1
|
Sharma A, Chorawala MR, Rawal RM, Shrivastava N. Integrated blood and organ profile analysis to evaluate ameliorative effects of kaempferol on 5-fluorouracil-induced toxicity. Sci Rep 2024; 14:2363. [PMID: 38287048 PMCID: PMC10824726 DOI: 10.1038/s41598-024-52915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) treatment strategies encompass a triad of medical interventions: surgery, radiotherapy, and chemotherapy. Among these, the use of chemotherapy, specifically 5-fluorouracil (5-FU), has become a cornerstone in CRC management. However, it is imperative to explore novel approaches that harness the synergistic potential of chemotherapy agents alongside adjunctive compounds to mitigate the severe adverse effects that often accompany treatment. In light of this pressing need, this study focuses on evaluating Kaempferol (KMP) in combination with 5-FU in a DMH-induced CRC animal model, scrutinizing its impact on haematological indices, organ health, and gastrointestinal, hepatotoxic, and nephrotoxic effects. Remarkably, KMP demonstrated haemato-protective attributes and exerted an immunomodulatory influence, effectively counteracting 5-FU-induced damage. Furthermore, organ assessments affirm the safety profile of the combined treatments while suggesting KMP's potential role in preserving the structural integrity of the intestine, and spleen. Histopathological assessments unveiled KMP's capacity to ameliorate liver injury and mitigate CRC-induced renal impairment. These multifaceted findings underscore KMP's candidacy as a promising adjunctive therapeutic option for CRC, underlining the pivotal need for personalized therapeutic strategies that concurrently optimize treatment efficacy and safeguard organ health. KMP holds tremendous promise in elevating the paradigm of CRC management.
Collapse
Affiliation(s)
- Abhilasha Sharma
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | | | - Rakesh M Rawal
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | | |
Collapse
|
2
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Jin JC, Chen BY, Deng CH, Chen JN, Xu F, Tao Y, Hu CL, Xu CH, Chang BH, Wang Y, Fei MY, Liu P, Yu PC, Li ZJ, Li XY, Chen SB, Jiang YL, Chen XC, Zong LJ, Zhang JY, Ren YY, Xu FH, Liu Q, Huang XH, Guo J, He Q, Song LX, Zhou LY, Su JY, Xiao C, Zhang YM, Yan M, Zhang Z, Wu D, Chang CK, Li X, Wang L, Wu LY. ROBO1 deficiency impairs HSPC homeostasis and erythropoiesis via CDC42 and predicts poor prognosis in MDS. SCIENCE ADVANCES 2023; 9:eadi7375. [PMID: 38019913 DOI: 10.1126/sciadv.adi7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.
Collapse
Affiliation(s)
- Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Nan Chen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Bei Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Hui Huang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Mei Zhang
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng Yan
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Karpenko DV. Immune Privileges as a Result of Mutual Regulation of Immune and Stem Systems. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1818-1831. [PMID: 38105201 DOI: 10.1134/s0006297923110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Immune privileges of cancer stem cells is a well-known and widely studied problem, as presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests presence of immune privileges in non-pathological stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathological and normal stem cells raises the question of why stem cells have such a potentially dangerous property. Regulation of vital processes of autoimmunity control and regeneration realized through interactions between immune cells, stem cells, and their microenvironment are reviewed in this work as causes of formation of the stem cell immune privilege. Deep mutual integration between regulations of stem and immune cells is noted. Considering diversity and complexity of mutual regulation of stem cells, their microenvironment, and immune system, I suggest the term "stem system".
Collapse
Affiliation(s)
- Dmitriy V Karpenko
- Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Moscow, 125167, Russia.
| |
Collapse
|
5
|
Garrigós MM, Oliveira FA, Nucci MP, Mamani JB, Dias OFM, Rego GNA, Junqueira MS, Costa CJS, Silva LRR, Alves AH, Valle NME, Marti L, Gamarra LF. Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation. Pharmaceutics 2023; 15:pharmaceutics15030828. [PMID: 36986690 PMCID: PMC10057125 DOI: 10.3390/pharmaceutics15030828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.
Collapse
Affiliation(s)
| | | | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | | | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil
| | | | | | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | - Luciana Marti
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
6
|
Platelet-Derived Mitochondria Attenuate 5-FU-Induced Injury to Bone-Associated Mesenchymal Stem Cells. Stem Cells Int 2023; 2023:7482546. [PMID: 36756493 PMCID: PMC9902133 DOI: 10.1155/2023/7482546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 02/03/2023] Open
Abstract
Background Myelosuppression is a common condition during chemotherapy. Bone-associated mesenchymal stem cells (BA-MSCs) play an essential role in the composition of the hematopoietic microenvironment and support hematopoietic activity. However, chemotherapy-induced damage to BA-MSCs is rarely studied. Recent studies have shown that platelets promote the wound-healing capability of MSCs by mitochondrial transfer. Therefore, this study is aimed at investigating the chemotherapy-induced damage to BA-MSCs and the therapeutic effect of platelet-derived mitochondria. Material/Methods. We established in vivo and in vitro BA-MSC chemotherapy injury models using the chemotherapy agent 5-fluorouracil (5-FU). Changes in the mitochondrial dynamics were detected by transmission electron microscopy, and the expression of mitochondrial fusion and fission genes was analyzed by qRT-PCR. In addition, mitochondrial functions were also explored by flow cytometry and luminometer. Platelet-derived mitochondria were incubated with 5-FU-damaged BA-MSCs to repair the injury, and BA-MSC functional changes were examined to assess the therapy efficacy. The mechanism of treatment was explored by studying the expression of mitochondrial fission and fusion genes and hematopoietic regulatory factor genes in BA-MSCs. Results Stimulation with 5-FU increased the apoptosis and suppressed cell cycle progression of BA-MSCs both in vivo and in vitro. In addition, 5-FU chemotherapy inhibited the hematopoietic regulatory ability and disrupted the mitochondrial dynamics and functions of BA-MSCs. The mitochondrial membrane potential and ATP content of 5-FU-injured BA-MSCs were decreased. Interestingly, when platelet-derived mitochondria were transferred to BA-MSCs, the 5-FU-induced apoptosis was alleviated, and the hematopoietic regulatory ability of 5-FU-injured BA-MSCs was effectively improved by upregulating the expression of mitochondrial fusion genes and hematopoietic regulatory factor genes. Conclusion BA-MSCs were severely damaged by 5-FU chemotherapy both in vivo and in vitro. Meanwhile, platelet-derived mitochondria could attenuate the 5-FU-induced injury to BA-MSCs, which provides future research directions for exploring the treatment strategies for chemotherapy-injured BA-MSCs and establishes a research basis for related fields.
