1
|
Albuquerque A, Rao SSC. Controversies in fecal incontinence. World J Gastroenterol 2025; 31:97963. [PMID: 39839905 PMCID: PMC11684165 DOI: 10.3748/wjg.v31.i3.97963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Fecal incontinence is a common condition that can significantly impact patients' quality of life. Obstetric anal sphincter injury and anorectal surgeries are common etiologies. Endoanal ultrasound and anorectal manometry are important diagnostic tools for evaluating patients. There are various treatment options, including diet, lifestyle modifications, drugs, biofeedback therapy, tibial and sacral nerve neuromodulation therapy, and surgery. In this editorial, we will discuss current controversies and novel approaches to fecal incontinence. Screening for asymptomatic anal sphincter defects after obstetric anal sphincter injury and in patients with inflammatory bowel disease is not generally recommended, but may be helpful in selected patients. The Garg incontinence score is a new score that includes the assessment of solid, liquid, flatus, mucous, stress and urge fecal incontinence. Novel tests such as translumbosacral anorectal magnetic stimulation and novel therapies such as translumbosacral neuromodulation therapy are promising diagnostic and treatment options, for both fecal incontinence and neuropathy. Home biofeedback therapy can overcome some limitations of the office-based therapy. Skeletal muscle-derived cell implantation of the external anal sphincter has been further studied as a possible treatment option. Sacral neuromodulation may be useful in scleroderma, congenital fecal incontinence and inflammatory bowel disease but merits further study.
Collapse
Affiliation(s)
- Andreia Albuquerque
- School of Medicine and Biomedical Sciences, Fernando Pessoa University, Gondomar 4420-096, Porto, Portugal
- Precancerous Lesions and Early Cancer Management Research Group RISE@CI-IPO (Health Research Network), Portuguese Oncology Institute of Porto, Porto 4200-072, Portugal
| | - Satish S C Rao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
2
|
Son I, Kim M, Lee JS, Yoon D, Kim YR, Park JH, Oh BY, Chun W, Kang SB. 3D spheroids versus 2D-cultured human adipose stem cells to generate smooth muscle cells in an internal anal sphincter-targeting cryoinjured mouse model. Stem Cell Res Ther 2024; 15:360. [PMID: 39396044 PMCID: PMC11470548 DOI: 10.1186/s13287-024-03978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The efficacy of cell implantation via 3D-spheroids to treat basal tone in fecal incontinence remains unclear. To address this, in this study, we aimed to identify cell differentiation and assess the development of a contractile phenotype corresponding to smooth muscle cells (SMCs) following implantation of 3D-spheroid and 2D-cultured human adipose stem cells (hASCs) in an in vivo internal anal sphincter (IAS)-targeted mouse model. METHODS We developed an IAS-targeted in vivo model via rapid freezing (at - 196 °C) of the dorsal layers of the region of interest (ROI) of the IAS ring posterior quarter, between the submucosal and muscular layers, following submucosal dissection (n = 60 rats). After implantation of tetramethylindocarbocyanine perchlorate (Dil)-stained 3D and 2D-cells into randomly allocated cryoinjured rats, the entire sphincter ring or only the cryoinjured ROI was harvested. Expression of SMC markers, RhoA/ROCKII and its downstream molecules, and fibrosis markers was analyzed. Dil, α-smooth muscle actin (α-SMA), and RhoA signals were used for cell tracking. RESULTS In vitro, 3D-spheroids exhibited higher levels of SMC markers and RhoA/ROCKII-downstream molecules than 2D-hASCs. The IAS-targeted cryoinjured model exhibited substantial loss of SMC layers of the squamous epithelium lining of the anal canal, as well as reduced expression of SMC markers and RhoA-related downstream molecules. In vivo, 3D-spheroid implantation induced SMC markers and contractile molecules weakly at 1 week. At 2 weeks, the mRNA expression of aSma, Sm22a, Smoothelin, RhoA, Mypt1, Mlc20, Cpi17, and Pp1cd increased, whereas that of fibrosis markers reduced significantly in the 3D-spheroid implanted group compared to those in the sham, non-implanted, and 2D-hASC implanted groups. Protein levels of RhoA, p-MYPT1, and p-MLC20 were higher in the 3D-spheroid-implanted group than in the other groups. At 2 weeks, in the implanted groups, the cryoinjured tissues (which exhibited Dil, α-SMA, and RhoA signals) were restored, while they remained defective in the sham and non-implanted groups. CONCLUSIONS These findings demonstrate that, compared to 2D-cultured hASCs, 3D-spheroids more effectively induce a contractile phenotype that is initially weak but subsequently improves, inducing expression of RhoA/ROCKII-downstream molecules and SMC differentiation associated with IAS basal tone.
Collapse
Affiliation(s)
- Iltae Son
- Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-Ro 170 Beon-Gil, Pyeongan-Dong, Dongan-Gu, Anyang, Gyeonggi-Do, Republic of Korea.
- Institute for Regenerative Medicine, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Minsung Kim
- Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-Ro 170 Beon-Gil, Pyeongan-Dong, Dongan-Gu, Anyang, Gyeonggi-Do, Republic of Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - You-Rin Kim
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Park
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-Ro 170 Beon-Gil, Pyeongan-Dong, Dongan-Gu, Anyang, Gyeonggi-Do, Republic of Korea
| | - Wook Chun
- Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, 166 Gumi-Ro, Bundang-Gu, 463-707, Seongnam, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wen Y, Kim K, Wu H, Zhang J, Dobberfuhl AD, Chen B. Functional outcome of the anterior vaginal wall in a pelvic surgery injury rat model after treatment with stem cell-derived progenitors of smooth muscle cells. Stem Cell Res Ther 2024; 15:291. [PMID: 39256865 PMCID: PMC11389472 DOI: 10.1186/s13287-024-03900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Stem-cell-derived therapy is a promising option for tissue regeneration. Human iPSC-derived progenitors of smooth muscle cells (pSMCs) exhibit limited proliferation and differentiation, which minimizes the risk of tumor formation while restoring smooth muscle cells (SMCs). Up to 29% of women suffer from recurrence of vaginal prolapse after prolapse surgery. Therefore, there is a need for therapies that can restore vaginal function. SMCs contribute to vaginal tone and contractility. We sought to examine whether human pSMCs can restore vaginal function in a rat model. METHODS Female immunocompromised RNU rats were divided into 5 groups: intact controls (n = 12), VSHAM (surgery + saline injection, n = 35), and three cell-injection groups (surgery + cell injection using pSMCs from three patients, n = 14/cell line). The surgery to induce vaginal injury was analogous to prolapse surgery. Menopause was induced by surgical ovariectomy. The vagina, urethra, bladder were harvested 10 weeks after surgery (5 weeks after cell injection). Organ bath myography was performed to evaluate the contractile function of the vagina, and smooth muscle thickness was examined by tissue immunohistochemistry. Collagen I, collagen III, and elastin mRNA and protein expressions in tissues were assessed. RESULTS Vaginal smooth muscle contractions induced by carbachol and KCl in the cell-injection groups were significantly greater than those in the VSHAM group. Collagen I protein expression in the vagina of the cell-injections groups was significantly higher than in the VSHAM group. Vaginal elastin protein expression was similar between the cell-injection and VSHAM groups. In the urethra, gene expression levels of collagen I, III, and elastin were all significantly greater in the cell-injection groups than in the VSHAM group. Collagen I, III, and elastin protein expression of the urethra did not show a consistent trend between cell-injection groups and the VSHAM group. CONCLUSIONS Human iPSC-derived pSMCs transplantation appears to be associated with improved contractile function of the surgically injured vagina in a rat model. This is accompanied by changes in extracellular protein expression the vagina and urethra. These observations support further efforts in the translation of pSMCs into a treatment for regenerating the surgically injured vagina in women who suffer recurrent prolapse after surgery.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Yan Wen
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA.
