1
|
Jiang L, He H, Tang Y, Li J, Reilly S, Xin H, Li Z, Cai H, Zhang X. Activation of BK channels prevents diabetes-induced osteopenia by regulating mitochondrial Ca 2+ and SLC25A5/ANT2-PINK1-PRKN-mediated mitophagy. Autophagy 2024; 20:2388-2404. [PMID: 38873928 PMCID: PMC11572260 DOI: 10.1080/15548627.2024.2367184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.Abbreviations: AGE, advanced glycation end products; Baf A1, bafilomycin A1; BK channels, big-conductance Ca2+-activated K+ channels; BMSCs, bone marrow-derived mesenchymal stem cells; BSA, bovine serum albumin; FBG, fasting blood glucose; IMM, inner mitochondrial membrane; ITPR1, inositol 1,4,5-trisphosphate receptor 1; MAM, mitochondria-associated ER membrane; OMM, outer mitochondrial membrane; PINK1, PTEN induced putative kinase 1; PPID/CyP-D, peptidylprolyl isomerase D (cyclophilin D); PRKN/PARK2, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SLC25A5/ANT2, solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5; STZ, streptozotocin.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Hui Cai
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA, USA
- Section of Nephrology, Atlanta Veteran Administration Medical Center, Decatur, GA, USA
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li W, Wang W, Zhang M, Chen Q, Li S. Associations of marrow fat fraction with MR imaging based trabecular bone microarchitecture in first-time diagnosed type 1 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1287591. [PMID: 38774224 PMCID: PMC11106440 DOI: 10.3389/fendo.2024.1287591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Purpose To determine whether there are alterations in marrow fat content in individuals first-time diagnosed with type 1 diabetes mellitus (T1DM) and to explore the associations between marrow fat fraction and MRI-based findings in trabecular bone microarchitecture. Method A case-control study was conducted, involving adults with first-time diagnosed T1DM (n=35) and age- and sex-matched healthy adults (n=46). Dual-energy X-ray absorptiometry and 3 Tesla-MRI of the proximal tibia were performed to assess trabecular microarchitecture and vertebral marrow fat fraction. Multiple linear regression analysis was used to test the associations of marrow fat fraction with trabecular microarchitecture and bone density while adjusting for potential confounding factors. Results In individuals first-time diagnosed with T1DM, the marrow fat fraction was significantly higher (p < 0.001) compared to healthy controls. T1DM patients also exhibited higher trabecular separation [median (IQR): 2.19 (1.70, 2.68) vs 1.81 (1.62, 2.10), p < 0.001], lower trabecular volume [0.45 (0.30, 0.56) vs 0.53 (0.38, 0.60), p = 0.013], and lower trabecular number [0.37 (0.26, 0.44) vs 0.41 (0.32, 0.47), p = 0.020] compared to controls. However, bone density was similar between the two groups (p = 0.815). In individuals with T1DM, there was an inverse association between marrow fat fraction and trabecular volume (r = -0.69, p < 0.001) as well as trabecular number (r = -0.55, p < 0.001), and a positive association with trabecular separation (r = 0.75, p < 0.001). Marrow fat fraction was independently associated with total trabecular volume (standardized β = -0.21), trabecular number (β = -0.12), and trabecular separation (β = 0.57) of the proximal tibia after adjusting for various factors including age, gender, body mass index, physical activity, smoking status, alcohol consumption, blood glucose, plasma glycated hemoglobin, lipid profile, and bone turnover biomarkers. Conclusions Individuals first-time diagnosed with T1DM experience expansion of marrow adiposity, and elevated marrow fat content is associated with MRI-based trabecular microstructure.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wei Wang
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minlan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qi Chen
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shaojun Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Li Z, Mei H, Liu K, Yang G. Differential expression and effect analysis of lncRNA-mRNA in congenital pseudarthrosis of the tibia. Front Genet 2023; 14:1094298. [PMID: 36814904 PMCID: PMC9939773 DOI: 10.3389/fgene.2023.1094298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Background: To analyze the lncRNA-mRNA differential expression and co-expression network of periosteal stem cells (PSCs) from congenital pseudarthrosis of the tibia (CPT) and normal patients, and to explore the role of key lncRNAs. Methods: Differentially expressed lncRNAs and mRNAs in PSCs were obtained by sequencing, and biological functions of differentially expressed mRNAs were detected by gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein -protein interaction (PPI) analysis. The co-expression network of lncRNA-mRNA was constructed by correlation analysis of differentially expressed lncRNAs and mRNAs, and the key lncRNAs were screened according to the connectivity degree. After that, the cis-regulated target genes of differential expressed lncRNAs and mRNAs were predicted. Results: A total of 194 differentially expressed lncRNAs were identified, including 73 upregulated and 121 downregulated genes. A total of 822 differentially expressed mRNAs were identified, including 311 upregulated and 511 downregulated genes. GO, KEGG and PPI enrichment analysis showed that the regulatory function of differentially expressed mRNAs were mainly gathered in skeletal system development and tissue morphogenesis. The co-expression network with 226 nodes and 3,390 edges was constructed based on correlation analysis. A total of 10 key lncRNAs, including FAM227B, POM121L9P, AF165147 and AC103702, were screened according to connectivity degree. Prediction of target genes indicated that FAM227B-FGF7 and AC103702-HOXB4/5/6 may play an important role in the pathogenesis of CPT. Conclusion: A total of 10 key lncRNAs, including FAM227B, POM121L9P, AF165147, and AC103702, occupy the core position in the co-expression network, suggesting that these lncRNAs and their target genes may play an important role in the pathogenesis of CPT.