Collapse
|
7
|
Li H, Gu J, Sun X, Zuo Q, Li B, Gu X. Isolation of Swine Bone Marrow Lin-/CD45-/CD133 + Cells and Cardio-protective Effects of its Exosomes. Stem Cell Rev Rep 2023; 19:213-229. [PMID: 35925437 PMCID: PMC9822881 DOI: 10.1007/s12015-022-10432-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification in murine bone marrow (BM) of CD133 + /Lin-/CD45- cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the swine BM. Heart failure is the terminal stage of many cardiovascular diseases, and its key pathological basis is cardiac fibrosis (CF). Research showed that stem cell derived exosomes may play a critical role in cardiac fibrosis. The effect of exosomes (Exos) on CF has remained unclear. OBJECTIVE To establish an isolation and amplification method of CD133 + /Lin-/CD45- cells from newbron swine BM in vitro, explore an highly efficient method to enrich swine bone marrow derived CD133 + /Lin-/CD45- cells and probe into their biological characteristics further. Furher more, to extract exosomes from it and explore its effect on CF. METHODS The mononuclear cells isolated from swine bone marrow by red blood cell (RBC) lysing buffer were coated by adding FcR blocking solution and coupled with CD133 antibody immunomagnetic beads, obtaining CD133 + cell group via Magnetic Activated Cell Sorting (MACS). In steps, the CD133 + /Lin-/CD45- cells were collected by fluorescence-activated cell sorting (FACS) labeled with CD133, Lin and CD45 antibodies, which were cultured and amplified in vitro. The biological features of CD133 + /Lin-/CD45- cells were studied in different aspects, including morphological trait observed with inverted microscope, ultrastructural characteristics observed under transmission electron microscope, expression of pluripotent markersidentified by immunofluorescent staining and Alkaline phosphatase staining. The Exos were extracted using a sequential centrifugation approach and its effects on CF were analyzed in Angiotensin II (Ang-II) induced-cardiac fibrosis in vivo. Rats in each group were treated for 4 weeks, and 2D echocardiography was adopted to evaluate the heart function. The degree of cardiac fibrosis was assessed by Hematoxylin-Eosin (HE) and Masson's trichrome staining. RESULTS The CD133 + /Lin-/CD45- cells accounted for about 0.2%-0.5% of the total mononuclear cells isolated from swine bone marrow. The combination of MACS and FACS to extract CD133 + /Lin-/CD45- cells could improved efficiency and reduced cell apoptosis. The CD133 + /Lin-/CD45- cells featured typical traits of pluripotent stem cells, the nucleus is large, mainly composed of euchromatin, with less cytoplasm and larger nucleoplasmic ratio, which expressed pluripotent markers (SSEA-1, Oct-4, Nanog and Sox-2) and alkaline phosphatase staining was positive.Animal experiment indicated that the cardiac injury related indexes (BNP、cTnI、CK-MB and TNF-α), the expression of key gene Smad3 and the degree of cardiac fibrosis in Exo treatment group were significantly reduced compared with the control group. 4 weeks after the treatment, cardiac ejection fraction (EF) value in the model group showed a remarkable decrease, indicating the induction of HF model. While Exo elevated the EF values, demonstrating cardio-protective effects. CONCLUSION The CD133 + /Lin-/CD45- cells derived from swine bone marrow were successfully isolated and amplified, laying a good foundation for further research on this promising therapeutic cell. The Exos may be a promising potential treatment strategy for CF.
Collapse
Affiliation(s)
- Hongxiao Li
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jianjun Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiaolin Sun
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xiang Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
8
|
Chhabria S, Takle V, Sharma N, Kharkar P, Pansare K, Tripathi A, Tripathi A, Bhartiya D. Extremely Active Nano-formulation of Resveratrol (XAR™) attenuates and reverses chemotherapy-induced damage in mice ovaries and testes. J Ovarian Res 2022; 15:115. [PMID: 36271409 PMCID: PMC9585716 DOI: 10.1186/s13048-022-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fertility preservation and restoration in cancer patients/survivors is the need of present times when increased numbers of patients get cured of cancer but face infertility as a serious side effect. Resveratrol has beneficial effects on chemoablated ovaries and testes in mice but has failed to enter the clinics because of extremely poor bioavailability. The present study was undertaken to evaluate the protective and curative effects of Extremely active Resveratrol (XAR™)- a nano-formulation of resveratrol with significantly improved bioavailability- on mouse ovary and testis after chemotherapy. Effects of XAR™ and FSH were compared on stimulation of follicle growth in adult mice ovaries. XAR™ (25 mg/kg) was administered for two days prior to chemotherapy to study the protective effects on the mouse gonads. XAR™ was also administered for 14 days post chemoablation to study the regenerative effects. Besides effect on numbers of primordial and growing follicles and spermatogenesis, the effect of XAR™ was also evaluated on the transcripts specific for ovarian/testicular stem/progenitor/germ cells, their proliferation, differentiation, meiosis, and the antioxidant indices. RESULTS Similar to FSH, XAR™ increased the numbers of primordial follicles (PF) as well as growing follicles. It protected the gonads from the adverse effects of chemotherapy and showed the ability to regenerate non-functional, chemoablated gonads. Besides stimulating follicle growth in adult ovaries similar to FSH, XAR™ also protected the testes from the adverse effects of chemotherapy and improved spermatogenesis. This was accompanied by improved anti-oxidant indices. CONCLUSIONS The results of the present study potentiate the use of XAR™ in pilot clinical studies to protect gonadal function during oncotherapy and also regenerate non-functional gonads in cancer survivors by improving antioxidant indices and stem cell-based tissue regeneration.
Collapse
Affiliation(s)
- Sagar Chhabria
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Vaishnavi Takle
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Nripen Sharma
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Prashant Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle (West), Mumbai, 400 056, India
| | - Kshama Pansare
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India
| | - Deepa Bhartiya
- Epigeneres Biotech Pvt. Ltd., Sun Mill Compound, Ikon House, B-Block, Senapati Bapat Marg, Lower Parel, Mumbai, Maharashtra, 400013, India.
| |
Collapse
|
9
|
Abstract
Acute myeloid leukemia (AML) is one of the most common and fatal forms of hematopoietic malignancies. Here, we describe a mouse MLL-AF9_AML model to investigate AML. We have optimized the protocols for retrovirus infection, bone marrow transplantation (BMT), and leukemia monitoring to create a stable mouse model. In particular, we have used two rounds of BMT to enhance stability and efficiency. This model can be used to conduct drug administration and/or other interventions easily. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2022). Optimized BMT accelerates full blast leukemia in recipient mice Step by step details of two rounds of BMT and tissue sample collection Protocols for monitoring AML pathogenesis after each BMT
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang 310003, China
| | - Huanhuan Zhao
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang 310003, China
| | - Lingling Yang
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang 310003, China
| | - Xi Jiang
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
10
|
Kakar SS, Ratajczak MZ. Commentary: FSH and various forms of FSH receptors: distribution and their functions in gonads and extra-gonadal tissues. J Ovarian Res 2021; 14:146. [PMID: 34717697 PMCID: PMC8557027 DOI: 10.1186/s13048-021-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sham S Kakar
- Department of Physiology, University of Louisville, Louisville, KY, 40202, USA.