- , Palo Alto, USA.
| | - Kayla Kim
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Hugo Wu
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Jerry Zhang
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| | - Amy D Dobberfuhl
- Department of Urology, Stanford University, Stanford, CA, 94305, USA
| | - Bertha Chen
- Department of Obstetrics and Gynecology, Stanford University, Stanford, USA
| |
Collapse
|
4
|
Fujii I, Kinoshita R, Akiyama H, Nakamura A, Iwamori K, Fukada SI, Honda H, Shimizu K. Discovery of fibroblast growth factor 2-derived peptides for enhancing mice skeletal muscle satellite cell proliferation. Biotechnol J 2024; 19:e2400278. [PMID: 39212202 DOI: 10.1002/biot.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Skeletal muscle satellite cells (SCs) are essential for muscle regeneration. Their proliferation and differentiation are influenced by fibroblast growth factor (FGF)-2. In this study, we screened for FGF-2-derived peptides that promote SC proliferation. Utilizing photocleavable peptide array technology, a library of 7-residue peptides was synthesized, and its effect on SC proliferation was examined using a mixture of five peptides. The results showed that peptides 1-5 (136%), 21-25 (136%), 26-30 (141%), 31-35 (159%), 71-75 (135%), 76-80 (144%), and 126-130 (137%) significantly increased SC proliferation. Further experiments revealed that peptide 33, CKNGGFF, enhanced SC proliferation. Furthermore, its extended form, peptide 33-13, CKNGGFFLRIHPD, promoted SC proliferation and increased the percentage of Pax7-positive cells, indicating that SCs were maintained in an undifferentiated state. The addition of FGF-2 and peptide 33-13 further induced cell proliferation but did not increase the percentage of Pax7-positive cells. A proliferation assay using an FGF receptor (FGFR) inhibitor suggested that peptide 33-13 acts through the FGFR-mediated and other pathways. Although further research is necessary to explore the mechanisms of action of these peptides and their potential for in vivo and in vitro use, the high sequence conservation of peptides 33 and 33-13 in FGF-2 across multiple species suggests their broad application prospects in biomedical engineering and biotechnology.
Collapse
Affiliation(s)
- Itsuki Fujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Remi Kinoshita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hirokazu Akiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ayasa Nakamura
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Wang Y, Wen Y, Kim K, Wu H, Zhang J, Dobberfuhl AD, Chen B. Functional outcome of the anterior vaginal wall in a pelvic surgery injury rat model after treatment with stem cell-derived progenitors of smooth muscle cells. RESEARCH SQUARE 2024:rs.3.rs-4172308. [PMID: 38946968 PMCID: PMC11213168 DOI: 10.21203/rs.3.rs-4172308/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Stem-cell-derived therapy is a promising option for tissue regeneration. Human iPSC-derived progenitors of smooth muscle cells (pSMCs) have limited proliferation and differentiation, which may minimize the risk of in vivo tumor formation while restoring smooth muscle cell deficiencies. Up to 30 % of women who suffer from recurrence of vaginal prolapse after prolapse surgery are faced with reoperation. Therefore, there is an unmet need for therapies that can restore vaginal tissue function. We hypothesize that human pSMCs can restore vaginal function in a vaginal-injury rat model. Methods Female immune-compromised RNU rats were divided into 5 groups: intact controls (n=12), VSHAM (surgery + saline injection, n=33), and cell-injection group (surgery + cell injection using three patient pSMCs lines, n=14/cell line). The surgery, similar to what is done in vaginal prolapse surgery, involved ovariectomy, urethrolysis, and vagina injury. The vagina, urethra, bladder dome and trigone were harvested 10 weeks after surgery (5 weeks after injection). Organ bath myography was performed to evaluate the contractile function of vagina, and smooth muscle thickness was examined by tissue immunohistochemistry. Collagen I, collagen III, and elastin mRNA and protein expressions in tissues were assessed. Results When compared to the VSHAM group, cell-injection groups showed significantly increased vaginal smooth muscle contractions induced by carbachol (groups A and C) and by KCl (group C), and significantly higher collagen I protein expression in the vagina (groups A and B). Elastin mRNA and protein expressions in the vagina did not correlate with injection group. In the urethra, mRNA expressions of collagen I, collagen III, and elastin were all significantly higher in the cell-injection groups compared to the VSHAM group. Collagen I protein expression of the urethra was also higher in the cell-injection group compared to the VSHAM group. Elastin protein expression in the urethra did not correlate with injection group. Conclusions Human iPSC-derived pSMCs improved contractile function of the post-surgery vagina. Additionally, pSMC injection modulated collagen I, collagen III and elastin mRNA and protein expressions in the vagina and urethra. These findings suggest that pSMCs may be a possible therapy for vaginal prolapse recurrence after surgical intervention.
Collapse
Affiliation(s)
| | - Yan Wen
- Stanford University School of Medicine
| | - Kayla Kim
- Stanford University School of Medicine
| | - Hugo Wu
- Stanford University School of Medicine
| | | | | | | |
Collapse
|
6
|
Henderson T, Christman KL, Alperin M. Regenerative Medicine in Urogynecology: Where We Are and Where We Want to Be. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:519-527. [PMID: 38683203 PMCID: PMC11342648 DOI: 10.1097/spv.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
ABSTRACT Pelvic floor disorders (PFDs) constitute a major public health issue given their negative effect on quality of life for millions of women worldwide and the associated economic burden. As the prevalence of PFDs continues to increase, novel therapeutic approaches for the effective treatment of these disorders are urgently needed. Regenerative medicine techniques, including cellular therapies, extracellular vesicles, secretomes, platelet-rich plasma, laser therapy, and bioinductive acellular biomaterial scaffolds, are emerging as viable clinical options to counteract urinary and fecal incontinence, as well as pelvic organ prolapse. This brief expert review explores the current state-of-science regarding application of these therapies for the treatment of PFDs. Although regenerative approaches have not been widely deployed in clinical care to date, these innovative techniques show a promising safety profile and potential to positively affect the quality of life of patients with PFDs. Furthermore, investigations focused on regeneration of the main constituents of the pelvic floor and lower urinary tract improve our understanding of the underlying pathophysiology of PFDs. Regenerative medicine techniques have a high potential not only to revolutionize treatment of PFDs but also to prevent these complex conditions.