Collapse
Affiliation(s)
- Zhuoyang Li
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Mei
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Kun Liu
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China,*Correspondence: Kun Liu, ; Ge Yang,
| | - Ge Yang
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China,*Correspondence: Kun Liu, ; Ge Yang,
| |
Collapse
|
4
|
Han F, Wang C, Cheng P, Liu T, Wang WS. Bone marrow mesenchymal stem cells derived exosomal miRNAs can modulate diabetic bone-fat imbalance. Front Endocrinol (Lausanne) 2023; 14:1149168. [PMID: 37124755 PMCID: PMC10145165 DOI: 10.3389/fendo.2023.1149168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Background Diabetes mellitus is a chronic metabolic disease with systemic complications. Patient with diabetes have increased risks of bone fracture. Previous studies report that diabetes could affect bone metabolism, however, the underlying mechanism is still unclear. Methods We isolated exosomes secreted by bone marrow mesenchymal stem cells of normal and diabetic mice and test their effects on osteogenesis and adipogenesis. Then we screened the differential microRNAs by high-throughput sequencing and explored the function of key microRNA in vitro and in vivo. Results We find that lower bone mass and higher marrow fat accumulation, also called bone-fat imbalance, exists in diabetic mouse model. Exosomes secreted by normal bone marrow mesenchymal stem cells (BMSCs-Exos) enhanced osteogenesis and suppressed adipogenesis, while these effects were diminished in diabetic BMSCs-Exos. miR-221, as one of the highly expressed miRNAs within diabetic BMSCs-Exos, showed abilities of suppressing osteogenesis and promoting adipogenesis both in vitro and in vivo. Elevation of miR-221 level in normal BMSCs-Exos impairs the ability of regulating osteogenesis and adipogenesis. Intriguingly, using the aptamer delivery system, delivery normal BMSCs-Exos specifically to BMSCs increased bone mass, reduced marrow fat accumulation, and promoted bone regeneration in diabetic mice. Conclusion We demonstrate that BMSCs derived exosomal miR-221 is a key regulator of diabetic osteoporosis, which may represent a potential therapeutic target for diabetes-related skeletal disorders.
Collapse
Affiliation(s)
- Fei Han
- Medical College, Shihezi University, Shihezi, Xinjiang, China
- Department of Orthopaedics, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China
| | - Chao Wang
- Medical College, Shihezi University, Shihezi, Xinjiang, China
- Department of Orthopaedics, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China
| | - Peng Cheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Peng Cheng, ; Ting Liu, ; Wei-Shan Wang,
| | - Ting Liu
- Department of Endocrinology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- *Correspondence: Peng Cheng, ; Ting Liu, ; Wei-Shan Wang,
| | - Wei-Shan Wang
- Medical College, Shihezi University, Shihezi, Xinjiang, China
- Department of Orthopaedics, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China
- *Correspondence: Peng Cheng, ; Ting Liu, ; Wei-Shan Wang,
| |
Collapse
|
5
|
Park JS, Kim D, Hong HS. Priming with a Combination of FGF2 and HGF Restores the Impaired Osteogenic Differentiation of Adipose-Derived Stem Cells. Cells 2022; 11:cells11132042. [PMID: 35805126 PMCID: PMC9265418 DOI: 10.3390/cells11132042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Classical aging-associated diseases include osteoporosis, diabetes, hypertension, and arthritis. Osteoporosis causes the bone to become brittle, increasing fracture risk. Among the various treatments for fractures, stem cell transplantation is currently in the spotlight. Poor paracrine/differentiation capacity, owing to donor age or clinical history, limits efficacy. Lower levels of fibroblast growth factor 2 (FGF2) and hepatocyte growth factor (HGF) are involved in cell repopulation, angiogenesis, and bone formation in the elderly ADSCs (ADSC-E) than in the young ADSCs (ADSC-Y). Here, we study the effect of FGF2/HGF priming on the osteogenic potential of ADSC-E, determined by calcium deposition in vitro and ectopic bone formation in vivo. Age-induced FGF2/HGF deficiency was confirmed in ADSCs, and their supplementation enhanced the osteogenic differentiation ability of ADSC-E. Priming with FGF2/HGF caused an early shift of expression of osteogenic markers, including Runt-related transcription factor 2 (Runx-2), osterix, and alkaline phosphatase (ALP) during osteogenic differentiation. FGF2/HGF priming also created an environment favorable to osteogenesis by facilitating the secretion of bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). Bone tissue of ADSC-E origin was observed in mice transplanted with FGF/HGF-primed ADSC-E. Collectively, FGF2/HGF priming could enhance the bone-forming capacity in ADSC-E. Therefore, growth factor-mediated cellular priming can enhance ADSC differentiation in bone diseases and thus contributes to the increased efficacy in vivo.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
| | - Doyoung Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.S.P.); (D.K.)