| | - Mariusz Z Ratajczak
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
11
|
Bhartiya D, Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums. J Ovarian Res 2021; 14:144. [PMID: 34717708 PMCID: PMC8557046 DOI: 10.1186/s13048-021-00880-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022] Open
Abstract
FSH was first identified in 1930 and is central to mammalian reproduction. It is indeed intriguing that despite being researched upon for about 90 years, there is still so much more to learn about FSH-FSHR biology. The purpose of this review is to provide an overview of current understanding of FSH-FSHR biology, to review published data on biological and clinical relevance of reported mutations, polymorphisms and alternately spliced isoforms of FSHR. Tissue-resident stem/progenitor cells in multiple adult tissues including ovaries, testes and uterus express FSHR and this observation results in a paradigm shift in the field. The results suggest a direct action of FSH on the stem cells in addition to their well-studied action on Granulosa and Sertoli cells in the ovaries and testes respectively. Present review further addresses various concerns raised in recent times by the scientific community regarding extragonadal expression of FSHR, especially in cancers affecting multiple organs. Similar population of primitive and pluripotent tissue-resident stem cells expressing FSHR exist in multiple adult tissues including bone marrow and reproductive tissues and help maintain homeostasis throughout life. Any dysfunction of these stem cells results in various pathologies and they also most likely get transformed into cancer stem cells and initiate cancer. This explains why multiple solid as well as liquid tumors express OCT-4 and FSHR. More research efforts need to be focused on alternately spliced FSHR isoforms.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Maharashtra, 400012, Mumbai, India. .,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Maharashtra, 400012, Mumbai, India.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
12
|
Bhartiya D, Patel H, Kaushik A, Singh P, Sharma D. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3. J Ovarian Res 2021; 14:145. [PMID: 34717703 PMCID: PMC8556987 DOI: 10.1186/s13048-021-00883-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) is secreted by the anterior pituitary and acts on the germ cells indirectly through Granulosa cells in ovaries and Sertoli cells in the testes. Extragonadal action of FSH has been reported but is still debated. Adult tissues harbor two populations of stem cells including a reserve population of primitive, small-sized, pluripotent very small embryonic-like stem cells (VSELs) and slightly bigger, tissue-specific progenitors which include ovarian stem cells (OSCs) in ovaries, spermatogonial stem cells (SSCs) in testes, endometrial stem cells (EnSCs) in uterus and hematopoietic stem cells (HSCs) in the bone marrow. Data has accumulated in animal models showing FSHR expression on both VSELs and progenitors in ovaries, testes, uterus and bone marrow and eventually gets lost as the cells differentiate further. FSH exerts a direct action on the stem/progenitor cells via alternatively spliced FSHR-3 rather than the canonical FSHR-1. FSH stimulates VSELs to undergo asymmetrical cell divisions to self-renew and give rise to the progenitors that in turn undergo symmetrical cell divisions and clonal expansions followed by differentiation into specific cell types. Excessive self-renewal of VSELs results in cancer and this explains ubiquitous expression of embryonic markers including nuclear OCT-4 along with FSHR in cancerous tissues. Focus of this review is to compile published data to support this concept. FSHR expression in stem/progenitor cells was confirmed by immuno-fluorescence, Western blotting, in situ hybridization and by quantitative RT-PCR. Two different commercially available antibodies (Abcam, Santacruz) were used to confirm specificity of FSHR expression along with omission of primary antibody and pre-incubation of antibody with immunizing peptide as negative controls. Western blotting allowed detection of alternatively spliced FSHR isoforms. Oligoprobes and primers specific for Fshr-1 and Fshr-3 were used to study these alternately-sliced isoforms by in situ hybridization and their differential expression upon FSH treatment by qRT-PCR. To conclude, stem/progenitor cells in adult tissues express FSHR and directly respond to FSH via FSHR-3. These findings change the field of FSH-FSHR biology, call for paradigm shift, explain FSHR expression on cancer cells in multiple organs and provide straightforward explanations for various existing conundrums including extragonadal expression of FSHR.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
- Present address: Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
13
|
Pich O, Cortes-Bullich A, Muiños F, Pratcorona M, Gonzalez-Perez A, Lopez-Bigas N. The evolution of hematopoietic cells under cancer therapy. Nat Commun 2021; 12:4803. [PMID: 34376657 PMCID: PMC8355079 DOI: 10.1038/s41467-021-24858-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Chemotherapies may increase mutagenesis of healthy cells and change the selective pressures in tissues, thus influencing their evolution. However, their contributions to the mutation burden and clonal expansions of healthy somatic tissues are not clear. Here, exploiting the mutational footprint of some chemotherapies, we explore their influence on the evolution of hematopoietic cells. Cells of Acute Myeloid Leukemia (AML) secondary to treatment with platinum-based drugs show the mutational footprint of these drugs, indicating that non-malignant blood cells receive chemotherapy mutations. No trace of the 5-fluorouracil (5FU) mutational signature is found in AMLs secondary to exposure to 5FU, suggesting that cells establishing the leukemia could be quiescent during treatment. Using the platinum-based mutational signature as a barcode, we determine that the clonal expansion originating the secondary AMLs begins after the start of the cytotoxic treatment. Its absence in clonal hematopoiesis cases is consistent with the start of the clonal expansion predating the exposure to platinum-based drugs.
Collapse
Affiliation(s)
- Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Cortes-Bullich
- Hematology and Hemotherapy Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Pratcorona
- Hematology and Hemotherapy Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
14
|
Oliveira FA, Nucci MP, Mamani JB, Alves AH, Rego GNA, Kondo AT, Hamerschlak N, Junqueira MS, de Souza LEB, Gamarra LF. Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines 2021; 9:biomedicines9070752. [PMID: 34209598 PMCID: PMC8301491 DOI: 10.3390/biomedicines9070752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil;
| | - Lucas E. B. de Souza
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14051-060, SP, Brazil;
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
15
|
Postnatal Pluripotent Cells: Quarter of a Century of Research. Bull Exp Biol Med 2021; 170:515-521. [PMID: 33713237 DOI: 10.1007/s10517-021-05099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 10/21/2022]
Abstract
Almost quarter of a century long studies aimed at identification, isolation, culturing, and use of postnatal pluripotent cells for the development of cell-based technologies have not met with success and failed to provide reliable and reproducible protocols of cell isolation, identification, and culturing. At the same time, experimental data in this field suggest that postnatal pluripotent cells are not the copies of embryonic cells and, therefore, the tests routinely used for identification of embryonic pluripotent cells are not fully adequate for characterization of their postnatal analogues. Therefore, cell lineage tracing methods showing the differentiation routes of the studied cells in human or animal body after birth should be developed and used.