Collapse
Affiliation(s)
- Tatyanna Henderson
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| |
Collapse
|
7
|
Knowles CH, Canestrari E, Jankowski RJ, Cardello K, Raval MJ. Safety and Efficacy of Iltamiocel Cellular Therapy for the Treatment of Fecal Incontinence. Results of a Phase 1/2 Study. Ann Surg 2023; 278:937-944. [PMID: 37144409 DOI: 10.1097/sla.0000000000005894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To examine the safety and efficacy of iltamiocel, an investigational cellular therapy of autologous muscle-derived cells, as a treatment for fecal incontinence (FI) in adults. BACKGROUND Limited therapeutic options are available for patients with FI refractory to conservative treatments. Cell therapy using autologous muscle-derived cells represents a promising, minimally invasive approach for restoring anal sphincter function. METHODS In this multicenter, prospective, non-randomized study, 48 participants were treated with a single iltamiocel dose of 250×10 6 cells. The primary outcome was the incidence of product or procedure-related adverse events (AEs) and serious AEs. Secondary outcomes were changes in the number of FI episodes, Cleveland Clinic Incontinence Score, Fecal Incontinence Quality of Life, and anorectal manometry at 3, 6, and 12 months compared to baseline. RESULTS No serious AEs and only one product-related AE of inflammation at the injection site were reported. At 12 months, there was a reduction in median FI episodes (-6.0; 95% confidence interval (CI): -10.0, -1.0) and days with episodes (-4.0; 95% CI: -8.0, -1.0). A ≥50% reduction in FI episodes was observed in 53.7% of participants, and 24.4% had complete restoration of continence. Symptom severity and quality of life improved with mean Cleveland Clinic Incontinence Score reduction (-2.9; 95% CI: -3.7, -2.1), and Fecal Incontinence Quality of Life increased (2.2; 95% CI:1.4, 2.9). No significant changes were detected in anorectal manometry measurements. A history of episiotomy was significantly associated with treatment response in multivariate analysis. CONCLUSION The administration of iltamiocel cellular therapy is safe. Iltamiocel shows promise for significantly improving fecal incontinence symptoms and quality of life.
Collapse
Affiliation(s)
- Charles H Knowles
- Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | | | | | - Manoj J Raval
- St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Cartaxo AL, Fernandes-Platzgummer A, Rodrigues CA, Melo AM, Tecklenburg K, Margreiter E, Day RM, da Silva CL, Cabral JM. Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System. Tissue Eng Part C Methods 2023; 29:583-595. [PMID: 37842845 PMCID: PMC10714258 DOI: 10.1089/ten.tec.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.
Collapse
Affiliation(s)
- Ana Luísa Cartaxo
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Melo
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Richard M. Day
- Centre for Precision Healthcare, Division of Medicine, University College London, London, United Kingdom
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Kim M, Oh BY, Lee JS, Yoon D, Kim YR, Chun W, Kim JW, Son IT. Differentiation of Adipose-Derived Stem Cells into Smooth Muscle Cells in an Internal Anal Sphincter-Targeting Anal Incontinence Rat Model. J Clin Med 2023; 12:jcm12041632. [PMID: 36836167 PMCID: PMC9959483 DOI: 10.3390/jcm12041632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Studies on development of an anal incontinence (AI) model targeting smooth muscle cells (SMCs) of the internal anal sphincter (IAS) have not been reported. The differentiation of implanted human adipose-derived stem cells (hADScs) into SMCs in an IAS-targeting AI model has also not been demonstrated. We aimed to develop an IAS-targeting AI animal model and to determine the differentiation of hADScs into SMCs in an established model. MATERIALS AND METHODS The IAS-targeting AI model was developed by inducing cryoinjury at the inner side of the muscular layer via posterior intersphincteric dissection in Sprague-Dawley rats. Dil-stained hADScs were implanted at the IAS injury site. Multiple markers for SMCs were used to confirm molecular changes before and after cell implantation. Analyses were performed using H&E, immunofluorescence, Masson's trichrome staining, and quantitative RT-PCR. RESULTS Impaired smooth muscle layers accompanying other intact layers were identified in the cryoinjury group. Specific SMC markers, including SM22α, calponin, caldesmon, SMMHC, smoothelin, and SDF-1 were significantly decreased in the cryoinjured group compared with levels in the control group. However, CoL1A1 was increased significantly in the cryoinjured group. In the hADSc-treated group, higher levels of SMMHC, smoothelin, SM22α, and α-SMA were observed at two weeks after implantation than at one week after implantation. Cell tracking revealed that Dil-stained cells were located at the site of augmented SMCs. CONCLUSIONS This study first demonstrated that implanted hADSc restored impaired SMCs at the injury site, showing stem cell fate corresponding to the established IAS-specific AI model.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - You-Rin Kim
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Wook Chun
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
- Department of Surgery, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Jong Wan Kim
- Department of Surgery, Dontan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong-si 18450, Republic of Korea
| | - Il Tae Son
- Department of Surgery, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
- Institute for Regenerative Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| |
Collapse
|
10
|
Frudinger A, Gauruder-Burmester A, Graf W, Lehmann JP, Gunnarsson U, Mihov M, Ihnát P, Kosorok P, Orhalmi J, Slauf P, Emmanuel A, Hristov V, Jungwirthova A, Lehur PA, Müller A, Amort M, Marksteiner R, Thurner M. Skeletal Muscle-Derived Cell Implantation for the Treatment of Fecal Incontinence: A Randomized, Placebo-Controlled Study. Clin Gastroenterol Hepatol 2023; 21:476-486.e8. [PMID: 35961517 DOI: 10.1016/j.cgh.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Fecal incontinence (FI) improvement following injection of autologous skeletal muscle-derived cells has been previously suggested. This study aimed to test the efficacy and safety of said cells through a multicenter, placebo-controlled study, to determine an appropriate cell dose, and to delineate the target patient population that can most benefit from cell therapy. METHODS Patients experiencing FI for at least 6 months were randomized to receive a cell-free medium or low or high dose of cells. All patients received pelvic floor electrical stimulation before and after treatment. Incontinence episode frequency (IEF), FI quality of life, FI burden assessed on a visual analog scale, Wexner score, and parameters reflecting anorectal physiological function were all assessed for up to 12 months. RESULTS Cell therapy improved IEF, FI quality of life, and FI burden, reaching a preset level of statistical significance in IEF change compared with the control treatment. Post hoc exploratory analyses indicated that patients with limited FI duration and high IEF at baseline are most responsive to cells. Effects prevailed or increased in the high cell count group from 6 to 12 months but plateaued or diminished in the low cell count and control groups. Most physiological parameters remained unaltered. No unexpected adverse events were observed. CONCLUSIONS Injection of a high dose of autologous skeletal muscle-derived cells followed by electrical stimulation significantly improved FI, particularly in patients with limited FI duration and high IEF at baseline, and could become a valuable tool for treatment of FI, subject to confirmatory phase 3 trial(s). (ClinicalTrialRegister.eu; EudraCT Number: 2010-021463-32).