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-958-1828
| |
Collapse
|
6
|
Araújo R, Martin V, Ferreira R, Fernandes MH, Gomes PS. A new ex vivo model of the bone tissue response to the hyperglycemic environment - The embryonic chicken femur organotypic culture in high glucose conditions. Bone 2022; 158:116355. [PMID: 35151894 DOI: 10.1016/j.bone.2022.116355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
Abstract
Diabetes mellitus (DM) embrace a group of chronic metabolic conditions with a high morbidity, causing deleterious effects in different tissues and organs, including bone. Hyperglycemia seems to be one of the most contributing etiological factors of bone-related alterations, altering metabolic functionality and inducing morphological adaptations. Despite the established models for the assessment of bone functionality in hyperglycemic conditions, in vitro studies present a limited representativeness given the imperfect cell-cell and cell-matrix interactions, and restricted three-dimensional spatial arrangement; while in vivo studies raise ethical issues and offer limited mechanistic characterization, given the modulatory influence of many systemic factors and/or regulatory systems. Accordingly, the aim of this study is to establish and characterize an innovative ex vivo model of the bone tissue response to hyperglycemia, reaching hand of the organotypic culture of embryonic chicken femurs in high glucose conditions, showcasing the integrative responsiveness of the model regarding hyperglycemia-induced alterations. A thorough assessment of the cellular and tissue functionality was further conducted. Results show that, in high glucose conditions, femurs presented an increased cell proliferation and enhanced collagen production, despite the altered protein synthesis, substantiated by the increased carbonyl content. Gene expression analysis evidenced that high glucose levels induced the expression of pro-inflammatory and early osteogenic markers, further impairing the expression of late osteogenic markers. Furthermore, the tissue morphological organization and matrix mineralization were significantly altered by high glucose levels, as evidenced by histological, histochemical and microtomographic evaluations. Attained data is coherent with acknowledged hyperglycemia-induced bone tissue alterations, validating the models' effectiveness, and evidencing its integrative responsiveness regarding cell proliferation, gene and protein expression, and tissue morpho-functional organization. The assessed ex vivo model conjoins the capability to access both cellular and tissue outcomes in the absence of a systemic modulatory influence, outreaching the functionality of current experimental in vitro and in vivo models of the diabetic bone condition.