Collapse
|
16
|
Tedjawirja VN, Nieuwdorp M, Yeung KK, Balm R, de Waard V. A Novel Hypothesis: A Role for Follicle Stimulating Hormone in Abdominal Aortic Aneurysm Development in Postmenopausal Women. Front Endocrinol (Lausanne) 2021; 12:726107. [PMID: 34721292 PMCID: PMC8548664 DOI: 10.3389/fendo.2021.726107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta, which can potentially be fatal due to exsanguination following rupture. Although AAA is less prevalent in women, women with AAA have a more severe AAA progression compared to men as reflected by enhanced aneurysm growth rates and a higher rupture risk. Women are diagnosed with AAA at an older age than men, and in line with increased osteoporosis and cardiovascular events, the delayed AAA onset has been attributed to the reduction of the protective effect of oestrogens during the menopausal transition. However, new insights have shown that a high follicle stimulating hormone (FSH) level during menopause may also play a key role in those diseases. In this report we hypothesize that FSH may aggravate AAA development and progression in postmenopausal women via a direct and/or indirect role, promoting aorta pathology. Since FSH receptors (FSHR) are reported on many other cell types than granulosa cells in the ovaries, it is feasible that FSH stimulation of FSHR-bearing cells such as aortic endothelial cells or inflammatory cells, could promote AAA formation directly. Indirectly, AAA progression may be influenced by an FSH-mediated increase in osteoporosis, which is associated with aortic calcification. Also, an FSH-mediated decrease in cholesterol uptake by the liver and an increase in cholesterol biosynthesis will increase the cholesterol level in the circulation, and subsequently promote aortic atherosclerosis and inflammation. Lastly, FSH-induced adipogenesis may lead to obesity-mediated dysfunction of the microvasculature of the aorta and/or modulation of the periaortic adipose tissue. Thus the long term increased plasma FSH levels during the menopausal transition may contribute to enhanced AAA disease in menopausal women and could be a potential novel target for treatment to lower AAA-related events in women.
Collapse
Affiliation(s)
- Victoria N. Tedjawirja
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
- *Correspondence: Victoria N. Tedjawirja,
| | - Max Nieuwdorp
- Departments of Internal and Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Ron Balm
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
17
|
Mohammad SA, Metkari S, Bhartiya D. Mouse Pancreas Stem/Progenitor Cells Get Augmented by Streptozotocin and Regenerate Diabetic Pancreas After Partial Pancreatectomy. Stem Cell Rev Rep 2020; 16:144-158. [PMID: 31705263 DOI: 10.1007/s12015-019-09919-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Existence of stem cells in adult pancreas remains contentious. Single cells suspensions obtained by collagenase and trypsin digestion separately from adult mouse pancreas and pancreatic islets were spun at 1000 rpm (250 g) to collect the cells. At this speed the stem/ progenitor cells remained buoyant and were further enriched by spinning the supernatant at 3000 rpm (1000 g). Two distinct populations of stem cells were detected including pluripotent, very small (2-6 μm) embryonic-like stem cells (VSELs) that expressed nuclear OCT-4A and pluripotent transcripts (Oct-4A, Sox2, Nanog, Stella) and slightly bigger progenitors, pancreatic stem cells (PSCs) that expressed cytoplasmic OCT-4B and PDX-1. Streptozotocin treated diabetic pancreas showed an increase in numbers of VSELs (2-6 μm, 7AAD-, LIN-CD45-SCA1+ cells) and up-regulation of transcripts specific for stem/ progenitor cells. Diabetic mice were further subjected to partial pancreatectomy to study involvement of VSELs/ PSCs during regeneration. VSELs/ PSCs were mobilized in large numbers, were observed in the lumen of blood vessels and PCNA expression suggested their proliferation. Initially, new acini assembled to regenerate the exocrine pancreas and later by Day 30, neogenesis of islets was observed in the vicinity of the blood vessels and pancreatic ducts by the differentiation of endogenous VSELs/ PSCs which may be targeted to regenerate diabetic pancreas in clinical settings.
Collapse
Affiliation(s)
- Subhan Ali Mohammad
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street Parel, Mumbai, 400 012, India
| | - Siddhanath Metkari
- Experimental Animal Facility, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street Parel, Mumbai, 400 012, India.
| |
Collapse
|
18
|
Bujko K, Cymer M, Adamiak M, Ratajczak MZ. An Overview of Novel Unconventional Mechanisms of Hematopoietic Development and Regulators of Hematopoiesis - a Roadmap for Future Investigations. Stem Cell Rev Rep 2020; 15:785-794. [PMID: 31642043 PMCID: PMC6925068 DOI: 10.1007/s12015-019-09920-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem cells (HSCs) are the best-characterized stem cells in adult tissues. Nevertheless, as of today, many open questions remain. First, what is the phenotype of the most primitive "pre-HSC" able to undergo asymmetric divisions during ex vivo expansion that gives rise to HSC for all hemato-lymphopoietic lineages. Next, most routine in vitro assays designed to study HSC specification into hematopoietic progenitor cells (HPCs) for major hematopoietic lineages are based on a limited number of peptide-based growth factors and cytokines, neglecting the involvement of several other regulators that are endowed with hematopoietic activity. Examples include many hormones, such as pituitary gonadotropins, gonadal sex hormones, IGF-1, and thyroid hormones, as well as bioactive phosphosphingolipids and extracellular nucleotides (EXNs). Moreover, in addition to regulation by stromal-derived factor 1 (SDF-1), trafficking of these cells during mobilization or homing after transplantation is also regulated by bioactive phosphosphingolipids, EXNs, and three ancient proteolytic cascades, the complement cascade (ComC), the coagulation cascade (CoA), and the fibrinolytic cascade (FibC). Finally, it has emerged that bone marrow responds by "sterile inflammation" to signals sent from damaged organs and tissues, systemic stress, strenuous exercise, gut microbiota, and the administration of certain drugs. This review will address the involvement of these unconventional regulators and present a broader picture of hematopoiesis.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Monika Cymer
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA. .,Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
19
|
Abstract
Lifelong homeostasis of bone marrow is maintained by the resident stem cells that include the quiescent very small embryonic-like stem cells (VSELs) and lineage restricted, tissue committed 'progenitors' hematopoietic stem cells (HSCs). Niche providing mesenchymal stromal cells (MSCs) regulate the function of VSELs/HSCs by providing crucial paracrine support. Any dysfunction of stem cells and/or their niche leads to disease state. The stem cells biology gets affected with age leading to a myeloid bias in differentiation of HSCs and increased incidence of myeloid leukemia. Present study was undertaken to enumerate VSELs, HSCs and MSCs and evaluate their response on D4 and D10 after chemotherapy with 5-Fluorouracil (5-FU) in young and aged mouse bone marrow. Stem cells were activated in response to 5-FU induced stress in an attempt to restore homeostasis. Although absolute numbers of VSELs and HSCs did not differ much between young and aged mice, their tendency to proliferate was higher on D4 in aged mice. However, ability to revert back to basal numbers and their differentiation was affected on D10 in aged marrow. Stem cells from aged bone marrow showed greater ability to form CFUs on D10 after 5-FU treatment. CD44 positive aged MSCs also showed increased proliferation on D10. Transplanting MSCs from young mice in 5-FU treated aged marrow helped improve hematopoiesis. The results suggest that no significant intrinsic changes occur as proliferative ability of stem cells remains unaffected but the niche gets affected with age leading to excessive self-renewal and compromised differentiation. This may explain increased incidence of leukemia with age.