Collapse
Affiliation(s)
- Andrea Frudinger
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | | | - Wilhelm Graf
- Department of Surgery, Akademiska Sjukhuset, Uppsala, Sweden
| | | | - Ulf Gunnarsson
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Minko Mihov
- Medical Center Unimed EOOD, Sevlievo, Bulgaria
| | - Peter Ihnát
- Department of Surgical Studies, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavle Kosorok
- Department of Proctology, Iatros Medical Centre, Ljubljana, Slovenia
| | - Julius Orhalmi
- Department of Surgery, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Petr Slauf
- Surgical Clinic 1, Faculty of Medicine, University Hospital Bulovka, Charles University, Prague, Czech Republic
| | - Anton Emmanuel
- Gastrointestinal Physiology Unit, University College Hospital, London, United Kingdom
| | | | - Anna Jungwirthova
- Department of Gastroenterology, St. Anna Clinic, Prague, Czech Republic
| | - Paul-Antoine Lehur
- Clinique de Chirurgie Digestive et Endocrinienne, Institut des Maladies de l'Appareil Digestif, University Hospital of Nantes, Nantes, France
| | - Andreas Müller
- GastroZentrum Hirslanden, Klinik Hirslanden, Zürich, Switzerland
| | | | | | | |
Collapse
|
11
|
Balaphas A, Meyer J, Buchs NC, Modarressi A, Bühler LH, Toso C, Gonelle-Gispert C, Ris F. Isolation and Characterization of Stem Cells from the Anal Canal Transition Zone in Pigs. Dig Dis Sci 2023; 68:471-477. [PMID: 36125591 PMCID: PMC9905163 DOI: 10.1007/s10620-022-07690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/30/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Utilization of autologous stem cells has been proposed for the treatment of anal incontinence despite a lack of understanding of their mechanism of action and of the physiological healing process of anal sphincters after injury. AIMS We aim to develop a technique allowing isolation and further study of local mesenchymal stem cells, directly from anal canal transition zone in pig. METHODS Anal canal was resected "en bloc" from two young pigs and further microdissected. The anal canal transition zone was washed and digested with 0.1% type I collagenase for 45 min at 37 °C. The isolated cells were plated on dishes in mesenchymal stem cell medium and trypsinized when confluent. Cells were further used for flow cytometry analysis and differentiation assays. RESULTS The anal canal transition zone localization was confirmed with H&E staining. Following culture, cells exhibited a typical "fibroblast-like" morphology typical of stem cells. Isolated cells were positive for CD90 and CD44 but negative for CD14, CD34, CD45, CD105, CD106, and SLA-DR. Following incubation with specific differentiation medium, isolated cells differentiated into adipocytes, osteoblasts, and chondrocytes, confirming in vitro multipotency. CONCLUSIONS Herein, we report for the first time the presence of mesenchymal stem cells in the anal canal transition zone in pigs and the feasibility of their isolation. This preliminary study opens the path to the isolation of human anal canal transition zone mesenchymal stem cells that might be used to study sphincters healing and to treat anal incontinence.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland.
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Nicolas C Buchs
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Ali Modarressi
- Division of Plastic, Reconstructive and Aesthetic Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Leo H Bühler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Christian Toso
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| | - Carmen Gonelle-Gispert
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Frédéric Ris
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211, Geneva 14, Switzerland
| |
Collapse
|
12
|
Desprez C, Danovi D, Knowles CH, Day RM. Cell shape characteristics of human skeletal muscle cells as a predictor of myogenic competency: A new paradigm towards precision cell therapy. J Tissue Eng 2023; 14:20417314221139794. [PMID: 36949843 PMCID: PMC10026113 DOI: 10.1177/20417314221139794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 03/18/2023] Open
Abstract
Skeletal muscle-derived cells (SMDC) hold tremendous potential for replenishing dysfunctional muscle lost due to disease or trauma. Current therapeutic usage of SMDC relies on harvesting autologous cells from muscle biopsies that are subsequently expanded in vitro before re-implantation into the patient. Heterogeneity can arise from multiple factors including quality of the starting biopsy, age and comorbidity affecting the processed SMDC. Quality attributes intended for clinical use often focus on minimum levels of myogenic cell marker expression. Such approaches do not evaluate the likelihood of SMDC to differentiate and form myofibres when implanted in vivo, which ultimately determines the likelihood of muscle regeneration. Predicting the therapeutic potency of SMDC in vitro prior to implantation is key to developing successful therapeutics in regenerative medicine and reducing implementation costs. Here, we report on the development of a novel SMDC profiling tool to examine populations of cells in vitro derived from different donors. We developed an image-based pipeline to quantify morphological features and extracted cell shape descriptors. We investigated whether these could predict heterogeneity in the formation of myotubes and correlate with the myogenic fusion index. Several of the early cell shape characteristics were found to negatively correlate with the fusion index. These included total area occupied by cells, area shape, bounding box area, compactness, equivalent diameter, minimum ferret diameter, minor axis length and perimeter of SMDC at 24 h after initiating culture. The information extracted with our approach indicates live cell imaging can detect a range of cell phenotypes based on cell-shape alone and preserving cell integrity could be used to predict propensity to form myotubes in vitro and functional tissue in vivo.
Collapse
Affiliation(s)
- Charlotte Desprez
- Centre for Precision Healthcare, UCL
Division of Medicine, University College London, London, UK
- Department of Digestive Physiology,
Rouen University Hospital, Rouen, France
- On behalf of the EC Horizon 2020 AMELIE
consortium. Details of the AMELIE consortium is provided in the
Acknowledgements
| | - Davide Danovi
- Centre for Gene Therapy and
Regenerative Medicine, King’s College London, London, UK
- bit.bio, The Dorithy Hodgkin Building,
Babraham Research Campus, Cambridge
| | - Charles H Knowles
- On behalf of the EC Horizon 2020 AMELIE
consortium. Details of the AMELIE consortium is provided in the
Acknowledgements
- Blizard Institute, Centre for
Neuroscience, Surgery & Trauma, Queen Mary University of London, London,
UK
| | - Richard M Day
- Centre for Precision Healthcare, UCL
Division of Medicine, University College London, London, UK
- On behalf of the EC Horizon 2020 AMELIE
consortium. Details of the AMELIE consortium is provided in the
Acknowledgements
- Richard M Day, Centre for Precision
Healthcare, UCL Division of Medicine, University College London, Gower Street,
London WC1E 6JJ, UK.
| |
Collapse
|
13
|
The Effect of Mesenchymal Stem Cells, Adipose Tissue Derived Stem Cells, and Cellular Stromal Vascular Fraction on the Repair of Acute Anal Sphincter Injury in Rats. Bioengineering (Basel) 2022; 9:bioengineering9070318. [PMID: 35877369 PMCID: PMC9311655 DOI: 10.3390/bioengineering9070318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Anal sphincter incontinence (ASI) can cause a serious decline in the quality of life and can cause a socioeconomic burden. Studies have shown that bone marrow mesenchymal stem cells (MSC) have significant therapeutic effects on ASI, but the cost and risk of MSC harvest limit their further application. In contrast, adipose tissue derived stem cells (ADSC) and cellular stromal vascular fraction (CSVF) as stem cell sources have multipotency and the advantage of easy harvest. Objective: Here we aim to investigate the effects of ADSC and CSVF on treating ASI and compare them to that of bone marrow MSC. Methods: Bone marrow MSC, ADSC, and CSVF were obtained and labeled with green fluorescent protein (GFP), and CSVF was labeled with DIL. Sprague Dawley (SD) rats were divided into 5 groups. Four groups were injected with 0.2 mL phosphate buffer saline (PBS), 1 × 107/0.2 mL of MSC, ADSC, or CSVF, respectively, after model establishment. The control group received no treatment. The repair was assessed by anal functional tests and immunostaining on day 5 and day 10 after injection. Results: MSC, ADSC, and CSVF significantly promoted tissue repair and the recovery of muscle contraction and electromyographic activity in ASI. The generation of myosatellite cells by injected MSC, ADSC, and CSVF was found in the wounded area. On day 5, CSVF showed highest therapeutic effect, while on day 10, MSC and ADSC showed higher therapeutic effects than CSVF. When comparing the effects of MSC and ADSC, ADSC was slightly better than MSC in the indexes of anal pressure, etc. Conclusion: ADSC and CVSF are alternative stem cell sources for ASI repair.