Collapse
Affiliation(s)
- Rita Araújo
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Portugal; REQUIMTE/LAQV, University of Aveiro, Aveiro, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Li Y, Wang X. Chrysin Attenuates High Glucose-Induced BMSC Dysfunction via the Activation of the PI3K/AKT/Nrf2 Signaling Pathway. Drug Des Devel Ther 2022; 16:165-182. [PMID: 35058687 PMCID: PMC8763623 DOI: 10.2147/dddt.s335024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose High glucose environment in diabetes mellitus induces the dysfunction of bone marrow-derived mesenchymal stromal cells (BMSCs) and impairs bone regeneration. Chrysin is a natural polyphenol with outstanding anti-inflammation and anti-oxidation ability. However, whether and how chrysin affects BMSCs in high glucose conditions remain poorly understood. The present study aimed to explore the effects and underlying mechanisms of chrysin on the BMSCs exposed to high glucose environment. Materials and Methods Cell viability was detected by cell counting kit 8 assay and 5-ethynyl-2’-deoxyuridine staining, while cell apoptosis was determined through flow cytometry using Annexin V-FITC/PI kit. The oxidative stress in BMSCs was evaluated by detecting the reactive oxygen species production, malondialdehyde content, and superoxide dismutase activity. Alkaline phosphatase staining, Alizarin Red staining, and quantitative real-time PCR were performed to determine the osteogenic differentiation. Western blot was used to examine the expression of the PI3K/ATK/Nrf2 signaling pathway. Furthermore, chrysin was injected into calvarial defects of type 1 diabetic SD rats to assess its in vivo bone formation capability. Results Chrysin reduced oxidative stress, increased cell viability, and promoted osteogenic differentiation in BMSCs exposed to high glucose. Blocking PI3K/ATK/Nrf2 signaling pathway weakened the beneficial effects of chrysin, indicating that chrysin at least partly worked through the PI3K/ATK/Nrf2 pathway. Conclusion Chrysin can protect BMSCs from high glucose-induced oxidative stress via the activation of the PI3K/AKT/Nrf2 pathway, and promote bone regeneration in type 1 diabetic rats.
Collapse
Affiliation(s)
- Yu Li
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Hand, Plastic and Reconstructive Surgery, Burn Center-Hand and Plastic Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Ximei Wang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
8
|
Mantripragada VP, Kaplevatsky R, Bova WA, Boehm C, Obuchowski NA, Midura RJ, Muschler GF. Influence of Glucose Concentration on Colony-Forming Efficiency and Biological Performance of Primary Human Tissue-Derived Progenitor Cells. Cartilage 2021; 13:95S-106S. [PMID: 32100548 PMCID: PMC8804831 DOI: 10.1177/1947603520906605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Glucose concentrations used in current cell culture methods are a significant departure from physiological glucose levels. The study focuses on comparing the effects of glucose concentrations on primary human progenitors (connective tissue progenitors [CTPs]) used for cartilage repair. DESIGN Cartilage- (Outerbridge grade 1, 2, 3; superficial and deep zone cartilage), infrapatellar fatpad-, synovium-, and periosteum-derived cells were obtained from 63 patients undergoing total knee arthroplasty and cultured simultaneously in fresh chondrogenic media containing 25 mM glucose (HGL) or 5 mM glucose (NGL) for pairwise comparison. Automated ASTM-based quantitative image analysis was used to determine colony-forming efficiency (CFE), effective proliferation rates (EPR), and sulfated-proteoglycan (GAG-ECM) staining of the CTPs across tissue sources. RESULTS HGL resulted in increased cell cultures with CFE = 0 compared with NGL in all tissue sources (P = 0.049). The CFE in NGL was higher than HGL for superficial cartilage (P < 0.001), and contrary for synovium-derived CTPs (P = 0.046) when CFE > 0. EPR of the CTPs did not differ between the media in the 6-day assay time period (P = 0.082). The GAG-ECM area of the CTPs and their progeny was increased in presence of HGL (P = 0.027). CONCLUSION Glucose concentration is critical to progenitor's physiology and should be taken into account in the setting of protocols for clinical or in vitro cell expansion strategies.
Collapse
Affiliation(s)
- Venkata P. Mantripragada
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Venkata P. Mantripragada, Department of
Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid
Avenue, ND3-30, Cleveland, OH 44195, USA.