Collapse
|
20
|
Zeng H, Li H, Yue M, Fan Y, Cheng J, Wu X, Xu R, Yang W, Li M, Tang J, Chen H, Kuang B, Fan G, Zhu Q, Shao L. Isoprenaline protects intestinal stem cells from chemotherapy-induced damage. Br J Pharmacol 2020; 177:687-700. [PMID: 31648381 DOI: 10.1111/bph.14883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Damage to intestinal epithelial cells and mucosa limits the effectiveness of several anti-cancer chemotherapeutic agents but the underlying mechanism (s) remain unknown. Little is known of how enteric nervous system regulates proliferation, differentiation, impairment, and regeneration of intestinal stem cells. Here we have investigated the effects of isoprenaline on the damaged intestinal stem cells induced by chemotherapeutic treatments in mice. EXPERIMENTAL APPROACH The effects of inhibiting sympathetic and parasympathetic nerves on intestinal stem cells were examined in male C57BL/6J mice. Protection by isoprenaline of intestinal stem cells was assessed in the presence or absence of 5-fluorouracil (5FU) or cisplatin. Cellular apoptosis, cell cycle, PI3K/Akt signalling, and NF-κB signalling in intestinal stem cells were mechanistically evaluated. KEY RESULTS The sympathetic nerve inhibitor 6-OHDA decreased the number and function of intestinal stem cells. 5FU or cisplatin treatment damaged both intestinal stem cells and sympathetic nerves. Notably, isoprenaline accelerated the recovery of intestinal stem cells after 5FU or cisplatin treatment. This protective effect of isoprenaline on damaged intestinal stem cells was mediated by β2 -adrenoceptors. The benefits of isoprenaline were mainly mediated by inhibiting cellular apoptosis induced by 5FU treatment, which might contribute to fine-tuning regulating NF-κB signalling pathway by isoprenaline administration. CONCLUSIONS AND IMPLICATIONS Treatment with isoprenaline is a new approach to ameliorate the damage to intestinal stem cells following exposure to cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Huihong Zeng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Huan Li
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Mengzhen Yue
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Ying Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Xincheng Wu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Rui Xu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Wuping Yang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Manjun Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiahui Tang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Qingxian Zhu
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Mitigating Effect of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol (PLAG) on a Murine Model of 5-Fluorouracil-Induced Hematological Toxicity. Cancers (Basel) 2019; 11:cancers11111811. [PMID: 31752148 PMCID: PMC6896120 DOI: 10.3390/cancers11111811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022] Open
Abstract
5-Fluorouracil (5-FU) is an antimetabolite chemotherapy widely used for the treatment of various cancers. However, many cancer patients experience hematological side effects following 5-FU treatment. Here, we investigated the protective effects of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) as a mitigator against 5-FU-induced hematologic toxicity, including neutropenia, monocytopenia, thrombocytopenia, and thrombocytosis, in Balb/c mice injected with 5-FU (100 mg/kg, i.p.). Administration of PLAG significantly and dose-dependently reduced the duration of neutropenia and improved the nadirs of absolute neutrophil counts (ANCs). Moreover, while the ANCs of all mice in the control fell to the severely neutropenic range, none of the mice in the PLAG 200 and 400 mg/kg-treated groups experienced severe neutropenia. Administration of PLAG significantly delayed the mean first day of monocytopenia and reduced the duration of monocytopenia. PLAG also effectively reduced extreme changes in platelet counts induced by 5-FU treatment, thus preventing 5-FU-induced thrombocytopenia and thrombocytosis. PLAG significantly decreased plasma levels of the chemokine (C–X–C motif) ligand 1 (CXCL1), CXCL2, interleukin (IL)-6, and C-reactive protein (CRP), which were elevated consistently with the occurrence time of neutropenia, monocytopenia, and thrombocytopenia. When compared with olive oil and palmitic linoleic hydroxyl glycerol (PLH), only PLAG effectively mitigated 5-FU-induced hematological toxicity, indicating that it has a distinctive mechanism of action. In conclusion, PLAG may have therapeutic potential as a mitigator for 5-FU-induced neutropenia and other hematological disorders.
Collapse
|
22
|
Segaliny AI, Cheng JL, Farhoodi HP, Toledano M, Yu CC, Tierra B, Hildebrand L, Liu L, Liao MJ, Cho J, Liu D, Sun L, Gulsen G, Su MY, Sah RL, Zhao W. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells. EBioMedicine 2019; 45:39-57. [PMID: 31281099 PMCID: PMC6642316 DOI: 10.1016/j.ebiom.2019.06.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone metastases are common and devastating to cancer patients. Existing treatments do not specifically target the disease sites and are therefore ineffective and systemically toxic. Here we present a new strategy to treat bone metastasis by targeting both the cancer cells ("the seed"), and their surrounding niche ("the soil"), using stem cells engineered to home to the bone metastatic niche and to maximise local delivery of multiple therapeutic factors. METHODS We used mesenchymal stem cells engineered using mRNA to simultaneously express P-selectin glycoprotein ligand-1 (PSGL-1)/Sialyl-Lewis X (SLEX) (homing factors), and modified versions of cytosine deaminase (CD) and osteoprotegerin (OPG) (therapeutic factors) to target and treat breast cancer bone metastases in two mouse models, a xenograft intratibial model and a syngeneic model of spontaneous bone metastasis. FINDINGS We first confirmed that MSC engineered using mRNA produced functional proteins (PSGL-1/SLEX, CD and OPG) using various in vitro assays. We then demonstrated that mRNA-engineered MSC exhibit enhanced homing to the bone metastatic niche likely through interactions between PSGL-1/SLEX and P-selectin expressed on tumour vasculature. In both the xenograft intratibial model and syngeneic model of spontaneous bone metastasis, engineered MSC can effectively kill tumour cells and preserve bone integrity. The engineered MSC also exhibited minimal toxicity in vivo, compared to its non-targeted chemotherapy counterpart (5-fluorouracil). INTERPRETATION Our combinatorial targeting of both the cancer cells and the niche represents a simple, safe and effective way to treat metastatic bone diseases, otherwise difficult to manage with existing strategies. It can also be applied to other cell types (e.g., T cells) and cargos (e.g., genome editing components) to treat a broad range of cancer and other complex diseases. FUND: National Institutes of Health, National Cancer Institute of the National Institutes of Health, Department of Defense, California Institute of Regenerative Medicine, National Science Foundation, Baylx Inc., and Fondation ARC pour la recherche sur le cancer.