Collapse
|
14
|
Lehmann J, Schreyer I, Riedl D, Tschuggnall M, Giesinger JM, Ninkovic M, Huth M, Kronberger I, Rumpold G, Holzner B. Usability evaluation of the Computer-Based Health Evaluation System (CHES) eDiary for patients with faecal incontinence: a pilot study. BMC Med Inform Decis Mak 2022; 22:81. [PMID: 35346170 PMCID: PMC8962247 DOI: 10.1186/s12911-022-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background Faecal incontinence (FI) is prevalent in 15–20% of elderly individuals and is frequently monitored in clinical trials and practice. Bowel diaries are the most common way to document FI, but, in clinical practice, are mainly used as paper-based versions. Electronic diaries (eDiaries) offer many potential benefits over paper-based diaries. The aim of this study was to develop and test an eDiary to document FI. Methods We migrated a paper FI diary to an eDiary app based on the Computer-based Health Evaluation System (CHES). To assess usability, we conducted functionality and usability tests at two time points in a sample of patients with FI. In the first assessment, the eDiary functionalities were tested, patients completed the System Usability Scale (SUS, range 0–100) and compared the paper diary with the eDiary. We set a threshold for minimum acceptable average usability at 70 points. Patients were then instructed to use the eDiary for 2 days at home and contacted to report on their usage and completed the SUS a second time.
Results We recruited a sample of N = 14 patients to use the eDiary. All patients were able to use all functionalities of the eDiary and only a few patients with lower technological literacy or access to devices (n = 3) needed initial assistance. The mean usability rating given at the first time point was high with 88 points (SD 18, 95% CI 78.2–96.8) and most patients (n = 10) reported they would prefer the eDiary over the paper-based version. Nine patients (n = 9) participated in the follow-up assessment and the mean SUS rating at the second time point was 97 points (SD 7, 95% CI 92.8–100). Conclusion The eDiary showed excellent usability scores for the assessment of FI at both assessments. Generally, patients preferred the eDiary over the paper-based version. We recommend the eDiary for usage with patients who own and use a smartphone and discuss potential solutions for patients with lower technological literacy or access. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-022-01818-5.
Collapse
Affiliation(s)
- Jens Lehmann
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Isabel Schreyer
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - David Riedl
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | | | - Johannes M Giesinger
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Marjiana Ninkovic
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcus Huth
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Irmgard Kronberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Rumpold
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.,Evaluation Software Development, Innsbruck, Austria
| | - Bernhard Holzner
- Evaluation Software Development, Innsbruck, Austria.,University Hospital of Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Pircher T, Wackerhage H, Akova E, Böcker W, Aszodi A, Saller MM. Fusion of Normoxic- and Hypoxic-Preconditioned Myoblasts Leads to Increased Hypertrophy. Cells 2022; 11:cells11061059. [PMID: 35326510 PMCID: PMC8947054 DOI: 10.3390/cells11061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022] Open
Abstract
Injuries, high altitude, and endurance exercise lead to hypoxic conditions in skeletal muscle and sometimes to hypoxia-induced local tissue damage. Thus, regenerative myoblasts/satellite cells are exposed to different levels and durations of partial oxygen pressure depending on the spatial distance from the blood vessels. To date, it is unclear how hypoxia affects myoblasts proliferation, differentiation, and particularly fusion with normoxic myoblasts. To study this, we investigated how 21% and 2% oxygen affects C2C12 myoblast morphology, proliferation, and myogenic differentiation and evaluated the fusion of normoxic- or hypoxic-preconditioned C2C12 cells in 21% or 2% oxygen in vitro. Out data show that the long-term hypoxic culture condition does not affect the proliferation of C2C12 cells but leads to rounder cells and reduced myotube formation when compared with myoblasts exposed to normoxia. However, when normoxic- and hypoxic-preconditioned myoblasts were differentiated together, the resultant myotubes were significantly larger than the control myotubes. Whole transcriptome sequencing analysis revealed several novel candidate genes that are differentially regulated during the differentiation under normoxia and hypoxia in mixed culture conditions and may thus be involved in the increase in myotube size. Taken together, oxygen-dependent adaption and interaction of myoblasts may represent a novel approach for the development of innovative therapeutic targets.
Collapse
Affiliation(s)
- Tamara Pircher
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany;
| | - Elif Akova
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
| | - Maximilian M. Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (T.P.); (E.A.); (W.B.); (A.A.)
- Correspondence: ; Tel.: +49-89-4400-55486
| |
Collapse
|
16
|
Nativ-Zeltzer N, Kuhn MA, Evangelista L, Anderson JD, Nolta JA, Farwell DG, Canestrari E, Jankowski RJ, Belafsky PC. Autologous Muscle-Derived Cell Therapy for Swallowing Impairment in Patients Following Treatment for Head and Neck Cancer. Laryngoscope 2022; 132:523-527. [PMID: 33988246 PMCID: PMC8909914 DOI: 10.1002/lary.29606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the safety and potential efficacy of autologous muscle-derived cells (AMDCs) for the treatment of swallowing impairment following treatment for oropharynx cancer. STUDY DESIGN Prospective, phase I, open label, clinical trial. METHODS Oropharynx cancer survivors disease free ≥2 years post chemoradiation were recruited. All patients had swallowing impairment but were not feeding tube dependent (Functional Oral Intake Scale [FOIS] ≥ 5). Muscle tissue (50-250 mg) was harvested from the vastus lateralis and 150 × 106 AMDCs were prepared (Cook MyoSite Inc., Pittsburgh, PA). The cells were injected into four sites throughout the intrinsic tongue musculature. Participants were followed for 24 months. The primary outcome measure was safety. Secondary endpoints included objective measures on swallowing fluoroscopy, oral and pharyngeal pressure, and changes in patient-reported outcomes. RESULTS Ten individuals were enrolled. 100% (10/10) were male. The mean age of the cohort was 65 (±8.87) years. No serious adverse event occurred. Mean tongue pressure increased significantly from 26.3 (±11.1) to 31.8 (±9.5) kPa (P = .017). The mean penetration-aspiration scale did not significantly change from 5.6 (±2.1) to 6.8 (±1.8), and the mean FOIS did not significantly change from 5.4 (±0.5) to 4.6 (±0.7). The incidence of pneumonia was 30% (3/10) and only 10% (1/10) experienced deterioration in swallowing function throughout 2 years of follow-up. The mean eating assessment tool (EAT-10) did not significantly change from 24.1 (±5.57) to 21.3 (±6.3) (P = .12). CONCLUSION Results of this phase I clinical trial demonstrate that injection of 150 × 106 AMDCs into the tongue is safe and may improve tongue strength, which is durable at 2 years. A blinded placebo-controlled trial is warranted. LEVEL OF EVIDENCE 3 Laryngoscope, 132:523-527, 2022.