| | | | - Wes A. Bova
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nancy A. Obuchowski
- Department of Quantitative Health
Science, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald J. Midura
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George F. Muschler
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Orthopedic Surgery,
Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor‐1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021; 15:419-441. [DOI: 10.1002/term.3192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2025]
Affiliation(s)
- Quan Fu Gan
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Ker Woon Choy
- Department of Anatomy Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Selangor Malaysia
| | - Chai Nien Foo
- Population Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Pooi Pooi Leong
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Soon Keng Cheong
- Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| |
Collapse
|
11
|
Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone 2021; 143:115764. [PMID: 33221502 PMCID: PMC7770068 DOI: 10.1016/j.bone.2020.115764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
Diabetics are at increased risk for fracture, and experience severely impaired skeletal healing characterized by delayed union or nonunion of the bone. The periosteum harbors osteochondral progenitors that can differentiate into chondrocytes and osteoblasts, and this connective tissue layer is required for efficient fracture healing. While bone marrow-derived stromal cells have been studied extensively in the context of diabetic skeletal repair and osteogenesis, the effect of diabetes on the periosteum and its ability to contribute to bone regeneration has not yet been explicitly evaluated. Within this study, we utilized an established murine model of type I diabetes to evaluate periosteal cell differentiation capacity, proliferation, and availability under the effect of a diabetic environment. Periosteal cells from diabetic mice were deficient in osteogenic differentiation ability in vitro, and diabetic mice had reduced periosteal populations of mesenchymal progenitors with a corresponding reduction in proliferation capacity following injury. Additionally, fracture callus mineralization and mature osteoblast activity during periosteum-mediated healing was impaired in diabetic mice compared to controls. We propose that the effect of diabetes on periosteal progenitors and their ability to aid in skeletal repair directly impairs fracture healing.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn School of Dental Medicine, Farmington, CT, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
12
|
Weatherall EL, Avilkina V, Cortes-Araya Y, Dan-Jumbo S, Stenhouse C, Donadeu FX, Esteves CL. Differentiation Potential of Mesenchymal Stem/Stromal Cells Is Altered by Intrauterine Growth Restriction. Front Vet Sci 2020; 7:558905. [PMID: 33251256 PMCID: PMC7676910 DOI: 10.3389/fvets.2020.558905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Consistency in clinical outcomes is key to the success of therapeutic Mesenchymal Stem/Stromal cells (MSCs) in regenerative medicine. MSCs are used to treat both humans and companion animals (horses, dogs, and cats). The properties of MSC preparations can vary significantly with factors including tissue of origin, donor age or health status. We studied the effects of developmental programming associated with intrauterine growth restriction (IUGR) on MSC properties, particularly related to multipotency. IUGR results from inadequate uterine capacity and placental insufficiency of multifactorial origin. Both companion animals (horses, dogs, cats) and livestock (pigs, sheep, cattle) can be affected by IUGR resulting in decreased body size and other associated changes that can include, alterations in musculoskeletal development and composition, and increased adiposity. Therefore, we hypothesized that this dysregulation occurs at the level of MSCs, with the cells from IUGR animals being more prone to differentiate into adipocytes and less to other lineages such as chondrocytes and osteocytes compared to those obtained from normal animals. IUGR has consequences on health and performance in adult life and in the case of farm animals, on meat quality. In humans, IUGR is linked to increased risk of metabolic (type 2 diabetes) and other diseases (cardiovascular), later in life. Here, we studied porcine MSCs where IUGR occurs spontaneously, and shows features that recapitulate human IUGR. We compared the properties of adipose-derived MSCs from IUGR (IUGR-MSCs) and Normal (Normal-MSCs) new-born pig littermates. Both MSC types grew clonally and expressed typical MSC markers (CD105, CD90, CD44) at similar levels. Importantly, tri-lineage differentiation capacity was significantly altered by IUGR. IUGR-MSCs had higher adipogenic capacity than Normal-MSCs as evidenced by higher adipocyte content and expression of the adipogenic transcripts, PPARγ and FABP4 (P < 0.05). A similar trend was observed for fibrogenesis, where, upon differentiation, IUGR-MSCs expressed significantly higher levels of COL1A1 (P < 0.03) than Normal-MSCs. In contrast, chondrogenic and osteogenic potential were decreased in IUGR-MSCs as shown by a smaller chondrocyte pellet and osteocyte staining, and lower expression of SOX9 (P < 0.05) and RUNX2 (P < 0.02), respectively. In conclusion, the regenerative potential of MSCs appears to be determined prenatally in IUGR and this should be taken into account when selecting cell donors in regenerative therapy programmes both in humans and companion animals.
Collapse
Affiliation(s)
- Emma L Weatherall
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Viktorija Avilkina
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Yennifer Cortes-Araya
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Dan-Jumbo
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Stenhouse
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Francesc X Donadeu
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom.,The Euan Macdonald Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina L Esteves
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Gan K, Dong GH, Wang N, Zhu JF. miR-221-3p and miR-222-3p downregulation promoted osteogenic differentiation of bone marrow mesenchyme stem cells through IGF-1/ERK pathway under high glucose condition. Diabetes Res Clin Pract 2020; 167:108121. [PMID: 32194220 DOI: 10.1016/j.diabres.2020.108121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to investigate the roles of miR-221-3p and miR-222-3p in the regulation of osteogenic differentiation of bone marrow mesenchyme stem cells (BMSCs) under high glucose condition. MATERIALS AND METHODS The expreesions of miR-221-3p, miR-222-3p and insulin-like growth factor 1 (IGF-1) were detected by qRT-PCR. The protein levels of osteoblast-related proteins (Osterix, Runx-2 and Osteopontin) were detected by western blot. Whether miR-221-3p and miR-222-3p can target IGF-1 was assessed by dual luciferase reporter gene assay. RESULTS miR-221-3p and miR-222-3p were up-regulated in the mandibles of diabetic rats and BMSCs cultured in high glucose condition. Silencing miR-221-3p or/ and miR-222-3p increased ALP activity and up-regulated osteoblast-related protein levels, and the simultaneous silence the two miRNAs showed stronger effects on ALP activity and osteoblast-related protein levels. Next, we confirmed that miR-221-3p and miR-222-3p both targeted IGF-1 and cooperatively regulated its expression. Besides, miR-221-3p and miR-222-3p regulated ERK activation through IGF-1. Silencing miR-221-3p and miR-222-3p promoted osteogenic differentiation of BMSCs through IGF-1 under high glucose condition. CONCLUSION miR-221-3p and miR-222-3p inhibited osteogenic differentiation of BMSCs via IGF-1/ERK pathway under high glucose condition.