Collapse
Affiliation(s)
- Aude I Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jason L Cheng
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Henry P Farhoodi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Toledano
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chih Chun Yu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Beatrice Tierra
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Leanne Hildebrand
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Linan Liu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael J Liao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jaedu Cho
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Dongxu Liu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lizhi Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Ganguly R, Metkari S, Bhartiya D. Dynamics of Bone Marrow VSELs and HSCs in Response to Treatment with Gonadotropin and Steroid Hormones, during Pregnancy and Evidence to Support Their Asymmetric/Symmetric Cell Divisions. Stem Cell Rev Rep 2018; 14:110-124. [PMID: 29168113 DOI: 10.1007/s12015-017-9781-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gender plays an important role in the incidence of hematological malignancies and recently hematopoietic stem cells (HSCs) were found to proliferate more in females that gets further augmented during pregnancy. It was suggested that since basal numbers of HSCs remain the same in both sexes, possibly HSCs in females undergo increased self-renewal and apoptosis. Then how is self-renewal of stem cells regulated in males? More important, do HSCs undergo asymmetric cell divisions (ACD) or a more primitive population of pluripotent, very small embryonic-like stem cells (VSELs) undergo ACD to self-renew and specify into HSCs? Lot more clarity is required on the bone marrow stem cells biology. Present study was undertaken to evaluate whether similar dimorphism reported for HSCs also exists among VSELs. Bone marrow VSELs and HSCs were studied in bilaterally ovariectomized and castrated mice by flow cytometry after treating with gonadotropin (FSH) and sex steroid (estrogen & progesterone) hormones and during pregnancy. Differential expression of pluripotent (Oct-4A, Sox2, Nanog) and differentiation (Oct-4, Sca1, c-Kit, Ikaros) specific transcripts was studied. Basal BrdU uptake was more in both VSELs (p < 0.01) and HSCs (p < 0.05) in female bone marrow. FSH exerted a more profound effect compared to estradiol in both the sexes. Flow cytometry results showed ten-fold increase in spleen VSELs by mid-gestation associated with approximately two-fold increase in HSCs. These results point to a novel yet unreported role of spleen VSELs during pregnancy. Furthermore, VSELs underwent ACD to self-renew and give rise to slightly bigger HSCs based on unequal expression of NUMB, CD45 and OCT-4.
Collapse
Affiliation(s)
- Ranita Ganguly
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Sidhanath Metkari
- Experimental Animal Facility, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
24
|
James K, Bhartiya D, Ganguly R, Kaushik A, Gala K, Singh P, Metkari SM. Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. J Ovarian Res 2018; 11:83. [PMID: 30241552 PMCID: PMC6148988 DOI: 10.1186/s13048-018-0454-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Background Very small embryonic-like stem cells (VSELs) exist in adult organs, express pluripotent markers and have the ability to differentiate into three germ layers in vitro. Testicular, ovarian and hematopoietic stem/progenitor cells express receptors for follicle stimulating (FSH) and ovarian hormones and are activated by them to undergo proliferation/differentiation. VSELs exist in mouse uterus and are regulated by physiological dose of estradiol (E) & progesterone (P) during endometrial growth, differentiation and regeneration/remodeling. In the present study, effects of daily administration of E (2 μg/day), P (1 mg/Kg/day) or FSH (5 IU/day) for 7 days on the endometrium and stem/progenitor cells was studied in bilaterally ovariectomized mice. Results E treatment resulted in hypertrophy whereas P resulted in hyperplasia and overcrowding of epithelial cells. FSH also directly stimulated the endometrial cells. Nuclear OCT-4A positive VSELs were visualized in ovariectomized (atrophied) endometrium and cytoplasmic OCT-4B positive epithelial, stromal and endothelial cells were observed after treatment. FSH treated uterine tissue showed presence of 4 alternately spliced FSHR isoforms by Western blotting. 3–5 μm VSELs with a surface phenotype of LIN-/CD45-/SCA-1+ were enumerated by flow cytometry and were found to express ER, PR, FSHR1 and FSHR3 by RT-PCR analysis. Differential effects of treatment were observed on pluripotent (Oct4A, Sox2, Nanog), progenitors (Oct-4, Sca-1), primordial germ cells (Stella, Fragilis) and proliferation (Pcna) specific transcripts by qRT-PCR analysis. FSH and P (rather than E) exerted profound, direct stimulatory effects on uterine VSELs. Asymmetric, symmetric divisions and clonal expansion of stem/progenitor cells was confirmed by co-expression of OCT-4 and NUMB. Conclusions Results confirm presence of VSELs and their regulation by circulatory hormones in mouse uterus. Stem cell activation was more prominent after P and FSH compared to E treatment. The results question whether epithelial cells proliferation is regulated by paracrine influence of stromal cells or due to direct action of hormones on stem cells. VSELs expressing nuclear OCT-4A are the most primitive and pluripotent stem cells, undergo asymmetric cell division to self-renew and differentiate into epithelial, stromal and endothelial cells with cytoplasmic OCT-4B. Role of follicle stimulating and steroid hormones on the stem cells needs to be studied in various uterine pathologies.
Collapse
Affiliation(s)
- Kreema James
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Ranita Ganguly
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Kavita Gala
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
25
|
Bhartiya D, Patel H, Ganguly R, Shaikh A, Shukla Y, Sharma D, Singh P. Novel Insights into Adult and Cancer Stem Cell Biology. Stem Cells Dev 2018; 27:1527-1539. [PMID: 30051749 DOI: 10.1089/scd.2018.0118] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adult tissues are thought to harbor two populations of "dormant" and "actively dividing" stem cells. Quiescent stem cells undergo rare asymmetric cell divisions (ACDs) through which they self-renew and give rise to tissue-committed "progenitors" of distinct fate and "progenitors" in turn undergo symmetric cell divisions (SCDs) and clonal expansion. However, quiescent stem cells have not been demonstrated in adult tissues such as skin, testis, liver, and brain. After surgical removal of part of liver and pancreas-adult differentiated cells divide and regenerate and a possible role of stem cells remains doubtful. Long-term repopulating hematopoietic stem cells are quiescent in nature but ACD has not been convincingly demonstrated even among them. Attempts by various groups to identify a common stemness program that ensures self-renewal among different kinds of stem cells have also remained futile. Uncontrolled self-renewal and compromised differentiation of stem cells possibly initiate leukemia/cancer, but the identity of leukemic stem cells and whether cancer stem cells arise by epithelial-mesenchymal transition (EMT) in solid tumors are all open-ended questions that need greater clarity. Acceptance of the presence of very small embryonic-like stem cells (VSELs) in adult tissues could clarify several of these existing dilemmas in the field. Data are compiled showing that VSELs undergo ACD in the hematopoietic system, testis, ovary, uterus, and pancreas, whereas tissue-committed progenitors undergo SCD and clonal expansion. VSELs possess similar overlapping stemness program as in embryonic stem cells, embryonic carcinoma cells, embryonic germ cells, induced pluripotent stem cells, and primordial germ cells. VSELs and leukemic and cancer cells express overlapping embryonic markers. Uncontrolled proliferation of VSELs and compromised differentiation possibly initiate leukemia. Process of EMT and initiation of solid tumor from VSELs (located among the epithelial cells) are indeed two distinct and parallel events. To conclude, VSELs provide explanation to several confounding aspects of adult stem cell biology.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Ranita Ganguly
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Yashvi Shukla
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| |
Collapse
|
26
|
Bhartiya D. Shifting gears from embryonic to very small embryonic-like stem cells for regenerative medicine. Indian J Med Res 2018; 146:15-21. [PMID: 29168456 PMCID: PMC5719603 DOI: 10.4103/ijmr.ijmr_1485_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400 012, Maharashtra, India
| |
Collapse
|
27
|
Very Small Embryonic-Like Stem Cells, Endothelial Progenitor Cells, and Different Monocyte Subsets Are Effectively Mobilized in Acute Lymphoblastic Leukemia Patients after G-CSF Treatment. Stem Cells Int 2018; 2018:1943980. [PMID: 30034479 PMCID: PMC6032642 DOI: 10.1155/2018/1943980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is a malignant disease of lymphoid progenitor cells. ALL chemotherapy is associated with numerous side effects including neutropenia that is routinely prevented by the administration of growth factors such as granulocyte colony-stimulating factor (G-CSF). To date, the effects of G-CSF treatment on the level of mobilization of different stem and progenitor cells in ALL patients subjected to clinically effective chemotherapy have not been fully elucidated. Therefore, in this study we aimed to assess the effect of administration of G-CSF to ALL patients on mobilization of other than hematopoietic stem cell (HSCs) subsets, namely, very small embryonic-like stem cells (VSELs), endothelial progenitor cells (EPCs), and different monocyte subsets. Methods We used multicolor flow cytometry to quantitate numbers of CD34+ cells, hematopoietic stem cells (HSCs), VSELs, EPCs, and different monocyte subsets in the peripheral blood of ALL patients and normal age-matched blood donors. Results We showed that ALL patients following chemotherapy, when compared to healthy donors, presented with significantly lower numbers of CD34+ cells, HSCs, VSELs, and CD14+ monocytes, but not EPCs. Moreover, we found that G-CSF administration induced effective mobilization of all the abovementioned progenitor and stem cell subsets with high regenerative and proangiogenic potential. Conclusion These findings contribute to better understanding the beneficial clinical effect of G-CSF administration in ALL patients following successful chemotherapy.