Collapse
Affiliation(s)
- Nogah Nativ-Zeltzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Maggie A Kuhn
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Lisa Evangelista
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Johnathon D Anderson
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | - Jan A Nolta
- Institute for Regenerative Cures, Department of Internal Medicine, University of California, Davis, Sacramento, California, U.S.A
| | - D Gregory Farwell
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| | | | | | - Peter C Belafsky
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis Medical Center, Sacramento, California, U.S.A
| |
Collapse
|
17
|
Sun L, Billups A, Rietsch A, Damaser MS, Zutshi M. Stromal cell derived factor 1 plasmid to regenerate the anal sphincters. J Tissue Eng Regen Med 2022; 16:355-366. [PMID: 35092171 DOI: 10.1002/term.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to evaluate regeneration of a chronic large anal sphincter defect in a pig model after treatment with a plasmid encoding Stromal Cell Derived Factor-1(SDF-1). METHODS Under ethics approved protocol 19 age/weight matched Sinclair mini-pigs were subjected to excision of the posterior 50% of anal sphincter muscle and left to recover for 6 weeks. They were randomly allocated to receive either saline treatment (Saline 1 ml, n = 5), 1 injection of SDF-1 plasmid 2 mg/ml (1 SDF-1, n = 9) or 2 injections of SDF-1, 2 mg/ml each at 2 weeks intervals (2 SDF-1, n = 5). Euthanasia occurred 8 weeks after the last treatment. In vivo outcomes included anal resting pressures done under anesthesia pre-injury, pre-injection and before euthanasia (8 weeks after treatment). Anal ultrasound was done pre injury and pre-euthanasia. Tissues were saved for histology and analyzed quantitatively. Two way ANOVA followed by Holm-Sidak test and one way ANOVA followed by the Tukey test were used for data analysis, p < 0.05 was regarded as significant. RESULTS Posterior anal pressures at the 3 time points were not significantly different in the saline group. In contrast, post-treatment pressures in the 1 SDF-1 group pressures were significantly higher than both pre-injury (p = 0.001) and pre-treatment time points (p = 0.003). At the post-treatment time point, both 1 SDF-1 (p = 0.01) and 2 SDF-1 (p = 0.01) groups had significantly higher mean pressures compared to the saline group. Histology showed distortion of normal anatomy with patchy regeneration in the control group while muscle was more organized in both treatment groups. CONCLUSIONS Eight weeks after a single or two doses of SDF-1injected into a chronic anal sphincter injury improved resting anal pressures and regenerated muscle in the entire defect. SDF-1 plasmid is effective in treating chronic defects of the anal sphincter in a large animal and could be clinically translated.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alanna Billups
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Rietsch
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, Ohio, USA
| | - Massarat Zutshi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Manodoro S, Frigerio M, Barba M, Bosio S, de Vitis LA, Marconi AM. Stem Cells in Clinical Trials for Pelvic Floor Disorders: a Systematic Literature Review. Reprod Sci 2021; 29:1710-1720. [PMID: 34596887 PMCID: PMC9110489 DOI: 10.1007/s43032-021-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Pelvic floor disorders (PFDs) include a series of conditions that can be poorly tolerated, negatively affecting the quality of life. Current treatment options show unsatisfactory results and new ones are therefore needed. Stem cell (SC) therapy might be an alternative treatment strategy. This systematic review aims to define the state of art of SC therapy for PFDs in clinical trials, by systematically reviewing the available evidence. A systematic search strategy was conducted up to November 7, 2020, in PubMed, Scopus, Cochrane Library, and ISI Web of Science. Preclinical studies on animal models were not considered. Studies were included when the patients were affected by any PFDs and cells were isolated, cultured, and characterized as SC. The study protocol was registered in PROSPERO (CRD42020216551). A total of 11 prospective clinical studies were included in the final assessment, specifically 7 single-arm studies dealing with SC therapy for stress urinary incontinence and 4 with anal incontinence. Among the latter, there were two prospective, single-arm studies and two randomized controlled trials. No papers concerning the use of SC for prolapse repair were retrieved. Due to the great heterogeneity, data pooling was not possible. Stem cell injection resulted in a safe procedure, with few mild adverse side effects, mostly related to harvesting sites. However, a clear beneficial impact of SC treatment for the treatment of pelvic floor disorders could not be demonstrated. Further larger targeted studies with control arms are needed before any conclusions can be made.
Collapse
Affiliation(s)
- Stefano Manodoro
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy.
| | - Matteo Frigerio
- Division of Obstetrics and Gynecology, San Gerardo University Hospital, Monza, Italy
| | - Marta Barba
- Division of Obstetrics and Gynecology, San Gerardo University Hospital, Monza, Italy
- University of Milano-Bicocca, Monza, Italy
| | - Sara Bosio
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Luigi Antonio de Vitis
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Anna Maria Marconi
- Division of Obstetrics and Gynecology, San Paolo Hospital Medical School, ASST Santi Paolo E Carlo, Via Antonio di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| |
Collapse
|
19
|
Shahini A, Rajabian N, Choudhury D, Shahini S, Vydiam K, Nguyen T, Kulczyk J, Santarelli T, Ikhapoh I, Zhang Y, Wang J, Liu S, Stablewski A, Thiyagarajan R, Seldeen K, Troen BR, Peirick J, Lei P, Andreadis ST. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. SCIENCE ADVANCES 2021; 7:eabe5671. [PMID: 34516892 PMCID: PMC8442867 DOI: 10.1126/sciadv.abe5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC+ myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Joseph Kulczyk
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Tyler Santarelli
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Izuagie Ikhapoh
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Center
| | - Ramkumar Thiyagarajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kenneth Seldeen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Bruce R. Troen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14260, USA
| | - Jennifer Peirick
- Laboratory Animal Facilities, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center for Cell Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
20
|
Balaphas A, Meyer J, Meier RPH, Liot E, Buchs NC, Roche B, Toso C, Bühler LH, Gonelle-Gispert C, Ris F. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021; 10:2086. [PMID: 34440855 PMCID: PMC8394955 DOI: 10.3390/cells10082086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Anal sphincter incontinence is a chronic disease, which dramatically impairs quality of life and induces high costs for the society. Surgery, considered as the best curative option, shows a disappointing success rate. Stem/progenitor cell therapy is pledging, for anal sphincter incontinence, a substitute to surgery with higher efficacy. However, the published literature is disparate. Our aim was to perform a review on the development of cell therapy for anal sphincter incontinence with critical analyses of its pitfalls. Animal models for anal sphincter incontinence were varied and tried to reproduce distinct clinical situations (acute injury or healed injury with or without surgical reconstruction) but were limited by anatomical considerations. Cell preparations used for treatment, originated, in order of frequency, from skeletal muscle, bone marrow or fat tissue. The characterization of these preparations was often incomplete and stemness not always addressed. Despite a lack of understanding of sphincter healing processes and the exact mechanism of action of cell preparations, this treatment was evaluated in 83 incontinent patients, reporting encouraging results. However, further development is necessary to establish the correct indications, to determine the most-suited cell type, to standardize the cell preparation method and to validate the route and number of cell delivery.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
- Department of Surgery, Geneva Medical School, University of Geneva, 1205 Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Raphael P. H. Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Emilie Liot
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Nicolas C. Buchs
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Bruno Roche
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Christian Toso
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Leo H. Bühler
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Carmen Gonelle-Gispert
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Frédéric Ris