Collapse
Affiliation(s)
- Kang Gan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Guan-Hua Dong
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ning Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Juan-Fang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
14
|
Gao X, Qin W, Chen L, Fan W, Ma T, Schneider A, Yang M, Obianom ON, Chen J, Weir MD, Shu Y, Zhao L, Lin Z, Xu HHK. Effects of Targeted Delivery of Metformin and Dental Pulp Stem Cells on Osteogenesis via Demineralized Dentin Matrix under High Glucose Conditions. ACS Biomater Sci Eng 2020; 6:2346-2356. [PMID: 33455311 DOI: 10.1021/acsbiomaterials.0c00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High glucose condition inhibited osteoblast differentiation could be a main mechanism contributing to the decreased bone repair associated with diabetes. Metformin, a widely prescribed antidiabetic drug, was shown to have osteogenic properties in our previous study. Transplanted mesenchymal stromal cells (MSCs) may differentiate into osteoblasts and promote bone regeneration. Our study aimed to combine the benefits of metformin and MSCs transplantation on osteogenesis in high glucose conditions. We developed demineralized dentin matrix (DDM) as a carrier to target deliver metformin and dental pulp-derived MSCs (DPSCs). We collected clinically discarded teeth, isolated DPSCs from the dental pulp, and prepared the DDM from the dentin. The DDM was observed by scanning electron microscopy and was found to have well-distributed tubes. Then, metformin was loaded into the DDM to form the DDM-Met complex (DDM-Met); DDM-Met released metformin at a favorable concentration. The DPSCs seeded with the DDM-Met in a high glucose medium showed satisfactory attachment and viability together with increased mineralization and upregulated osteogenesis-related genes, including alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx2), and osteopontin (OPN). A possible mechanism of the enhanced osteogenic differentiation of DPSCs was explored, and the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway was found to play a role in the enhancement of osteogenesis. DDM-Met appeared to be a successful metformin and DPSC carrier that allowed for the local delivery of metformin and DPSCs in high glucose conditions. DDM-Met-DPSC construct has promising prospects to promote osteogenesis and enhance the much-needed diabetic bone regeneration.
Collapse
Affiliation(s)
- Xianling Gao
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wei Qin
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Lingling Chen
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Wenguo Fan
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mengyao Yang
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jiayao Chen
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Liang Zhao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhengmei Lin
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
15
|
Weber DR, Gordon RJ, Kelley JC, Leonard MB, Willi SM, Hatch-Stein J, Kelly A, Kosacci O, Kucheruk O, Kaafarani M, Zemel BS. Poor Glycemic Control Is Associated With Impaired Bone Accrual in the Year Following a Diagnosis of Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:4511-4520. [PMID: 31034056 PMCID: PMC6736051 DOI: 10.1210/jc.2019-00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
CONTEXT Type 1 diabetes (T1D) is associated with an increased fracture risk across the life course. The effects on bone accrual early in the disease are unknown. OBJECTIVE To characterize changes in bone density and structure over the year following diagnosis of T1D and to identify contributors to impaired bone accrual. DESIGN Prospective cohort study. SETTING Academic children's hospital. PARTICIPANTS Thirty-six children, ages 7 to 17 years, enrolled at diagnosis of T1D. OUTCOMES Whole body and regional dual-energy X-ray absorptiometry and tibia peripheral quantitative computed tomography obtained at baseline and 12 months. The primary outcome was bone accrual assessed by bone mineral content (BMC) and areal bone mineral density (aBMD) velocity z score. RESULTS Participants had low total body less head (TBLH) BMC (z = -0.46 ± 0.76), femoral neck aBMD (z = -0.57 ± 0.99), and tibia cortical volumetric BMD (z = -0.44 ± 1.11) at diagnosis, compared with reference data, P < 0.05. TBLH BMC velocity in the year following diagnosis was lower in participants with poor (hemoglobin A1c ≥7.5%) vs good (hemoglobin A1c <7.5%) glycemic control at 12 months, z = -0.36 ± 0.84 vs 0.58 ± 0.71, P = 0.003. TBLH BMC velocity was correlated with gains in tibia cortical area (R = 0.71, P = 0.003) and periosteal circumference (R = 0.67, P = 0.007) z scores in participants with good, but not poor control. CONCLUSIONS Our results suggest that the adverse effects of T1D on BMD develop early in the disease. Bone accrual following diagnosis was impaired in participants with poor glycemic control and appeared to be mediated by diminished bone formation on the periosteal surface.