Collapse
|
28
|
Li X, Zhang Y, Hong Z, Gong S, Liu W, Zhou X, Sun Y, Qian J, Qu H. Transcriptome Profiling Analysis Reveals the Potential Mechanisms of Three Bioactive Ingredients of Fufang E'jiao Jiang During Chemotherapy-Induced Myelosuppression in Mice. Front Pharmacol 2018; 9:616. [PMID: 29950993 PMCID: PMC6008481 DOI: 10.3389/fphar.2018.00616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Although multiple bioactive components have been identified in Fufang E’jiao Jiang (FEJ), their hematopoietic effects and molecular mode of action in vivo are still not fully understood. In the current study, we analyzed the effects of martynoside, R-notoginsenoside R2 (R2), and 20S-ginsenoside Rg2 (Rg2) in a 5-fluorouracil-induced myelosuppression mouse model. Bone marrow nucleated cells (BMNCs) counts, hematopoietic progenitor cell colony-forming unit (CFU) assay, as well as flow cytometry analysis of Lin-/c-kit+/Sca-1+ hematopoietic stem cell (HSC) population were conducted, and bone marrow cells were subjected to RNA sequencing. The transcriptome data were processed based on the differentially expressed genes. The results of the analysis show that each of the three compounds stimulates BMNCs and HSC growth, as well as burst-forming unit-erythroid and colony-forming unit granulocyte-monocyte colony expansion. The most relevant transcriptional changes appeared to be involved in regulation of hematopoietic cell lineage, NF-κB and TNF-α signaling, inhibition of inflammation, and acceleration of hematopoietic cell recovery. Notably, the individual compounds shared similar but specified transcriptome profiles. Taken together, the hematopoietic effects for the three tested compounds of FEJ are confirmed in this myelosuppression mouse model. The transcriptome maps of these effects provide valuable information concerning their underlying mechanisms and provide a framework for the continued study of the complex mode of action of FEJ.
Collapse
Affiliation(s)
- Xue Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Zhuping Hong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuqing Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangshan Zhou
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Yangen Sun
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Liu L, Zhang SX, Liao W, Farhoodi HP, Wong CW, Chen CC, Ségaliny AI, Chacko JV, Nguyen LP, Lu M, Polovin G, Pone EJ, Downing TL, Lawson DA, Digman MA, Zhao W. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci Transl Med 2018; 9:9/400/eaan2966. [PMID: 28747514 DOI: 10.1126/scitranslmed.aan2966] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo.
Collapse
Affiliation(s)
- Linan Liu
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Shirley X Zhang
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenbin Liao
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Henry P Farhoodi
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chi W Wong
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Claire C Chen
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Aude I Ségaliny
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenu V Chacko
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Lily P Nguyen
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Mengrou Lu
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - George Polovin
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Egest J Pone
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Timothy L Downing
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Devon A Lawson
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92697, USA.,Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Patel H, Bhartiya D, Parte S. Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 2018; 11:3. [PMID: 29304868 PMCID: PMC5755409 DOI: 10.1186/s13048-017-0377-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stem cells in the ovary comprise of two distinct populations including very small embryonic-like stem cells (VSELs) and slightly bigger progenitors termed ovarian stem cells (OSCs). They are lodged in ovary surface epithelium (OSE) and are expected to undergo neo-oogenesis and primordial follicle (PF) assembly in adult ovaries. The ovarian stem cells express follicle stimulating hormone (FSH) receptors and are directly activated by FSH resulting in formation of germ cell nests (GCN) in vitro. Present study was undertaken to further characterize adult sheep OSCs and to understand their role during neo-oogenesis and PF assembly. METHODS Stem cells were collected by gently scraping the OSE cells and were characterized by H&E staining, immuno-localization, immuno-phenotyping and RT-PCR studies. Expression of FSH receptors and markers specific for stem cells (OCT-4, SSEA-4) and proliferation (PCNA) were studied on stem/progenitor cells in OSE culture and on adult sheep ovarian cortical tissue sections. Effect of FSH on stem cells was also studied in vitro. Asymmetric cell division (ACD) was monitored by studying expression of OCT-4 and NUMB. RESULTS Additional evidence was generated on the presence of two populations of stem cells in the OSE including VSELs and OSCs. FSHR expression was observed on both VSELs and OSCs by immuno-localization and immuno-phenotyping studies. FSH treatment in vitro stimulated VSELs that underwent ACD to self-renew and give rise to OSCs which divided rapidly by symmetric cell divisions (SCD) and clonal expansion with incomplete cytokinesis to form GCN. ACD was further confirmed by differential expression of OCT-4 in VSELs and NUMB in the OSCs. Immuno-histochemical expression of OCT-4, PCNA and FSHR was noted on stem cells located in the OSE in sheep ovarian sections. GCN and cohort of PF were observed in the ovarian cortex and provided evidence in support of neo-oogenesis from the stem cells. CONCLUSION Results of present study provide further evidence in support of two stem cells populations in adult sheep ovary. Both VSELs, OSCs and GCN express FSH receptors and FSH possibly regulates their function to undergo neo-oogenesis and primordial follicle assembly.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| |
Collapse
|
31
|
Tripathi V, Chhabria S, Jadhav V, Bhartiya D, Tripathi A. Stem Cells and Progenitors in Human Peripheral Blood Get Activated by Extremely Active Resveratrol (XAR™). Stem Cell Rev Rep 2017; 14:213-222. [DOI: 10.1007/s12015-017-9784-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture. Stem Cell Rev Rep 2017; 13:202-216. [PMID: 28070859 DOI: 10.1007/s12015-016-9714-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.