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| |
Collapse
|
21
|
Contreras-Muñoz P, Torrella JR, Venegas V, Serres X, Vidal L, Vila I, Lahtinen I, Viscor G, Martínez-Ibáñez V, Peiró JL, Järvinen TAH, Rodas G, Marotta M. Muscle Precursor Cells Enhance Functional Muscle Recovery and Show Synergistic Effects With Postinjury Treadmill Exercise in a Muscle Injury Model in Rats. Am J Sports Med 2021; 49:1073-1085. [PMID: 33719605 DOI: 10.1177/0363546521989235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle injuries represent a major concern in sports medicine. Cell therapy has emerged as a promising therapeutic strategy for muscle injuries, although the preclinical data are still inconclusive and the potential clinical use of cell therapy has not yet been established. PURPOSE To evaluate the effects of muscle precursor cells (MPCs) on muscle healing in a small animal model. STUDY DESIGN Controlled laboratory study. METHODS A total of 27 rats were used in the study. MPCs were isolated from rat (n = 3) medial gastrocnemius muscles and expanded in primary culture. Skeletal muscle injury was induced in 24 rats, and the animals were assigned to 3 groups. At 36 hours after injury, animals received treatment based on a single ultrasound-guided MPC (105 cells) injection (Cells group) or MPC injection in combination with 2 weeks of daily exercise training (Cells+Exercise group). Animals receiving intramuscular vehicle injection were used as controls (Vehicle group). Muscle force was determined 2 weeks after muscle injury, and muscles were collected for histological and immunofluorescence evaluation. RESULTS Red fluorescence-labeled MPCs were successfully transplanted in the site of the injury by ultrasound-guided injection and were localized in the injured area after 2 weeks. Transplanted MPCs participated in the formation of regenerating muscle fibers as corroborated by the co-localization of red fluorescence with developmental myosin heavy chain (dMHC)-positive myofibers by immunofluorescence analysis. A strong beneficial effect on muscle force recovery was detected in the Cells and Cells+Exercise groups (102.6% ± 4.0% and 101.5% ± 8.5% of maximum tetanus force of the injured vs healthy contralateral muscle, respectively) compared with the Vehicle group (78.2% ± 5.1%). Both Cells and Cells+Exercise treatments stimulated the growth of newly formed regenerating muscles fibers, as determined by the increase in myofiber cross-sectional area (612.3 ± 21.4 µm2 and 686.0 ± 11.6 µm2, respectively) compared with the Vehicle group (247.5 ± 10.7 µm2), which was accompanied by a significant reduction of intramuscular fibrosis in Cells and Cells+Exercise treated animals (24.2% ± 1.3% and 26.0% ± 1.9% of collagen type I deposition, respectively) with respect to control animals (40.9% ± 4.1% in the Vehicle group). MPC treatment induced a robust acceleration of the muscle healing process as demonstrated by the decreased number of dMHC-positive regenerating myofibers (enhanced replacement of developmental myosin isoform by mature myosin isoforms) (4.3% ± 2.6% and 4.1% ± 1.5% in the Cells and Cells+Exercise groups, respectively) compared with the Vehicle group (14.8% ± 13.9%). CONCLUSION Single intramuscular administration of MPCs improved histological outcome and force recovery of the injured skeletal muscle in a rat injury model that imitates sports-related muscle injuries. Cell therapy showed a synergistic effect when combined with an early active rehabilitation protocol in rats, which suggests that a combination of treatments can generate novel therapeutic strategies for the treatment of human skeletal muscle injuries. CLINICAL RELEVANCE Our study demonstrates the strong beneficial effect of MPC transplant and the synergistic effect when the cell therapy is combined with an early active rehabilitation protocol for muscle recovery in rats; this finding opens new avenues for the development of effective therapeutic strategies for muscle healing and clinical trials in athletes undergoing MPC transplant and rehabilitation protocols.
Collapse
Affiliation(s)
- Paola Contreras-Muñoz
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Ramón Torrella
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanessa Venegas
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Xavier Serres
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vidal
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ingrid Vila
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ilmari Lahtinen
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ginés Viscor
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vicente Martínez-Ibáñez
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Peiró
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Tero A H Järvinen
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gil Rodas
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mario Marotta
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
22
|
Messner F, Thurner M, Müller J, Blumer M, Hofmann J, Marksteiner R, Couillard-Despres S, Troppmair J, Öfner D, Schneeberger S, Hautz T. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther 2021; 12:146. [PMID: 33627196 PMCID: PMC7905585 DOI: 10.1186/s13287-021-02208-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration. Methods A clamping model of murine (C57b/6 J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 h (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1 × 106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration. Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI. Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02208-w.
Collapse
Affiliation(s)
- Franka Messner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Marco Thurner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria.,Innovacell Biotechnologie AG, Innsbruck, Austria
| | - Jule Müller
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Michael Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | | | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration, Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Dietmar Öfner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Stefan Schneeberger
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria. .,Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Theresa Hautz
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
23
|
Balaphas A, Schiltz B, Liot E, Robert-Yap J, Ris F. What is the role of stem cell therapy in the treatment of anal incontinence? Colorectal Dis 2021; 23:551-552. [PMID: 33169470 DOI: 10.1111/codi.15433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Alexandre Balaphas
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Boris Schiltz
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Emilie Liot
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Joan Robert-Yap
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Frédéric Ris
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| |
Collapse
|
24
|
D’Amico F, Wexner SD, Vaizey CJ, Gouynou C, Danese S, Peyrin-Biroulet L. Tools for fecal incontinence assessment: lessons for inflammatory bowel disease trials based on a systematic review. United European Gastroenterol J 2020; 8:886-922. [PMID: 32677555 PMCID: PMC7707876 DOI: 10.1177/2050640620943699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fecal incontinence is a disabling condition affecting up to 20% of women. OBJECTIVE We investigated fecal incontinence assessment in both inflammatory bowel disease and non-inflammatory bowel disease patients to propose a diagnostic approach for inflammatory bowel disease trials. METHODS We searched on Pubmed, Embase and Cochrane Library for all studies on adult inflammatory bowel disease and non-inflammatory bowel disease patients reporting data on fecal incontinence assessment from January 2009 to December 2019. RESULTS In total, 328 studies were included; 306 studies enrolled non-inflammatory bowel disease patients and 22 studies enrolled inflammatory bowel disease patients. In non-inflammatory bowel disease trials the most used tools were the Wexner score, fecal incontinence quality of life questionnaire, Vaizey score and fecal incontinence severity index (in 187, 91, 62 and 33 studies). Anal manometry was adopted in 41.2% and endoanal ultrasonography in 34.0% of the studies. In 142 studies (46.4%) fecal incontinence evaluation was performed with a single instrument, while in 64 (20.9%) and 100 (32.7%) studies two or more instruments were used. In inflammatory bowel disease studies the Wexner score, Vaizey score and inflammatory bowel disease quality of life questionnaire were the most commonly adopted tools (in five (22.7%), five (22.7%) and four (18.2%) studies). Anal manometry and endoanal ultrasonography were performed in 45.4% and 18.2% of the studies. CONCLUSION Based on prior validation and experience, we propose to use the Wexner score as the first step for fecal incontinence assessment in inflammatory bowel disease trials. Anal manometry and/or endoanal ultrasonography should be taken into account in the case of positive questionnaires.