Collapse
Affiliation(s)
- David R Weber
- Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, New York
| | - Rebecca J Gordon
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer C Kelley
- Monroe Carrell Jr Children’s Hospital at Vanderbilt, Nashville, Tennessee
| | - Mary B Leonard
- Lucille Packard Children’s Hospital, Stanford School of Medicine, Stanford, California
| | - Steven M Willi
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquelyn Hatch-Stein
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Kelly
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oksana Kosacci
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Olena Kucheruk
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mirna Kaafarani
- Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, New York
| | - Babette S Zemel
- The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Henderson S, Ibe I, Cahill S, Chung YH, Lee FY. Bone Quality and Fracture-Healing in Type-1 and Type-2 Diabetes Mellitus. J Bone Joint Surg Am 2019; 101:1399-1410. [PMID: 31393433 DOI: 10.2106/jbjs.18.01297] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shasta Henderson
- Department of Orthopaedics, Pennsylvania State University, Hershey, Pennsylvania
| | - Izuchukwu Ibe
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Sean Cahill
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Yeon-Ho Chung
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| |
Collapse
|
17
|
Górski B, Jalowski S, Górska R, Zaremba M. Treatment of intrabony defects with modified perforated membranes in aggressive periodontitis: a 4-year follow-up of a randomized controlled trial. Clin Oral Investig 2019; 24:1183-1196. [PMID: 31324986 DOI: 10.1007/s00784-019-02982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE (1) To assess long-term outcomes 4 years following guided tissue regeneration (GTR) of intrabony defects in patients diagnosed with aggressive periodontitis (AgP) and (2) to identify predictors of clinical attachment level (CAL) gain and bone/graft density gain. MATERIALS AND METHODS In 15 patients, two deep intrabony defects were randomly treated with xenogenic graft plus modified perforated membranes (MPM, tests) or xenogenic graft plus standard collagen membranes (CM, controls). After 4 years, clinical and radiographic outcomes were evaluated and compared with outcomes at baseline and after 1 year. RESULTS After 4 years, 14 test sites and 13 control sites were available for analysis. One tooth was lost as a result of root fracture. There were significant improvements in all evaluated parameters after 1 and 4 years in relation to baseline, but no differences were observed between tests and controls. However, some non-significant changes were found between 1 and 4 years. Regression analyses showed that recurrence of periodontitis was a significant predictor for CAL gain (p = 0.001) and bone/graft density gain (p = 0.024) from 1 to 4 years. CONCLUSIONS GTR of intrabony defects in AgP with either standard or modified CM yielded similarly successful and maintainable clinical benefits for compromised teeth 4 years following the surgery. The use of MPM showed no additional benefit. CLINICAL RELEVANCE This study demonstrates that most of the positive outcomes of GTR in AgP may be preserved over 4 years. Periodontitis recurrence might influence long-term outcomes.
Collapse
Affiliation(s)
- Bartłomiej Górski
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Miodowa St 18, 00-246, Warsaw, Poland.