Collapse
|
33
|
Li X, Chen W, Li P, Wei J, Cheng Y, Liu P, Yan Q, Xu X, Cui Y, Gu Z, Simoncini T, Fu X. Follicular Stimulating Hormone Accelerates Atherogenesis by Increasing Endothelial VCAM-1 Expression. Theranostics 2017; 7:4671-4688. [PMID: 29187895 PMCID: PMC5706091 DOI: 10.7150/thno.21216] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Rationale: Postmenopausal atherosclerosis (AS) has for decades been attributed to estrogen deficiency. Although the follicular stimulating hormone (FSH) levels rise sharply in parallel, the direct effect of FSH on AS has never been investigated. In this study, we explored the possible role of FSH in the development of AS. Methods: This was a prospective cohort study of 48 healthy premenopausal and 15 postmenopausal women. ApoE knockout mice were used as atherosclerosis model and human umbilical vascular endothelial cells (HUVECs) were cultured as cell model. Serum hormones and vascular cell adhesion molecule-1 (VCAM-1) levels were measured. Real-time PCR, histology for atherosclerotic lesions, immunofluorescence, luciferase assay, transfection experiments, flow chamber adhesion assay and western blot were performed. Results: In ApoE knockout mice, administration of FSH increased the atherosclerotic lesions and serum VCAM-1 concentration. Importantly, in blood samples of postmenopausal women, we detected significantly higher levels of FSH and VCAM-1 compared with those from premenopausal women, and there was a positive correlation between these two molecules. In cultured HUVECs, FSH receptor (FSHR) mRNA and protein expression were detected and FSH enhanced VCAM-1 expression. This effect was mediated by the activation of nuclear factor κB (NF-κB), which was sequentially enhanced by the activation of PI3K/Akt/mTOR cascade. FSH first enhanced GαS activity resulting in elevated cAMP level and PKA activity, which relayed the signals from FSHR to the PI3K/Akt/mTOR cascade. Furthermore, FSHR was detected in endothelial caveolae fraction and interacted with caveolin-1 and GαS. The disruption of caveolae or the silencing of caveolin-1 blocked FSH effects on signaling activation and VCAM-1 expression, suggesting the existence of a functional signaling module in membrane caveolae. Finally, FSH increased human monocyte adhesion to HUVECs which was reversed by the VCAM-1 neutralizing antibody. Conclusion: FSHR was located in the membrane caveolae of HUVECs and FSH promoted VCAM-1 expression via FSHR/GαS /cAMP/PKA and PI3K/Akt/mTOR/NF-κB pathway. This may contribute to the deleterious role of FSH in the development of AS in postmenopausal women.
Collapse
|
34
|
Bhartiya D. Pluripotent Stem Cells in Adult Tissues: Struggling To Be Acknowledged Over Two Decades. Stem Cell Rev Rep 2017; 13:713-724. [DOI: 10.1007/s12015-017-9756-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Bhartiya D, James K. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res 2017; 10:29. [PMID: 28438190 PMCID: PMC5404303 DOI: 10.1186/s13048-017-0324-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
We have earlier reported the presence of very small embryonic-like stem cells (VSELs) in adult mouse uterus along with slightly bigger progenitors termed endometrial stem cells (EnSCs) and their regulation by ovarian hormones thus demonstrating a crucial role played by them during proliferation, differentiation and remodeling of the endometrium. Present study is a brief communication wherein we have examined the effect of higher dose of estrogen (E, 2 μg/day), progesterone (P, 1 mg/day) and follicle stimulating hormone (FSH, 5 IU/day for 5 days) specifically on the myometrium and perimetrium surrounding the endometrium in bilaterally ovariectomized mice. Similar treatment with E & P was recently used in a study published in the journal Nature to study the effect of steroid hormones on hematopoietic stem cells and this treatment regimen helps achieve hormone levels observed during pregnancy. Quiescent spherical stem cells (lacking PCNA expression) with high nucleo-cytoplasmic ratio and nuclear OCT-4A were detected in the perimetrium of atrophied (bilaterally ovariectomized) uterus. PCNA expression was observed after treatment and cells with cytoplasmic OCT-4B were invariably observed in the myometrium. VSELs were clearly visualized after treatment and the effect of P and FSH was more prominent compared to E on the development of myometrium. It is speculated that stem cells with nuclear OCT-4A located in the perimetrium differentiate to give rise to endothelial and myometrial cells with cytoplasmic OCT-4B. Based on the results of present study and published reports showing the presence of pluripotent markers (OCT-4, NANOG and SOX2) in human myometrial side population and expression of particularly OCT-4A in human leiomyomas, we speculate that these nuclear OCT-4 positive stem cells located in the perimetrium are the possible tumor initiating cells leading to the development of leiomyomas rather than the mesenchymal cells which express cytoplasmic OCT-4B.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Kreema James
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
36
|
Wilson C, Brown H, Holen I. The endocrine influence on the bone microenvironment in early breast cancer. Endocr Relat Cancer 2016; 23:R567-R576. [PMID: 27687494 DOI: 10.1530/erc-16-0238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
Multiple factors influence the survival of disseminated breast tumour cells (DTCs) in bone. Whereas gene signature studies have identified genes that predict a propensity of tumours to metastasise to bone, the bone environment is key in determining the fate of these tumour cells. Breast cancer cells locate to specific niches within the bone that support their survival, regulated by host factors within the bone microenvironment including bone cells, cells of the bone micro vasculature, immune cells and the extracellular matrix. Reproductive endocrine hormones that affect bone and clinical studies across the menopausal transition have provided comprehensive understanding of the changes in the bone microenvironment during this time. Menopause is characterized by a decrease in ovarian oestradiol and inhibins, with an increase in pituitary follicle-stimulating hormone and this review will focus on the role of these three hormones in determining the fate of DTCs in bone. Both in vivo and clinical data suggest that premenopausal bone is a conducive environment for growth of breast cancer cells in bone. Adjuvant cancer treatment aims to reduce the risk of tumour recurrence by affecting DTCs. Drugs targeting the bone resorbing osteoclasts, such as bisphosphonates, have therefore been evaluated in this setting. Both preclinical and adjuvant clinical studies have shown that bisphosphonates' ability to decrease tumour growth in bone is influenced by the levels of endocrine hormones, with enhanced effects in a postmenopausal bone microenvironment. The challenge is to understand the molecular mechanisms behind this phenomenon and to evaluate if alternative adjuvant bone-targeted therapies may be effective in premenopausal women.
Collapse
Affiliation(s)
- Caroline Wilson
- Academic Unit of Clinical OncologyWeston Park Hospital, University of Sheffield, Sheffield, UK
| | - Hannah Brown
- Department of Oncology and MetabolismUniversity of Sheffield, Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and MetabolismUniversity of Sheffield, Sheffield, UK
| |
Collapse
|
37
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Marlicz W, Sielatycka K, Serwin K, Kubis E, Tkacz M, Głuszko R, Białek A, Starzyńska T, Ratajczak MZ. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood. Oncol Rep 2016; 36:3635-3642. [DOI: 10.3892/or.2016.5179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
|
39
|
Bhartiya D. National multicentric M13 Stem Cell Trial reports negative outcome - Need to look at VSELs as an alternative to bone marrow MNCs for cardiac regeneration. Indian J Med Res 2016; 143:830-832. [PMID: 27748311 PMCID: PMC5094126 DOI: 10.4103/0971-5916.192080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, Maharashtra, India
| |
Collapse
|
40
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|