Collapse
Affiliation(s)
- Ferdinando D’Amico
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Steven D Wexner
- Department of Colorectal Surgery, Cleveland Clinic Florida, Weston USA
| | | | - Célia Gouynou
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
25
|
Abstract
Mesenchymal stem cells (MSCs), also referred to as multipotent stromal cells or mesenchymal stromal cells, are present in multiple tissues and capable of differentiating into diverse cell lineages, holding a great promise in developing cell-based therapy for a wide range of conditions. Pelvic floor disorders (PFDs) is a common degenerative disease in women and may diminish a woman's quality of life at any age. Since the treatments for this disease are limited by the high rates of recurrence and surgical complications, seeking an ideal therapy in the restoration of pelvic floor function is an urgent issue at present. Herein, we summarize the cell sources of MSCs used for PFDs and discuss the potential mechanisms of MSCs in treating PFDs. Specifically, we also provide a comprehensive review of current preclinical and clinical trials dedicated to investigating MSC-based therapy for PFDs. The novel therapy has presented promising therapeutic effects which include relieving the symptoms of urinary or fecal incontinence, improving the biological properties of implanted meshes and promoting the injured tissue repair. Nevertheless, MSC-based therapies for PFDs are still experimental and the unstated issues on their safety and efficacy should be carefully addressed before their clinical applications.
Collapse
|
26
|
Thurner M, Deutsch M, Janke K, Messner F, Kreutzer C, Beyl S, Couillard-Després S, Hering S, Troppmair J, Marksteiner R. Generation of myogenic progenitor cell-derived smooth muscle cells for sphincter regeneration. Stem Cell Res Ther 2020; 11:233. [PMID: 32532320 PMCID: PMC7291744 DOI: 10.1186/s13287-020-01749-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Degeneration of smooth muscles in sphincters can cause debilitating diseases such as fecal incontinence. Skeletal muscle-derived cells have been effectively used in clinics for the regeneration of the skeletal muscle sphincters, such as the external anal or urinary sphincter. However, little is known about the in vitro smooth muscle differentiation potential and in vivo regenerative potential of skeletal muscle-derived cells. METHODS Myogenic progenitor cells (MPC) were isolated from the skeletal muscle and analyzed by flow cytometry and in vitro differentiation assays. The differentiation of MPC to smooth muscle cells (MPC-SMC) was evaluated by immunofluorescence, flow cytometry, patch-clamp, collagen contraction, and microarray gene expression analysis. In vivo engraftment of MPC-SMC was monitored by transplanting reporter protein-expressing cells into the pyloric sphincter of immunodeficient mice. RESULTS MPC derived from human skeletal muscle expressed mesenchymal surface markers and exhibit skeletal myogenic differentiation potential in vitro. In contrast, they lack hematopoietic surface marker, as well as adipogenic, osteogenic, and chondrogenic differentiation potential in vitro. Cultivation of MPC in smooth muscle differentiation medium significantly increases the fraction of alpha smooth muscle actin (aSMA) and smoothelin-positive cells, while leaving the number of desmin-positive cells unchanged. Smooth muscle-differentiated MPC (MPC-SMC) exhibit increased expression of smooth muscle-related genes, significantly enhanced numbers of CD146- and CD49a-positive cells, and in vitro contractility and express functional Cav and Kv channels. MPC to MPC-SMC differentiation was also accompanied by a reduction in their skeletal muscle differentiation potential. Upon removal of the smooth muscle differentiation medium, a major fraction of MPC-SMC remained positive for aSMA, suggesting the definitive acquisition of their phenotype. Transplantation of murine MPC-SMC into the mouse pyloric sphincter revealed engraftment of MPC-SMC based on aSMA protein expression within the host smooth muscle tissue. CONCLUSIONS Our work confirms the ability of MPC to give rise to smooth muscle cells (MPC-SMC) with a well-defined and stable phenotype. Moreover, the engraftment of in vitro-differentiated murine MPC-SMC into the pyloric sphincter in vivo underscores the potential of this cell population as a novel cell therapeutic treatment for smooth muscle regeneration of sphincters.
Collapse
Affiliation(s)
- Marco Thurner
- Innovacell Biotechnologie AG, Mitterweg 24, 6020, Innsbruck, Austria.
- Daniel Swarovski Research Laboratory (DSL), Visceral Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| | - Martin Deutsch
- Innovacell Biotechnologie AG, Mitterweg 24, 6020, Innsbruck, Austria
| | - Katrin Janke
- Innovacell Biotechnologie AG, Mitterweg 24, 6020, Innsbruck, Austria
| | - Franka Messner
- Daniel Swarovski Research Laboratory (DSL), Visceral Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stanislav Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Sébastien Couillard-Després
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory (DSL), Visceral Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
27
|
Lin H, Zhang Z, Hu G, Wang X, Lin C, Chen Y. Acupuncture for fecal incontinence: Protocol for a systematic review and data mining. Medicine (Baltimore) 2019; 98:e14482. [PMID: 30762773 PMCID: PMC6408071 DOI: 10.1097/md.0000000000014482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fecal incontinence is a socially and emotionally destructive condition that has a negative impact on personal image, self-confidence, and quality of life. Acupuncture is commonly used to treat chronic conditions, including fecal incontinence. However, no relevant systematic review or meta-analysis has been designed to evaluate the effects of acupuncture on fecal incontinence. METHODS We will identify relevant randomized controlled trials (RCTs) from the Cochrane Library, Medline, Embase, PubMed, Springer, Web of Science, China National Knowledge Infrastructure, VIP Chinese Science and Technology Journals Database, Wanfang database, and clinical trial registration center from their inception to February 28, 2019. The primary outcome measures will be clinical effective rate, functional outcomes, and quality of life. Data that meets the inclusion criteria will be extracted and analyzed using RevMan V.5.3 software. Two reviewers will evaluate the studies using the Cochrane Collaboration risk of bias tool. Publication bias will be assessed by funnel plots, Egger test, and Begg test using the Stata software. Acupoints characteristics will be analyzed by Traditional Chinese Medicine inheritance support system. RESULTS This study will analyze the clinical effective rate, functional outcomes, quality of life, daily average number of fecal incontinence, and effective prescriptions of acupuncture for patients with fecal incontinence. CONCLUSION Our findings will provide evidence for the effectiveness and potential treatment prescriptions of acupuncture for patients with fecal incontinence. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019119680.
Collapse
Affiliation(s)
| | - Zhiqing Zhang
- South China Research Center for Acupuncture and Moxibustion
- Medical School of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou
| | - Guijuan Hu
- Medical School of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou
| | - Xiaotong Wang
- South China Research Center for Acupuncture and Moxibustion
- Medical School of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou
| | - Chunni Lin
- School of Foreign Languages, Xinhua College of Sun Yat-sen University, Dongguan, People's Republic of China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion
- Medical School of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou
| |
Collapse
|