| | - Stanisław Jalowski
- Department of Dental and Maxillofacial Radiology, Medical University of Warsaw, Nowogrodzka St 59, 02-006, Warsaw, Poland
| | - Renata Górska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Miodowa St 18, 00-246, Warsaw, Poland
| | - Maciej Zaremba
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Warsaw, Miodowa St 18, 00-246, Warsaw, Poland
| |
Collapse
|
18
|
Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr Polym 2019; 213:27-38. [DOI: 10.1016/j.carbpol.2019.02.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
|
19
|
Zhu Y, Jia Y, Wang Y, Xu J, Chai Y. Impaired Bone Regenerative Effect of Exosomes Derived from Bone Marrow Mesenchymal Stem Cells in Type 1 Diabetes. Stem Cells Transl Med 2019; 8:593-605. [PMID: 30806487 PMCID: PMC6525563 DOI: 10.1002/sctm.18-0199] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Stem cell‐derived exosomes have exhibited promise for applications in tissue regeneration. However, one major problem for stem cell‐derived exosome therapies is identifying appropriate source cells. In the present study, we aimed to compare the bone regenerative effect of exosomes secreted by bone marrow mesenchymal stem cells (BMSCs) derived from type 1 diabetes rats (dBMSC‐exos) and exosomes secreted by BMSCs derived from normal rats (nBMSC‐exos). BMSCs were isolated from rats with streptozotocin‐induced diabetes and normal rats. dBMSC‐exos and nBMSC‐exos were isolated by an ultracentrifugation method and identified. The effects of dBMSC‐exos and nBMSC‐exos on the proliferation and migration of BMSCs and human umbilical vein endothelial cells (HUVECs) were investigated. The effects of exosomes on the osteogenic differentiation of BMSCs and the angiogenic activity of HUVECs were compared. Finally, a rat calvarial defect model was used to compare the effects of exosomes on bone regeneration and neovascularization in vivo. In vitro, dBMSC‐exos and nBMSC‐exos both enhanced the osteogenic differentiation of BMSCs and promoted the angiogenic activity of HUVECs, but nBMSC‐exos had a greater effect than dBMSC‐exos. Similarly, in vivo, both dBMSC‐exos and nBMSC‐exos promoted bone regeneration and neovascularization in rat calvarial defects, but the therapeutic effect of nBMSC‐exos was superior to that of dBMSC‐exos. The present study demonstrates for the first time that the bone regenerative effect of exosomes derived from BMSCs is impaired in type 1 diabetes, indicating that for patients with type 1 diabetes, the autologous transplantation of BMSC‐exos to promote bone regeneration may be inappropriate. stem cells translational medicine2019;8:593–605
Collapse
Affiliation(s)
- Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yanmao Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Park SY, Kim KH, Park CH, Shin SY, Rhyu IC, Lee YM, Seol YJ. Enhanced Bone Regeneration by Diabetic Cell-Based Adenoviral BMP-2 Gene Therapy in Diabetic Animals. Tissue Eng Part A 2018; 24:930-942. [PMID: 29160182 DOI: 10.1089/ten.tea.2017.0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of bone morphogenetic protein 2 (BMP-2) has been extensively investigated to improve diabetes-impaired bone healing; however, the delivery of BMP-2 by gene therapy for bone regeneration has rarely been investigated in diabetic animals. In this study, we aimed to evaluate which cells induce more new bone formation in diabetic animals when cell-based BMP2 gene therapy is applied. For this purpose, we harvested bone marrow stromal cells (BMSCs) twice in the same animal before (non-diabetic BMSCs; nBMSCs) and after diabetes induction (diabetic BMSCs; dBMSCs) using modified bone marrow ablation methods. And then, cells were transduced by adenoviral vectors carrying the BMP2 gene (AdBMP2). In in vitro, AdBMP2-transfected dBMSCs (B2/dBMSCs) produced higher BMP-2 mRNA levels over 48 h, whereas AdBMP2-transfected nBMSCs (B2/nBMSCs) exhibited a transient increase in BMP-2 mRNA followed by a decrease to the baseline level within 48 h. Both B2/dBMSCs and B2/nBMSCs induced secretion of BMP-2 for 3 weeks. However, B2/dBMSC BMP-2 secretion peaked from day 3 to 10, whereas B2/nBMSC BMP-2 secretion peaked from day 1 to 7. The analysis of osteogenic activity revealed that mineralization nodule formation and the expression levels of osteogenic genes were significantly higher in B2/dBMSCs than B2/nBMSCs and were accompanied by upregulation of canonical Wnt/β-catenin and Smad signaling. AdBMP2-transfected autologous cells were implanted into critical-sized calvarial defects in diabetic animals and induced significantly more bone regeneration than non-AdBMP2-transfected cells. In addition, B2/dBMSCs led to significantly more new bone formation than B2/nBMSCs. Thus, BMP2 gene therapy using diabetic cells effectively supported diabetic bone healing and it was related to the enhanced responses to AdBMP2 of dBMSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea.,2 Section of Dentistry, Department of Periodontology, Seoul National University Bundang Hospital , Seongnam, Gyeonggi-do, Korea
| | - Kyoung-Hwa Kim
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Chan-Ho Park
- 3 Dental Research Institute, Seoul National University , Seoul, Korea
| | - Seung-Yun Shin
- 4 Department of Periodontology, Institute of Oral Biology, School of Dentistry, Kyung Hee University , Seoul, Korea
| | - In-Chul Rhyu
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Yong-Moo Lee
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | - Yang-Jo Seol
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| |
Collapse
|