction stage. The number of engraftment cells also rose (approximately by 2.5 % ± 0.1) in the motor neuron-like cells derived from the hOE-MSCs-grafted group compared with the OE-MSCs-grafted one. The functional analysis correspondingly revealed that locomotor and sensory scores considerably improved in the rats in the treatment group. These findings suggested that motor neuron-like cells derived from the hOE-MSCs could be utilized as an alternative cell-based therapeutic strategy for SCI.
Collapse
|
46
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. A Review on Stem Cell Therapy for Neuropathic Pain. Curr Stem Cell Res Ther 2021; 15:349-361. [PMID: 32056531 DOI: 10.2174/1574888x15666200214112908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex, chronic pain state that is heterogeneous in nature and caused by the consequence of a lesion or disease affecting the somatosensory system. Current medications give a long-lasting pain relief only in a limited percentage of patients also associated with numerous side effects. Stem cell transplantation is one of the attractive therapeutic platforms for the treatment of a variety of diseases, such as neuropathic pain. Here, the authors review the therapeutic effects of stem cell transplantation of different origin and species in different models of neuropathic pain disorders. Stem cell transplantation could alleviate the neuropathic pain; indeed, stem cells are the source of cells, which differentiate into a variety of cell types and lead trophic factors to migrate to the lesion site opposing the effects of damage. In conclusion, this review suggests that stem cell therapy can be a novel approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Stem Cells from Human Exfoliated Deciduous Teeth Attenuate Trigeminal Neuralgia in Rats. Stem Cells Int 2021; 2021:8819884. [PMID: 33531911 PMCID: PMC7834821 DOI: 10.1155/2021/8819884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Trigeminal neuralgia is an incurable progressive nervous system disease that can last for several months or years. Stem cells from human exfoliated deciduous teeth (SHED) are a candidate source for cell-based therapy. Owing to their neuroprotective and immunomodulatory effects, these neural crest cells have potential roles in mediating chronic pain. In this study, we established a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION) to evaluate the analgesic effect of SHED in neuropathic pain. The effects of local SHED transplantation on inflammatory cell infiltration in the trigeminal nerve were investigated based on hematoxylin and eosin staining. The levels of proinflammatory factors in the injured nerve and transient receptor potential vanilloid type 1 (TRPV1) expression in the trigeminal nerve and ganglion were quantified. The data showed that systemic or local injection of SHED attenuated the sensitivity of rats to mechanical stimuli after nerve injury, and this effect lasted throughout the observation period of 8 weeks. PKH26-labeled SHED were distributed to the ipsilateral trigeminal ganglions 24 and 72 hours after local injection. SHED transplantation at the lesion site led to reduced inflammatory cell infiltration and proinflammatory cytokine levels in the injured nerve and inhibited CCI-ION-induced upregulation of TRPV1 expression in the trigeminal nerve and ganglion in the early phase. Therefore, these results provide preclinical evidence that supports the use of SHED in the treatment of trigeminal neuralgia and potentially other chronic pain conditions.
Collapse
|
48
|
Li Y, Shen PP, Wang B. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy. Neural Regen Res 2021; 16:1500-1509. [PMID: 33433463 PMCID: PMC8323703 DOI: 10.4103/1673-5374.303013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury has long been a prominent challenge in the trauma repair process. Spinal cord injury is a research hotspot by virtue of its difficulty to treat and its escalating morbidity. Furthermore, spinal cord injury has a long period of disease progression and leads to complications that exert a lot of mental and economic pressure on patients. There are currently a large number of therapeutic strategies for treating spinal cord injury, which range from pharmacological and surgical methods to cell therapy and rehabilitation training. All of these strategies have positive effects in the course of spinal cord injury treatment. This review mainly discusses the problems regarding stem cell therapy for spinal cord injury, including the characteristics and action modes of all relevant cell types. Induced pluripotent stem cells, which represent a special kind of stem cell population, have gained impetus in cell therapy development because of a range of advantages. Induced pluripotent stem cells can be developed into the precursor cells of each neural cell type at the site of spinal cord injury, and have great potential for application in spinal cord injury therapy.
Collapse
Affiliation(s)
- Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
49
|
Wanjiang W, Xin C, Yaxing C, Jie W, Hongyan Z, Fei N, Chengmin L, Chengjian F, Jichao Y, Jiangkai L. Curcumin Improves Human Umbilical Cord-Derived Mesenchymal Stem Cell Survival via ERK1/2 Signaling and Promotes Motor Outcomes After Spinal Cord Injury. Cell Mol Neurobiol 2020; 42:1241-1252. [PMID: 33247374 DOI: 10.1007/s10571-020-01018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation is thought to be a promising strategy for treating spinal cord injury (SCI). However, the low survival rate of transplanted hUC-MSCs limits their clinical application in cell replacement therapy. Curcumin can suppress inflammation after SCI; however, it remains unknown whether curcumin can modulate the survival of transplanted hUC-MSCs. In this study, to investigate whether curcumin could strengthen the therapeutic effects of hUC-MSC transplantation on SCI, we induced hUC-MSC apoptosis with TNF-α, transplanted hUC-MSC into SCI rats, and assessed the antiapoptotic effect and mechanism of curcumin. LDH release analysis and flow cytometry demonstrated that TNF-α led to hUC-MSC apoptosis and that curcumin increased the hUC-MSC survival rate in a dose-dependent manner. In addition, we showed that the phosphorylation levels of ERK1/2, JNK, and P38 were upregulated in apoptotic hUC-MSCs, while curcumin increased the phosphorylation of ERK1/2 but did not activate JNK or P38, and these effects were reversed by the p42/44 antagonist U0126. Furthermore, we found that the motor function scores and number of surviving HNA-positive cells were significantly increased after curcumin and hUC-MSC transplantation therapy 8 weeks post-SCI, while U0126 markedly attenuated these effects. These data confirmed that curcumin suppressed hUC-MSC apoptosis through the ERK1/2 signaling pathway and that combined curcumin and hUC-MSC treatment improved motor function in rats after SCI. The current research provides a strong basis for hUC-MSC replacement therapy in conjunction with curcumin in the treatment and management of SCI in humans.
Collapse
Affiliation(s)
- Wu Wanjiang
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Chen Xin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Chen Yaxing
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Wang Jie
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Zhang Hongyan
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Ni Fei
- Department of Field Nursing, School of Nursing, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ling Chengmin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China
| | - Feng Chengjian
- Department of Medical Engineering, 958th Hospital of the People's Liberation Army, Chongqing, 400038, China
| | - Yuan Jichao
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Lin Jiangkai
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Army Medical University), Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
50
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|